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ABSTRACT. We introduce and study some classes of meromorphic functions defined by using
a meromorphic analogue of Noor [also Choi-Saigo-Srivastava] operator for analytic functions.
Several inclusion results and some other interesting properties of these classes are investigated.
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1. INTRODUCTION

Let M denote the class of functions of the form
 [— .
f(z) = . + nzzoanz ,

which are analytic inD = {2 : 0 < |2]| < 1}.
Let P(() be the class of analytic functiop$z) defined in unit disd& = D U {0}, satisfying
the propertiep(0) = 1 and
%)6_5‘ 40 < kr,

(1.1) /0% :

wherez = re?, k > 2and0 < 3 < 1. When3 = 0, we obtain the clas®, defined in[[14] and
for 5 =0, kK = 2, we have the clas® of functions with positive real part.
Also, we can write[(1]1) as

(1.2) p(z) = - / i Ut CCa

2 1 —ze @
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2 KHALIDA INAYAT NOOR

wherey(t) is a function with bounded variation 90, 27| such that

. ’ = d 7 .
(L.3) | du =2 and [ jdun) < i

From [1.1), we can write, fas € P (03),

(1.4 po = (5+3)me - (5-3) e,

where py, p; € Po(3) = P(f), z € E.
We define the functioni(a, b, z) by

]- = n+1
Ma,b,z) = - 2", zeD,
Z ;0 n+1
c#0,—-1,-2,...,a > 0,where(a), is the Pochhamer symbol (or the shifted factorial) defined

by
(a)o=1, (a)p=ala+1)---(a+n—-1), n>1.
We note that

1
Ma,c,z) = =2 F1(1,a;5¢, 2),
z

2F1(1, a; ¢, 2) is Gauss hypergeometric function.
Let f € M. Denote byL(a, c); M — M, the operator defined by
L(a,0)f(z) = Ma,c.2) « f(2), =€ D,

where the symbol stands for the Hadamard product (or convolution). The opefgtarc) was
introduced and studied inl[5]. This operator is closely related to the Carlson-Shaeffer operator
[1] defined for the space of analytic and univalent functiong'jrsee [11} 13].

We now introduce a functiot\(a, ¢, z)) ™ given by

Aa, ¢, 2) * (Aa, ¢, 2)) 7Y = ﬁ, (u>0), ze€D.

Analogous tal(a, c), a linear operatof, (a, ¢) on M is defined as follows, segl[2].
(1.5) L(a,¢)f(2) = (Ma, ¢, 2) Vs f(2), (u>0,a>0, ¢#0,—-1,-2,..., zeD)
We note that
L(2,1)f(z) = f(2), and L(L1)f(z) = zf'(2) + 2f(2).
It can easily be verified that
(1.6) 2(La+1,0)f(2) = alu(a,0)f(2) = (a+ DL (a+1,c)f(2),
(1.7) 2 (Lu(a, ) f(2)) = plusa(a,0) f(2) = (p+ D Iu(a,0) f(2).

We note that the operatdy,(a, c) is motivated essentially by the operators defined and studied
in [2,11].

Now, using the operataf,(a, c), we define the following classes of meromorphic functions
foru>0,0<n06<1l,a>0,z€D.

We shall assume, unless stated otherwise,aka, —1,—2,..., ¢ # 0, —1,
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Definition 1.1. A function f € M is said to belong to the clasd Ry(n) for z € D,0 <n <
1, k> 2,ifand only if
2f'(2)
€ Py(n
oy < MO0
andf € MVy(n),for z € D, 0 <n <1, k>2, ifand only if

(=f'(2))
——— < B(n).
Flay o
We call f € M R,(n), a meromorphic function with bounded radius rotation of orglend
f € MV, a meromorphic function with bounded boundary rotation.

Definition 1.2. Let f e M, 0<n <1, k>2, z€ D. Then
fe MRy(p,n,a,c) ifandonlyif 1,(a,c)f € MRy(n).
Also
feMVi(u,n,a,c) ifandonlyif I,(a,c)f € MVi(n), ze€D.
We note that, for € D,

feMVi(u,n,a,c) < —zf € MRy(u,n,a,c).

Definition 1.3. Leta >0, f e M, 0<n,6 < 1,u>0andz € D.Thenf € By(u, 3,1, a,c),
if and only if there exists a functiop € M C(u, n, a, ¢), such that

(1 e (eI
(Lu(a,c)g(2)) (Iu(a, c)g(2))’

In particular, fora = 0, £k = a = p = 2, andc = 1, we obtain the class of meromorphic
close-to-convex functions, se€ [4]. Fer= 1, £ = u = a = 2, ¢ = 1, we have the class of
meromorphic quasi-convex functions defined foe D. We note that the class™ of quasi-
convex univalent functions, analytic if, were first introduced and studied in [7]. See also
[9,[12].

