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ABSTRACT. Let a,b be real numbers such that< a < b, and lety : R?2 — R a mixed
homogeneous function. We consider polynomial functipnand also functions of the type
o(z1,22) = Alzy|* + Blao|’. Let S = {(z,¢(z)) : « € B} with the Lebesgue induced
measure. Fof € S (R?) andz € B, let (Rf) (z,¢ (z)) = [ (z,¢ (z)), wheref denotes the
usual Fourier transform.

For a large class of functionsand forl < p < % we characterize, up to endpoints, the pairs
(p, q) such thatR is a bounded operator froh? (R?*) on L7 (X). We also give some sharp
LP — L? estimates.
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1. INTRODUCTION

Let a, b be real numbers such that< a < b, let ¢ : R? — R be a mixed homogeneous
function of degree one with respect to the non isotropic dilation&e;, x5) = (r%xl, r%x2>,
i.e.
(1.2) © <7’%J/’1,T%ZE2> =rp(ry,zy), 1 >0.

We also suppose to be smooth enough. We denote Bythe closed unit ball oR?, by

Y={(z,p(2)):z € B}

and byo the induced Lebesgue measure. Far S (R?), let Rf : 3 — C be defined by
(1.2) (Rf) (z,(2)) = f (2,0 (z)), z€B,
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2 E. FERREYRA AND M. URCIUOLO

Wherefdenotes the usual Fourier transformfoie denote by the type set associated i
given by

11
E={(32) €00 X015 Rl sy < 0}
Our aim in this paper is to obtain as much information as possible about ti& @t certain
surfaces: of the type above described.

In the generah-dimensional case, the? (R"*1) — L7 (%) boundedness properties of the
restriction operatoR have been studied by different authors. A very interesting survey about
recent progress in this research area can be fouridin [11].LTHR" 1) — L2 (X)) restriction

theorems for the sphere were proved by E. Stein in 19673%6f < | < 1; for 225 <
1 1

5 <1 by P. Tomas in[[12] and then in the same year by Steinz—’}gf& <, <L The last
argument has been used in several related contexts by R. Stricharitz in [9] and by A. Greenleaf
in [6]. This method provides a general tool to obtain, from suitable estimatés fér(R"+!) —

L? (X) estimates fofR. Moreover, a general theorem, due to Stein, holds for smooth enough
hypersurfaces with never vanishing Gaussian curvature ([8], pp.386). There it is shown that in

this case(zl), > € Eif g% < L <land—"f2. + =2 < = <1, also that this last relation is

1

q 2n+4
the best possible and that no restriction theorem of any kind can hojddof.? (R"*!) when
5 < 5% (18, pp.388]). The case§’s < | < s+ are not completely solved. The best results
for surfaces with non vanishing curvature like the paraboloid and the sphere are due to T. Tao
[10]. Restriction theorems for the Fourier transform to homogeneous polynomial surfaces in
R? are obtained in[4]. Also, in[1] the authors obtain shﬁfp(R"“) — L* (%) estimates for
certain homogeneous surfacesf codimension in R+,

In Sectiorf 2 we give some preliminary results.

In Sectiorr%a we considep (z1,z5) = Alzy|* + Blz,’, A # 0,B # 0. We describe
completely, up to endpoints, the pa’(r%, %) € E with % > 3. A fundamental tool we use is
Theorem 2.1 of [2].

In Sectior] 4 we deal with polynomial functiogs Under certain hypothesis aboptwe can

prove that iff < . < 1and the pah(%, é) satisfies some sharp conditions, tk(e‘;)n %) €k

Finally we obtain somés — L? estimates and also some shafp— L? estimates.

2. PRELIMINARIES

We takey to be a mixed homogeneous and smooth enough function that safisfies (1.1). If
V is a measurable set iR?, we denote2V = {(z,¢ (z)) : z € V} ands" as the associated
surface measure. Also, fgre S (R?) , we defineR"Y f : ¥V — C by

(RVS) (@0 (@) = [ (x,0(2)) €V

we note thalR? = R, 0? = g andX? = 3.
Forz = (x1, 1) letting ||z = |z1|* + |z.|", we define

N| —

Aoz{x€R2: SHxHSl}

and forj € N,
Aj - 2_j . Ao.
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ThusB C |J A;. Astandard homogeneity argument (see, é.9. [5]) gived, fop, ¢ < oo,
JENU{0}

-a+b ( 1__a+btab 1 a,+b+a,b

(2.1) “RAj|{Lp(R3),LQ(EAf) 277 (g™ Tatb Tp atd ||RA0

From this we obtain the following remarks.

