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1. Introduction

There are many known and classical theorems pertaining to the integrability of for-
mal sine and cosine series

(1.1) g(x) := i Ap sinnz,
n=1

and

(1.2) f(x) = i A, COS N,
n=1

We do not recall such theorems because a nice short survey of these results with
references can be found in a recent paper of S. TikhoBpwhere he proved two
theorems providing sufficient conditions of belonging fdfr) and g(z) to Orlicz
spaces. In his theorems the sequence of the coefficlgntelongs to the class of
sequences of rest bounded variation. For notions and notations, please, consult the
third section.

In the present paper we shall verify analogous results assuming only that the
sequence\ := {\,} is a sequence of mean rest bounded variation. We emphasize
that the latter sequences may have many zero terms, while the previous ones have no
zero term.

Tikhonov's theorems read as follows:

Theorem 1.1.Let®(x) € A(p,0) (0 < p). If {\,} € Ry BV S, and the sequence
{~,} is such that{~,, n='*¢} is almost decreasing for somae> 0, then

(1.3) %@( An) < 00 = () € L(D, ),
n=1
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where a function)(z) is either a sine or cosine series.

Theorem 1.2.Let ®(z) € A(p,q) (0 < ¢ < p). If {\,} € R{BVS, and the
sequencér, } is such that{, n~(+9+<} is almost decreasing for some> 0, then

(1.4) i T p(n2\,) < 0o = g(z) € L(D, 7).
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2. New Result

Now, we formulate our result in a terse form.

Theorem 2.1. Theoremsl.1 and 1.2 can be improved when the conditién,,} €
R$ BV S is replaced by the assumptidi\,,} € M RBV S. Furthermore the condi-
tions of (L.3) and (1.4) may be modified as follows:
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3. Notions and Notations

A null-sequence := {c,} (¢, — 0) of positivenumbers satisfying the inequalities

Z |Ac,| < K(c)em, (Acp:=cp—cCpi1), m=1,2,...

n=m

with a constanf(c) > 0 is said to be @equence of rest bounded variati@mbrief,
ce RfBVS.
A null-sequence of nonnegativenumbers possessing the property

00 2m—1
Z |Ac,| < K(c)m™! Z Cy
n=2m v=m

is called asequence of mean rest bounded variatiorsymbolsc € M RBV'S.

It is clear that the clasd/ RBV S includes the clas&; BV S,

The author is grateful to the referee for calling his attention to an inaccurancy in
the previous definition of the clagd RBV S and to some typos.

A sequencey of positive terms will be called almost increasing (decreasing) if

K = Ym (1 < K(Y)Vm)

holds for anyn > m.

Denote byA(p,q) (0 < ¢ < p) the set of all nonnegative functiords(z) de-
fined on[0, co) such thatdb(0) = 0 and®(x)/z? is nonincreasing and(z)/z9 is
nondecreasing.

In this paper a sequence= {~,} is associated to a functioy(x) being defined
in the following way: v (£) := v,, n € N andK;(y)yn1 < v(z) < Ko(9)m

holds for allz € (75, %) .
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A locally integrable almost everywhere positive functipix) : [0, 7] — [0, c0)
is said to be a weight function.

Let ®(¢) be a nondecreasing continuous function definedlono) such that
®(0) =0 andthl?o ®(t) = 4o00. For a weight functiony(x) the weighted Orlicz

spacel(®,v) is defined by
L(®,7) := {h ; / v(z)®(e|h(x)|)dz < oo for somes > 0} .
0

Later onDy () and Dy (z) shall denote the Dirichlet and the conjugate Dirichlet
kernels. It is known that, if: > 0, |Dy(z)| = O(z') and|Dy(z)| = O(z~!) hold.

We shall also use the notatidn< R if there exists a positive constait such
thatL < KR.
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4. Lemmas

Lemma 4.1 (1]). If a, >0, p, > 0,and ifp > 1, then

00 n p 00 00 p
> <Z ay> <) ot <Z py>
n=1 v=1 n=1 v=n

Lemma4.2 (2]). Let® € A(p,q) (0 <g<p)andt; >0, j=1,2,...,n, n €N, NIy CmSIes
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Proof. Denote byA,, :=n~' 32" q,. Let¢ be an integer such that < k < 2¢+1.

Then

g 2mtl_g

k 3
(4.2) Za,, < Z a, = Z 2™ Agm.
v=1 m=0

m=0 p=2m

Utilizing the properties ofb, furthermore {.1), (4.2) and Lemmal.2, we obtain that

() <o)

£—1
<P (Z 2’"A2m)
m=0

*

&—1 p* k p
< (Z c1>1/P*(2mA2m)> < (Z 1/‘1<I>1/”*(1/Ay)> .
m=0 v=1

Hence, by Lemmaé.1, we have
[eS) k p*
Zpkq) (Z au> <D m <Z vV (v Au))
v=1 k=1 v=1
<o TR (kA (Z m)
k=1
< ZPk‘I’(k’Ak ( kpr)” Zm)

k=1
Herewith the proof is complete.
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Lemma4.4.1f X\ := {\,} € MRBVS andA,, :=n~13>" 1), then

Ak < Ag
holds for allk > 2¢.

Proof. Itis clear that ifm > 2/, then

20—1
s Z/\ >>Z!A>\ |>Z|AAV|2Am,
v=2/
whence
20—1 2k—1

A=) N > ED)  N= Ay
v=~{ m=k

obviously follows.
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5. Proof of Theorem?2.1

Proof of Theoren?. 1. Letz € (%7, %) . Using Abel’s rearrangement, the known

n+l’n

estimate ofD,(z) and the fact thak € A/ RBV'S, we obtain that

z)| < Z)\k—i- Z A cos kx

k=n+1

<ZAk+Z|A>\ka )| + An| D ()]

<<2Ak+ Z i+ 1\

k>n/2

Hence,\ € M RBV S, and we obtain that

2 <> M
k=1

also holds.
A similar argument yields

2)| <Y A,
k=1

thus we have

(5.1) ()] <D A,
k=1
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wherey(z) is eitherf(z) or g(x).
By Lemma4.4, the condition {.1) with A\, in place ofa, is satisfied, thus we can
apply Lemmai.3, consequentlyF.1) and some elementary calculations give that

/07r (2)® (| dx<<zq><ZAk>/ - ~v(x)da
< Z% n=2d (Z )\k)
(5.2) < Z@ (Z A ) (/mkl i% VZ) .

Since the sequendey, n~'*°} is almost decreasing, then
kkalz%V—Q <1,
v=k

therefore §.2) proves £.1).
To prove ¢.2) we follow a similar procedure as above. Then

x)| < Zkz:v/\k—i— Z A sin kx
k=n+1
< mek + Z | AN, Dy (2)] + An|Dn ()]
k=1 k=n
(5.3) <n” Zm,ﬁ Z M+ n A, < n” ka
k>n/2
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Using Lemmas!.2, 4.3 4.4and the estimates(3), we obtain that

w/n

/Oﬂ'y(x)q)ﬂg(x)\)dx <> @ (w > mk> / y(z)dz

/(n+1)

< i Y 21D (i: k;/\k>
”;1 2k—1 . -
(5.4) < Z o (k Z )\V) v k2 <k1+q7k1 Z%V,g,q
k=1 v=~k

v=k

By the assumption ofyy, },

Koyt Yy <L,
v=~k

and thus %.4) yields that

| @ells@is < Yk (k 3 Ay>

k=1

holds, which provesA 2).
Herewith the proof of Theorem.1is complete.

*

)
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