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ABSTRACT. Let a, b be real numbers such that2 ≤ a < b, and letϕ : R2 → R a mixed
homogeneous function. We consider polynomial functionsϕ and also functions of the type
ϕ (x1, x2) = A |x1|a + B |x2|b . Let Σ = {(x, ϕ (x)) : x ∈ B} with the Lebesgue induced
measure. Forf ∈ S

(
R3

)
andx ∈ B, let (Rf) (x, ϕ (x)) = f̂ (x, ϕ (x)) , wheref̂ denotes the

usual Fourier transform.
For a large class of functionsϕ and for1 ≤ p < 4

3 we characterize, up to endpoints, the pairs
(p, q) such thatR is a bounded operator fromLp

(
R3

)
on Lq (Σ) . We also give some sharp

Lp → L2 estimates.
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1. I NTRODUCTION

Let a, b be real numbers such that2 ≤ a < b, let ϕ : R2 → R be a mixed homogeneous

function of degree one with respect to the non isotropic dilationsr · (x1, x2) =
(
r

1
ax1, r

1
bx2

)
,

i.e.

(1.1) ϕ
(
r

1
ax1, r

1
bx2

)
= rϕ (x1, x2) , r > 0.

We also supposeϕ to be smooth enough. We denote byB the closed unit ball ofR2, by

Σ = {(x, ϕ (x)) : x ∈ B}

and byσ the induced Lebesgue measure. Forf ∈ S (R3) , letRf : Σ → C be defined by

(1.2) (Rf) (x, ϕ (x)) = f̂ (x, ϕ (x)) , x ∈ B,
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2 E. FERREYRA AND M. URCIUOLO

wheref̂ denotes the usual Fourier transform off. We denote byE the type set associated toR,
given by

E =

{(
1

p
,
1

q

)
∈ [0, 1]× [0, 1] : ‖R‖Lp(R3),Lq(Σ) <∞

}
.

Our aim in this paper is to obtain as much information as possible about the setE, for certain
surfacesΣ of the type above described.

In the generaln-dimensional case, theLp (Rn+1) − Lq (Σ) boundedness properties of the
restriction operatorR have been studied by different authors. A very interesting survey about
recent progress in this research area can be found in [11]. TheLp (Rn+1) − L2 (Σ) restriction
theorems for the sphere were proved by E. Stein in 1967, for3n+4

4n+4
< 1

p
≤ 1; for n+4

2n+4
<

1
p
≤ 1 by P. Tomas in [12] and then in the same year by Stein forn+4

2n+4
≤ 1

p
≤ 1. The last

argument has been used in several related contexts by R. Strichartz in [9] and by A. Greenleaf
in [6]. This method provides a general tool to obtain, from suitable estimates forσ̂, Lp (Rn+1)−
L2 (Σ) estimates forR. Moreover, a general theorem, due to Stein, holds for smooth enough
hypersurfaces with never vanishing Gaussian curvature ([8], pp.386). There it is shown that in

this case,
(

1
p
, 1
q

)
∈ E if n+4

2n+4
≤ 1

p
≤ 1 and−n+2

n
1
p
+ n+2

n
≤ 1

q
≤ 1, also that this last relation is

the best possible and that no restriction theorem of any kind can hold forf ∈ Lp (Rn+1) when
1
p
≤ n+2

2n+2
([8, pp.388]). The casesn+2

2n+2
< 1

p
< n+4

2n+4
are not completely solved. The best results

for surfaces with non vanishing curvature like the paraboloid and the sphere are due to T. Tao
[10]. Restriction theorems for the Fourier transform to homogeneous polynomial surfaces in
R3 are obtained in [4]. Also, in [1] the authors obtain sharpLp

(
Rn+l

)
− L2 (Σ) estimates for

certain homogeneous surfacesΣ of codimensionl in Rn+l.
In Section 2 we give some preliminary results.
In Section 3 we considerϕ (x1, x2) = A |x1|a + B |x2|b , A 6= 0, B 6= 0. We describe

completely, up to endpoints, the pairs
(

1
p
, 1
q

)
∈ E with 1

p
> 3

4
. A fundamental tool we use is

Theorem 2.1 of [2].
In Section 4 we deal with polynomial functionsϕ. Under certain hypothesis aboutϕ we can

prove that if3
4
< 1

p
≤ 1 and the pair

(
1
p
, 1
q

)
satisfies some sharp conditions, then

(
1
p
, 1
q

)
∈ E.

Finally we obtain someL
4
3 − Lq estimates and also some sharpLp − L2 estimates.