HLP(R?’),Lq(ZAO) :

11 1 a+b+ab 1l a+b+ab
Remark 1. If (5,5> € E'then, > -4 2. + &0,

a+b+ab 1 a+b+ab
Remark 2. If — arb T e <j3 L' < 1and

(2.2) HRAO

HLP(R3),L‘1(2A0) < 9,

then(p q) € E.

We will use a theorem due to Strichartz (see [9]), whose proof relies on the Stein complex
interpolation theorem, which givd®’ (R?) — L? (EV) estimates for the operat®" depending

on the behavior at infinity of V. In [4] we obtained information about the size of the constants.
There we found the following:

Remark 3. If V is a measurable set R? of positive measure and if
V@ <A +Ig)T

for somer > 0 and for allé = (&1, &, &) € R?, then there exists a positive constaptsuch
that

IR gy < - AT

3),LA(ZV)
2427

forp = 555

In [2] the authors obtain a result (Theorem 2.1, p.155) from which they also obtain the fol-
lowing consequence

Remark 4 ([2, Corollary 2.2]) Let I, J be two real intervals, and let
M = {(z1,22,% (x1,22)) : (21,22) € [ X J},
wherey : I x J — R is a smooth function such that eith%i—% (l’l,ZEQ)‘ > c > 0or

2

27%’ (x1,22)| > ¢ > 0, uniformly onI x J. If M has the Lebesgue surface meas%reT—

3 (1 — %) and} < ¢ < 1then there exists a positive constarstich that

(2.3) [ 7130 sy < €10
for f € S(R3).

Following the proof of Theorem 2.1 in [2] we can check that if in the last remark we take
J = [27%,27"1] |k € Nin the case tha.t (xl,xg)‘ > ¢ > 0 uniformly onI x .J with ¢

independent of, or I = [27%,27%+1] & € N in the other case, then we can repldce|(2.3) by
(2.4) | 71|

with ¢’ independent of.

(1,1
< 27 G £l oo

La(M)
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3. THE CASES ¢ (21, 15) = A|zy|* + Bz’

In this cases we characterize, up to endpoints, the é%gr%) € Ewith § < > < 1.We also

obtain some border segments. If either= 0 or B = 0, ¢ becomes homogeneous and these
cases are treated in [4]. For the remainder situation we obtain the following

Theorem 3.1.Leta, b, A,B € Rwith2 < a < b, A#0,B # 0, lety(z,22) = A\xl\a
B |z,|" and letE be the type set associatedgolf ¢ < > <land—atbhabl g atbhad < 2 <]

at+b p a+b
then (é, %) cE.

Proof. Suppose} < 1 < 1 and—etbhabl 4 atbiab 1 < 1 By Remarlﬂz it is enough

at+b p a+b
to prove [(2.2) Now, A, is contained in the union of the rectangl@s= [—1,1] x [$,1],
Q' = [3,1] x [-1,1], and its symmetrics with respect to the andz, axes. Now we will
study||R[ , 2s) 1ose) - We decompos€) = |J @y with
keN

1
Qi = ([ —k+1 _2711 U [27k727k+1}) % [5’ 1} -
Now, as in Theorem 1, (3.2), inl[3] we have
0 (¢)] < 2% (14 Jg)) !
and then RemaifK 3 implies

(3.1) HRQk”Lg (k%),L2(59%) < 2k

Also, smce‘ 2 (1, 22)| > ¢ > 0 uniformly onQy, from .) we obtain

< o k(i)

HRQ}CHLP(H@),L‘I(EQI@-) =

for% =3 (1 — %) and3 < % < 1. Applying the Riesz interpolation theorem and then perform-
ing the sum ork € N we obtain

1R o o < oo,

3),L4(XQ)

for 23 (1 — l) <

s .
e ; <landj < S <L In a similar way we get that

1
q

< 00,

[
Lp(R3),L9(xQ")

for 23 (1 - %) < % <land3 < Ilj < 1. The study for the symmetric rectangles is analogous.
Thus
A
HR OHLP(R3) La(x40) < 0
3 1 a+b+ab 1 a+b+ab
for 1< < land— arh » T e <3 L < 1 and the theorem follows. O

Remark 5.
) If 222 < L <1then(,1) € .

i) The point(;222eb- 1) € E.