The following lemma will be required in our investigation.
Lemma 1.1([6]). Letu = wu; + iug andv = vy + vy and let®(u, v) be a complex-valued
function satisfying the conditions:
(i) ®(u,v) is continuous in a domai® C C?,
(i) (1,0) € Dand®(1,0) > 0.
(i) Re®(ius,v1) <0 whenever(ius,v;) € D anduv; < —1(1 4 uy).
If h(z) = 14 > °_, cn2™ is a function, analytic inZ, such that(h(z), zh'(z)) € D and

Re(h(z), zh'(z)) > 0 for z € E,thenReh(z) > 0in E.
2. MAIN RESULTS
Theorem 2.1.
MRy (p+1,m,a,¢) C MRy(p, B,a,¢) C MR(p,v,a+1,¢).

Proof. We prove the first part of the result and the second part follows by using similar argu-
ments. Let

feMRy(n+1,na,¢), z€D
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and set

o1 - [Hhleosr),

whereH (z) is analytic in£ with H(0) = 1.
Simple computation together with (2.1) and (1.7) yields

[Eana(@ o f G [ zH'(z) B
@2 e |~ (7O i) <no. ses
Let
1 1 H Lk
q)u(z)zm ;—szgz +m ;—l—;kz],

then

B zH'(2)

(H@%@¢A@%—H@%+_H@y+ﬂ+l

= (5+3) e - (§ - 3) talors s,

(k1 zh)(2)

- (1 ! 5) [hl(z) R J

E o1 zhly(2)

(2:3) a (Z B §> [hQ(Z) T @ et 1} '
Sincef € MRy (u+ 1,7, a,c), it follows from (2.2) and[(2.B) that

zhi(2)
P”CZ) T @) A
Leth;(z) = (1 — B)pi(2) + 8. Then

(1 — B)zpj(z)
1-— i(2) +
{( Blpi(z) {—ﬂ—ﬁmwd—ﬁ+u+1
We shall show thap, € P, i =1, 2.
We form the functionafb(u, v) by takingu = p;(z), v = 2zpl(z) with u = uy + iug, v =
v1 + 1v,. The first two conditions of Lemmnja 1.1 can easily be verified. We proceed to verify the
condition (iii).

}emm,isz 2 €E.

:|+(6—77)}€P, 2 € E.

(1B

mehﬂl—@u+_ﬂ_gm_g+u+1

+ (8 —n),

implies that
(1—-B)A+p— B

Rawm%m)=U?—m+wl+ﬂ_ﬁy+41_gy@'

By takingv; < —3(1 + u3), we have

A+ Buj

P2 <
Re ®(iug, v1) < STl
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where
A=28 =) +p—0)> =010 =0)1+p-p),
B=2(8—n)1-5)72—(1-B)(1+u-p),
C=Q0+pu—pB)°+(1-08)>%u;>0.

We note thaRe ®(iuq, v1) < 0ifand only if A < 0andB < 0. From A < 0, we obtain

(2.4) ﬁ:i[(3+2u+2n)—\/(3+2u+2n)2—8],

andB < 0givesus) < g < 1.
Now using Lemma 1|1, we see thate Pforz € E, i = 1,2and hencg € MRy (i, 5, a, c)
with (3 given by [2.4). O

In particular, we note that

o= [6+20 - VAT i),

1 =

Theorem 2.2.
MVi(p+1,n,a,¢) C MVi(p, 5,a,,¢) C MVi(p,7v,a+1,¢).
Proof.
feMVi(u+1,na,c) < —zf € MRy(u+1,m,a,c)
= —zf" € MRy(, 3, a,c)
= f e MVi(p,B,a,0),

wheref is given by [2.4).
The second part can be proved with similar arguments. O

Theorem 2.3.
Bl?(:u + 17ﬁ177717a7c) C Bg(ﬂa627n27a>c> - Bg(:uaﬁ?nn?na + 170))
wheren;, = n;(8;, 1), i = 1,2, 3 are given in the proof.

Proof. We prove the first inclusion of this result and other part follows along similar lines. Let
f € By(n+ 1,01,m,a,c). Then, by Definitior] 1.3, there exists a functigne MVa(p +
1,71, a, c) such that

(L@, ) f(2))’ ((Lsa(a, ) F ()
(2.5) (1-a) {(le(a,c)g(z))’} +a [— (Lor(a,99(2)) ] € Pi(51).
Set
B (Lu(a,c)f(z)) (z(Iu(a,c)f(2))")
(2.0) p@”‘“‘“)LQmeuw]+“f‘<@mmw@w }

wherep is an analytic function irf with p(0) = 1.
Now, g € MVa(u+ 1,m1,a,¢) C MVa(u,n2, a, c), wherens is given by the equation