2. PRELIMINARIES

We takeϕ to be a mixed homogeneous and smooth enough function that satisfies (1.1). If
V is a measurable set inR2, we denoteΣV = {(x, ϕ (x)) : x ∈ V } andσV as the associated
surface measure. Also, forf ∈ S (R3) , we defineRV f : ΣV → C by(

RV f
)
(x, ϕ (x)) = f̂ (x, ϕ (x)) x ∈ V ;

we note thatRB = R, σB = σ andΣB = Σ.
Forx = (x1, x2) letting‖x‖ = |x1|a + |x2|b, we define

A0 =

{
x ∈ R2 :

1

2
≤ ‖x‖ ≤ 1

}
and forj ∈ N,

Aj = 2−j · A0.
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FOURIER RESTRICTIONESTIMATES TO M IXED HOMOGENEOUSSURFACES 3

ThusB ⊆
⋃

j∈N∪{0}
Aj.A standard homogeneity argument (see, e.g. [5]) gives, for1 ≤ p, q ≤ ∞,

(2.1)
∥∥RAj

∥∥
Lp(R3),Lq(ΣAj) = 2−j

a+b
ab ( 1

q
−a+b+ab

a+b
+ 1

p
a+b+ab

a+b ) ∥∥RA0
∥∥
Lp(R3),Lq(ΣA0) .

From this we obtain the following remarks.

Remark 1. If
(

1
p
, 1
q

)
∈ E then 1

q
≥ −a+b+ab

a+b
1
p

+ a+b+ab
a+b

.

Remark 2. If −a+b+ab
a+b

1
p

+ a+b+ab
a+b

< 1
q
≤ 1 and

(2.2)
∥∥RA0

∥∥
Lp(R3),Lq(ΣA0) <∞,

then
(

1
p
, 1
q

)
∈ E.

We will use a theorem due to Strichartz (see [9]), whose proof relies on the Stein complex
interpolation theorem, which givesLp (R3)−L2

(
ΣV

)
estimates for the operatorRV depending

on the behavior at infinity of̂σV . In [4] we obtained information about the size of the constants.
There we found the following:

Remark 3. If V is a measurable set inR2 of positive measure and if∣∣∣σ̂V (ξ)
∣∣∣ ≤ A (1 + |ξ3|)−τ

for someτ > 0 and for allξ = (ξ1, ξ2, ξ3) ∈ R3, then there exists a positive constantcτ such
that ∥∥RV

∥∥
Lp(R3),L2(ΣV )

≤ cτA
1

2(1+τ)

for p = 2+2τ
2+τ

.

In [2] the authors obtain a result (Theorem 2.1, p.155) from which they also obtain the fol-
lowing consequence

Remark 4 ([2, Corollary 2.2]). Let I, J be two real intervals, and let

M = {(x1, x2, ψ (x1, x2)) : (x1, x2) ∈ I × J} ,

whereψ : I × J → R is a smooth function such that either
∣∣∣∂2ψ
∂x2

1
(x1, x2)

∣∣∣ ≥ c > 0 or∣∣∣∂2ψ
∂x2

2
(x1, x2)

∣∣∣ ≥ c > 0, uniformly on I × J. If M has the Lebesgue surface measure,1
q

=

3
(
1− 1

p

)
and 3

4
< 1

p
≤ 1 then there exists a positive constantc such that

(2.3)
∥∥∥f̂ |M ∥∥∥

Lq(M)
≤ c ‖f‖Lp(R3)

for f ∈ S(R3).

Following the proof of Theorem 2.1 in [2] we can check that if in the last remark we take

J =
[
2−k, 2−k+1

]
, k ∈ N in the case that

∣∣∣∂2ψ
∂x2

1
(x1, x2)

∣∣∣ ≥ c > 0 uniformly on I × J with c

independent ofk, or I =
[
2−k, 2−k+1

]
, k ∈ N in the other case, then we can replace (2.3) by

(2.4)
∥∥∥f̂ |M ∥∥∥

Lq(M)
≤ c′2−k(

1
p
+ 1

q
−1) ‖f‖Lp(R3)

with c′ independent ofk.

J. Inequal. Pure and Appl. Math., 10(2) (2009), Art. 35, 11 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


4 E. FERREYRA AND M. URCIUOLO

3. THE CASESϕ (x1, x2) = A |x1|a +B |x2|b

In this cases we characterize, up to endpoints, the pairs
(

1
p
, 1
q

)
∈ E with 3

4
< 1

p
≤ 1. We also

obtain some border segments. If eitherA = 0 or B = 0, ϕ becomes homogeneous and these
cases are treated in [4]. For the remainder situation we obtain the following

Theorem 3.1. Let a, b, A,B ∈ R with 2 ≤ a ≤ b, A 6= 0, B 6= 0, let ϕ (x1, x2) = A |x1|a +

B |x2|b and letE be the type set associated toϕ. If 3
4
< 1

p
≤ 1 and−a+b+ab

a+b
1
p
+ a+b+ab

a+b
< 1

q
≤ 1

then
(

1
p
, 1
q

)
∈ E.

Proof. Suppose3
4
< 1

p
≤ 1 and−a+b+ab

a+b
1
p

+ a+b+ab
a+b

< 1
q
≤ 1. By Remark 2 it is enough

to prove (2.2). Now, A0 is contained in the union of the rectanglesQ = [−1, 1] ×
[

1
2
, 1

]
,

Q′ =
[

1
2
, 1

]
× [−1, 1] , and its symmetrics with respect to thex1 andx2 axes. Now we will

study
∥∥RQ

∥∥
Lp(R3),Lq(ΣQ)

. We decomposeQ =
⋃
k∈N

Qk with

Qk =
([
−2−k+1,−2−k

]
∪

[
2−k, 2−k+1

])
×

[
1

2
, 1

]
.