2a+2b+2ab’ 2
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From [3.1) and the Holder inequality we obtain that

a—2 Qq)

HRQk||L%(R3)7Lq(2Qk) <c2 ( 2q

< 1. Then ifC‘TJr2 < % < 1 we perform the sum ovér € N to get

IRl 4 < 0o,

L3 (R3),La(xQ)

for theseg's. Analogously, ifl’+T2 < 6 < 1 we get

< 00,

|~

L%(R3),LQ(ZQ’)
thus sincer < b, if 22 < % <1,

1Rl < 00,

L3 (R3) ),L4(x40)

and) follows from RemarkP
Assertioni:) follows from Remark B, since from Lemma 3 Iri [3] we have that

~ _1_1
()] <c(l+[&]) =
4. THE POLYNOMIAL CASES

In this section we deal with mixed homogeneous polynomial functiessitisfying [(1.1).
The following result is sharp (up to the endpoints) io& % < 1, as a consequence of Remark

.

Theorem 4.1. Let ¢ be a mixed homogeneous polynomial function satisfying (1.1). Suppose
that the gaussian curvature &f does not vanish identically and that at each pointxt {0}
with vanishing curvature, at least one principal curvature is different from zerda,l) #

(2,4), % <1 < land—atbiabl | etbiab 1 <1then< )eE.

Proof. We first study the operatdR“°. Let (20, 29) € Ay. If Hessp (29,29) # 0 there ex-
ists a neighborhood’ of (29, z9) such thatHessy (z1,x5) # 0 for (zy,2,) € U. From the
proposition in[8, pp. 386], it follows that

(4.1)

HRUHLP(RB),M(ZU) < 0

for & =2 (1 — —) and3 < 5 < 1. Suppose now thatlessy (27, 25) = 0 and that either

g 2 (xl,xz) # 0 or =% (acl,xQ) # 0. Then there exists a neighborhobd= 7 x J of (29, z9)

such that elthe‘ (xl, T9)
Remark4 we obtaln that

(4.2) 1R o e

>c>0o0r ‘8—963@1,:1:2)

> ¢ > 0 uniformly onV. So from
3y Lamvy < O

for é =3 (1 — %) and3 <1 <1, From E),) and Holder’s inequality, it follows that

D=

(4.3) | R < 00

HLP(]R3),L4 (540)

for 1>3 (1 — —) and3 < % < 1. So, if «tbtab > 3 the theorem follows from Remark 2. The
onIy cases left aréa,b) = (3,4), (a,0) = (3,5), (a,b) = (4,5) and(a,b) = (2,0), b > 2.
If (a,b) = (3,4) andy has a monomial of the form; ;2'y7, with a;; # 0, thent + 2 = 1 so

4i + 35 = 12 and so eithefi, j) = (0,4) or (i,5) = (3,0). Sop (z1,22) = a3 oz} + agaxs.
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The hypothesis about the derivatives@fmply thatas, # 0 andag4 # 0 and the theorem
follows using Theorerh 3|1 in each quadrant. The césgly = (3,5), or (a,b) = (4,5) are
completely analogous.

Now we deal with the casds,b) = (2,b), b > 2. We note that

b
(4.4) ¢ (71, 12) = Az + Bayxi + Cxh

where B = 0 for b odd. The hypothesis about implies A # 0. For b odd, ¢ (x1,22) =
Ax? + Czb and sinceC # 0 (on the contranf essy (1, 72) = 0), the theorem follows using
Theoren] 31 as before. Now we considezven andp given by [4.4). If B = 0 the theorem
follows as above, so we suppoBe# 0.

b

2" b
(4.5)  Hessp (z1,22) = _fva ((32b2 +8ACH — 8ACH?) 23 — 2(b — 2)ABbx1> .