(2.7) 25 + (34 2p — 2m)mz — [2m (1 + p) + 1] = 0.
Therefore,

o(2) = (_(Z(Iu(avc)g<z))l>

(Iu(a,c)g(2)) ) € P(mp), zekE.
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By using [1.7),[(2.5)[(2]6) an@l (2.7), we have

(2.8) {p(z) + Oé—q(,jf),—i(—z/z n 1} € P.(01), qe€P(n), =zE€E.
With

o) = (§+5) 10 =)+ 3 = (5= 1) 10 - Bamate) + 3],
(2.8) can be written as

(5+3) [0 + SRS 1)

_ (E _ 1) [(1 — Bo)pa(z) + LR g |

4 2 —q(z)+pn+1
where
[(1 — Ba)pi(2) + C“(_lq@)ﬁi)zifi + ﬂ2:| € P(3), z€FE,i=1,2.
That is

(1 — Ba)zpi(2)

We form the functionail (u, v) by taking v = uy + ius = p;, v = vy + ivy = 2pf, and
(1 — ﬁg)’U
(—q1 +ig) + p+1

The first two conditions of Lemnja 1.1 are clearly satisfied. We verify (iii), with —3 (1+u3)
as follows

+(52_51):| €cP, z€E, i=1,2

U(u,v) = (1 - Po)u+ + (B2 = B1), (¢=q +ig).

a(l = B)o{(=q + p +1) +ige}
(—q+p+1)+q
L2282 B)[—g+p+ 1P —a(l = B) (=g +p+ 1)+ u)

Re \Ij(iUQ,Ul) = (ﬁg — 61) + Re

- 2/ —q+p+1J?
A+ Bu3
S C=|-— 12>O
el | —q+p+1]
<0, if A<0 and B <0,

— )

where
A=2B—B) =g+ p+ 1P —a(l = Bo)(—q +p+ 1),
B=—-a(l-G)(—qa+p+1)<0.
FromA < 0, we get
261 —q+p+ 12+ aRe(—q(z) + p+1)
(2.9) By = A .
2l —qg+p+12+aRe(—q(z) + n+1)

Hence, using Lemmia 1.1, it follows thatz), defined by [(2.6), belongs tf}(5,) and thus
[ € B, B2,m2,a,¢), z € D. This completes the proof of the first part. The second part of

this result can be obtained by using similar arguments and the relatin (1.6). O
Theorem 2.4.

(i) B (1, 8,1, a,¢) C B, 7,1, ¢)

(“) 8131(:[1’7/67777(176) CBZQ(,U,ﬂ,T],(J/,C), for OSOQ < og.
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Proof. (i). Let

h(z) is analytic inE andh(0) = 1. Then

U f Y] T U@ e
oo [y o e

(2.10)

where

(o) — - CU )Y

Since f € By (u, 8,1, a, c), it follows that

{h(z) +« jZ/O(é))

:| GPk(ﬁ), hoEP(T]), for € FE.

Let

Then [2.1ID) implies that

{hz(z) + a—ho(z)] ePB), ze€eE, i=1,2,
and from use of similar arguments, together with Lenima 1.1, it follows/that P(v), i =
1,2, where
26|h0|2 + OéReho
"~ 2|ho|2 + aRehg
Thereforeh € P.(v), and f € BY(u,7,1m,a,c), z € D. In particular, it can be shown that
h; € P(3), i = 1,2. Consequentlyh € P.(3) andf € BY(u, 3,n,a,c)in D.
Fora, = 0, we have (i). Therefore, we let, > 0 and f € B, (i, 3,7, a,c). There exist
two functionsH,, H, € Py (/) such that

@A) [ CUaaf ()
Bl =1 ”hma,c)g@)f]* | <fu<a,c>g<z>>f}

(@)
122 = 0 (o)

g € MVa(p,m,a,c).

Now

-

W) [ G0
211)  (1-a) {—U( }+ { ([ﬂ(mg(z»,]

ula, c)g(z))
= 2H)+ <1 - %) Hy(2).

aq 1

Since the clas®, () is a convex sef[10], it follows that the right hand side[of (2.11) belongs
to P, () and this shows thaff € B;*(u, 8,1, a, ¢) for z € D. This completes the proof. O

Let f € M, b > 0 and let the integral operatdt, be defined by

2.12) R7) = B0 = g [ 2f@e
From [2.12), we note that
(2.13) 2 (Iu(a, ) Fy(f)(2)) = bLu(a, ) f(2) = (b + 1) Iu(a, ) Fy(f)(2).
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Using (2.12),[(Z2.13) with similar techniques used earlier, we can prove the following:

Theorem 2.5.Let f € M Ry(u,3,a,c), or MVi(u,3,a,c), or B (u,B,n,a,c), for z € D.
ThenF,(f) defined by[(2.12) is also in the same class:fer D.
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