So if Hessp (2, 29) = 0 then either) = 0 or
(B2 + 8ACH — SACH?) (23)* — 2(b — 2) ABba = 0.

In the first case we have> 4. We take a neighborhodd; = I x [—2*’“0, 2*’“0] C Ay, ko €N,
of the point(zY,0) such thatHessy vanishes, ori¥;, only along ther; axes. Fork € N,
k > ko, we takeU, = I x J, whereJ, = [-27F+1 2=k U [27F 27%+1] . SoW, = UU,. For
(z1,22) € Uy, it follows from (4.5) that

|Hessp (1, x9)] > CQ_k(%_2)7
soforé = (&1, &, &) € R?,

0% (©)] < 2T (Lt feal) !
and from Remark]3 we get

(4.6) RV || < 2V

L3 (R3),L2 (k)

. 2
Also, smce‘ 37? (1, x3)

> ¢ > 0 uniformly onUy, as in ) we obtain

(4.7) IR o o sy < 2 ~k(-2)

forf <. <land; =3 (1 — }—17) . From ), ) and the Riesz Thorin theorem we obtain

(4.8) HRUk ) < CQk(tbl;ﬁ‘l—(l—t)(Q—%))

||Lpt(]R3),L‘1t(EUk
1 _ 41 1 1 _ 43 1
forq—t_t5+(1—t)3<1—1—j) and-- = ¢4+ (1 —1) ;.
A simple computation shows thatf)if: % then the exponent i.8) is negative for t) =
-2 and that

4+b
1 2+ 3b

— - <0,
Qto 4 (2 + b)
SO for]lo > % andt < t,, both near enough, the exponent is still negative and

1 2
__+_3b<1_l) <0,
@ 2+0b Dt
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thus
(4.9) R

HLP(R?’),Lq(EVVl) <

3 1 __ 243b 1 i ;
for § < > near enough anél = 2t (1 - 5) . Finally, if

(B2 + SACH — SACY?) (23)* — 2(b — 2)ABba® = 0

then we study the order dfessyp (z1, 29) for 2751 < |z; — 29 < 27% k e N.

b_
Lo

0\ 2 2
% (( B2 + 8ACh — SACH?) (22)

b
2

(4.10)

(b — 2)ABbx1)

L9
(25)°

(b—2)ABb (21 — 2)| > 27"

We take the following neighborhood 0f?, z3) , W5 = UgenVi, With

Vi = {<T2x1,rbx2> 9 k=1 < |x1—x1‘ < o7k %STSQ}.
From the homogeneity af and [4.1D) we obtain
‘Hessgp <T%ZE1, T%ZE())‘ — it |Hess<p (ml,xg)| > 27
then from Proposition 6 in[8, p. 344], we get for= (&1, &, &3) € R3

oV ()] < @b (14 Jel)

so from Remark]3

k
8

HRVkHLg (R3), L2<Evk) S c2
and by Holder’s inequality, fog < 2 we have
IRYE| 4 < 25,

L3(R3),L4(2V) —
This exponent is negative f(%r> g and so we sum oh to obtain

(4.11) IR gy oy < 0

for 2 <1 <1.Sinceb > 6, 3 < 1% and then from.l).9) and (4]11), we get
A
HR OHLP(R3),LG(2A0) < 00,
for § < . near enough and > 23 (1 — —) and the theorem follows from standard consider-

ations |nvoIV|ng Holder’s mequallty, the Riesz Thorin theorem and from Repjark 2. O
Remark 6. In the casda,b) = (2,b), b > 2, we have|(4.11). In a similar way we get, from
(4.6) and Holder’s inequality,

HRW1HL3 RS) Lq(zwl) < 0

for &4 < % <1.So
IR, 4 <00

L3 (R),Lo(D)
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87 16 ’ 8+4b 16 8+4b?

for max {3, 55!, 2532} < & < 1. We observe that ib = 6 then§ = i = 2£% thus from
Remarlﬂ. we see that, in this case, this condition};ftﬂ sharp, up to the end point.

Now we will show some examples of functiopsot satisfying the hypothesis of the previous
theorem, for which we obtain that the portion of the type/set the regioni < }D < lissmaller
than the region

11\ 3 1 b+ ab 1 1
Ea’b:{(_,):_<_§1,u(1__><_§1}
pq) 4 p a+b p q

stated in Theorem4.1.
We considery (z1,z9) = 23, which is a mixed homogeneous function satisfyihg](1.1) for
anyb > 2. In this casep,,,, = 2 but Hessp = 0. From Remark 2.8 in [4] and Remdrk 4 we

obtain that the corresponding type set is the regio_ﬂ?) (1 - })) 3 < 713 < 1 which is smaller

than the regiort, ;.
We consider now a mixed homogeneous functiosatisfying [1.1), of the form

(4.12) 2 (1’1,%’2) = l’lzp (1317 Iz) )

with P (21,0) # 0 for z; # 0. Sincea < b it can be checked thdt> 2 and that forl > 2,
Priz (.731, 0) = Proxs (1’17 0) = (. Moreover

(4.13) Hessp = 2272 (Poyay (L(L=1) P+ 2lxo Py, + 23 Prysy) — (1P, + xQPgm)Q) ,

which vanishes afz,,0) . A computation shows that the second factor is different from zero at
a point of the formxz, 0) . So Hessy does not vanish identically.

Proposition 4.2. Lety be a mixed homogeneous function satis (1.1)fand (4.1@, Iéf) €
1 1
Ethen! > (14 1) (1 - 5) .

Proof. Let fe = k. the characteristic function of the skt = [0, 1] x [0, i} X [0, E—_Z] ,

3
W|th M = max P (ml,xQ) ) ”: (17 l) c E then
(z1,22)€[0,1]x[0,1] p’q

141

(4.14) RSl pagsy < cllfellppmsy =ce 7.
By the other side,

IRy > ( /
We

wherelV, = [3,1] x [0,¢]. Now, for (z1,22) € W. and(yy, y2, y3) € K-,

1
q

~ q
fe (901, To, P ($1, ZEQ)) dx1d$2)

|11 4 oo + ¢ (21, 22) y3| < 1

SO
fa (3317 T, P (3317 IQ))‘
= / e*i(mylﬂzyzﬂp(wl7w2)y3)dy1dy2dy3
> / cos (z1y1 + oy + @ (21, T2) Y3) dy1dyadys > ce”
Thus
11—y
(4.15) IR fellpagsy = e .
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The proposition follows fron{ (4.14) and (4]15). O

We note that in the case that + )1 > ab (for exampley (z1, 7)) = x5 (2? + x3)) the
portion of the type set correspondingitcz }D < 1 will be smaller than the regiof, ;.

Also, o (11, 13) = 23 (z1 + x3) is an example where = 2, b = 4, Hessp (1, 15) = —423
andifxy = 0andx; # 0, p,., (T1,22) = 221 # 0. Again, sincel2 = (a +b)l > ab = 8, we
get that the portion of the type set correspondiné to % < 1 will be smaller than the region
Eqp.

Proposition 4.3. Let be a mixed homogeneous function satisfying (1.1)[and](4.12) with.
If$ <. <land;>(l+1) (1—%>,then

C.

1R™*]]

Lp(R3),L4(x40) <

Proof. Let (29, 29) € Ay, if Hessp (29,29) # 0, as in the proof of Theorem 4.1 we find a

neighborhood’ of (z9, z9) such that[(4]1) holds. Hessp (29, 23) = 0, by (4.13), either =

0 or the polynomialy given by P, ., (I (l 1) P + 2lzo Py, + 23 Ps0s,) — (IPy, + 22 Py 0,)’

vanishes atz{, z9) . In the first case, using the fact that(z,,0) # 0 for z; # 0, we get that
(Poayl (1= 1) P = 1?P7) (2,0) # 0.

We take a neighborhodd’; of the point(z9, 0) andUj, as in the proof of Theorefn 4.1. So for
(21, 22) € Uy,

|Hessp (1, 22)| > 27 F3=2)
and so
ok(l-1)
k < .
)U (51752753)’ = +|€3‘
By the other side,

‘UU’“ (§17§2,§3)‘ <27*
sofor0 <7 <1,

— ok(rl-1)
)UUk (51752,53)’ < m
and by Remark]3
U k(ri—1)
HR kHLP(Rg) LQ(EUk) < ¢, 22057 2<1+T)

for p = 207 and so Holder's inequality implies, far< ¢ < 2,

Tl—1 2—q)

||R k||LP(R3),Lq(EUk) <2 (W_T

and a computation shows that this exponent is negatlvé for(l + 1) ( ) Thus

(4.16) HRWlHLP(RS),Lq(zwl) < 00

for3 <l<land(l+1) (1 - —) < 1 < 1. Now we suppose€) (29, z9) = 0. We observe that

1
p

degQS?degP—QS2(b—l)—2§2[—2

and soHessy (z1, x9) vanishes at!! with order at mosgl — 2. Then defining?, andV;, as in
the proof of Theorerp 4]1, we have

|Hessg0 (xl,x8)| > 9 k(2-2)
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and as in the previous case we obtain

(4.17) R < 00

HLP(R?’),L‘I(EW2)

for 2 < % <1 and% > (I+1) (1 — %) . The proposition follows from| (4.16)| (4.17) and
@)- O

From Propositiof 413 and Remark 2 we obtain the following result, sharp up to the end points,
for 3 < l < 1.

Theorem 4.4. Let » be a mixed homogeneous function satls?y’ d (1.1) pnd|(4.12)) witf}.
en

If m = max {I + 1, “22e} 2 <~ <1and1>m(1—5>,th —,a>eE.

4.1. Sharp L? — L? Estimates. In [4] we obtain sharg.? — L? estimates for the restriction

of the Fourier transform to homogeneous polynomial surfacé®®inThe principal tools we
used there were two Littlewood Paley decompositions. Adapting this proof to the setting of non
isotropic dilations we obtain the following results.

a+b+2ab
Lemma 4.5. Letm g <1.If
R

||LP(R3),L2(2A0) <
then (l, %) cE.
p

Proof. From (2.]), the lemma follows from a process analogous to the proof of Lemma 4.3 in
[4]. O

Theorem 4.6.

) If v is a mixed homogeneous polynomial function satisfying the hypothesis of Theorem
. then _a+b+2ab_ 1) cFE.

2a+2b+2ab 72

_ a+b+2ab  20+1 H H H H
ii) Let 2 = max{m, s2 1 - If ¢ is a mixed homogeneous polynomial function

satisfying the hypothesis of Theor@ 4.4 tlégl(g %) cE.

Proof. i) If «£b%et > 3 ) follows from (4.3) and Lemmpa 4.5. The casesb) = (3,4),
(a,b) = (3,5) and(a,b) = (4,5) are solved in RemaiK 5, pait). The casesa,b) = (2,b)
with b odd or B = 0 are also included in Remalrk 5, pai}. For the remainder casés, b), we
observe that, ib > 6, from the proof of Theoremn 4.1 we obtain

A
(4.18) R sy 12500 < 00
for . = sat52sts, so1) follows from Lemma 4.5. Fob = 6, as before we get
4%
HR 1||LP(R3),L2(2W1) < o0,
and
Vi
”R kHLP(RS),LQ(EVk) < 00
for k € N, > = ;25265 In a similar way to Lemma 4.3 of [4], we use a uni-dimensional
Littlewood Paley decomposition to obtain
IR™

HLP(R3),L2(2W2) < 00

and then we hav8) for— satii2eb . Soi) follows from Lemm.

2a+2b+2ab
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i) From the proof of Propositidn 4.3, we use a uni-dimensional Littlewood Paley decomposition

to obtain (4.1] _) for — max {5020, 2} andii) follows from Lemm. O

Remark 7. In [7] the authors obtain sharp estimates for the Fourier transform of measures
associated to surfaces like ours, wheny is a polynomial function satisfiyng (3.1) and the
condition thaty and Hessy do not vanish simultaneously a8 — {(0,0)}. In these cases,
parti) of the above theorem foIIows from Rem@k 3. We observe that our hypotheses are less
restrictive, for example (1, z5) = zjz3 + xi° satisfies the hypothesis of pajtof the above
theorem butp and Hessy vanish at anyz, fL‘Q) with 25 = 0.
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