Now, as in Theorem 1, (3.2), in [3] we have∣∣∣σ̂Qk (ξ)
∣∣∣ ≤ A2k

a−2
2 (1 + |ξ3|)−1

and then Remark 3 implies

(3.1)
∥∥RQk

∥∥
L

4
3 (R3),L2(ΣQk)

≤ c2k
a−2
8 .

Also, since
∣∣∣∂2ϕ
∂x2

2
(x1, x2)

∣∣∣ ≥ c > 0 uniformly onQk, from (2.4) we obtain∥∥RQk
∥∥
Lp(R3),Lq(ΣQk) ≤ c′2−k(

1
p
+ 1

q
−1)

for 1
q

= 3
(
1− 1

p

)
and3

4
< 1

p
≤ 1. Applying the Riesz interpolation theorem and then perform-

ing the sum onk ∈ N we obtain ∥∥RQ
∥∥
Lp(R3),Lq(ΣQ)

<∞,

for 2+3a
2+a

(
1− 1

p

)
< 1

q
≤ 1 and 3

4
< 1

p
≤ 1. In a similar way we get that∥∥∥RQ′
∥∥∥
Lp(R3),Lq(ΣQ′)

<∞,

for 2+3b
2+b

(
1− 1

p

)
< 1

q
≤ 1 and3

4
< 1

p
≤ 1. The study for the symmetric rectangles is analogous.

Thus ∥∥RA0
∥∥
Lp(R3),Lq(ΣA0) <∞

for 3
4
< 1

p
≤ 1 and−a+b+ab

a+b
1
p

+ a+b+ab
a+b

< 1
q
≤ 1 and the theorem follows. �

Remark 5.

i) If b+2
8
< 1

q
≤ 1 then

(
3
4
, 1
q

)
∈ E.

ii) The point
(
a+b+2ab

2a+2b+2ab
, 1

2

)
∈ E.

J. Inequal. Pure and Appl. Math., 10(2) (2009), Art. 35, 11 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


FOURIER RESTRICTIONESTIMATES TO M IXED HOMOGENEOUSSURFACES 5

From (3.1) and the Hölder inequality we obtain that∥∥RQk
∥∥
L

4
3 (R3),Lq(ΣQk)

≤ c2k(
a−2
8
− 2−q

2q )

for 1
2
≤ 1

q
≤ 1. Then if a+2

8
< 1

q
≤ 1 we perform the sum overk ∈ N to get∥∥RQ

∥∥
L

4
3 (R3),Lq(ΣQ)

<∞,

for theseq’s. Analogously, ifb+2
8
< 1

q
≤ 1 we get∥∥∥RQ′
∥∥∥
L

4
3 (R3),Lq(ΣQ′)

<∞,

thus sincea ≤ b, if b+2
8
< 1

q
≤ 1, ∥∥RA0

∥∥
L

4
3 (R3),Lq(ΣA0)

<∞,

andi) follows from Remark 2.
Assertionii) follows from Remark 3, since from Lemma 3 in [3] we have that

|σ̂ (ξ)| ≤ c (1 + |ξ3|)−
1
a
− 1

b .

4. THE POLYNOMIAL CASES

In this section we deal with mixed homogeneous polynomial functionsϕ satisfying (1.1).
The following result is sharp (up to the endpoints) for3

4
< 1

p
≤ 1, as a consequence of Remark

1.

Theorem 4.1. Let ϕ be a mixed homogeneous polynomial function satisfying (1.1). Suppose
that the gaussian curvature ofΣ does not vanish identically and that at each point ofΣB−{0}

with vanishing curvature, at least one principal curvature is different from zero. If(a, b) 6=
(2, 4) , 3

4
< 1

p
≤ 1 and−a+b+ab

a+b
1
p

+ a+b+ab
a+b

< 1
q
≤ 1 then

(
1
p
, 1
q

)
∈ E.

Proof. We first study the operatorRA0 . Let (x0
1, x

0
2) ∈ A0. If Hessϕ (x0

1, x
0
2) 6= 0 there ex-

ists a neighborhoodU of (x0
1, x

0
2) such thatHessϕ (x1, x2) 6= 0 for (x1, x2) ∈ U. From the

proposition in [8, pp. 386], it follows that

(4.1)
∥∥RU

∥∥
Lp(R3),Lq(ΣU )

<∞

for 1
q

= 2
(
1− 1

p

)
and 3

4
≤ 1

p
≤ 1. Suppose now thatHessϕ (x0

1, x
0
2) = 0 and that either

∂2ϕ
∂x2

1
(x0

1, x
0
2) 6= 0 or ∂2ϕ

∂x2
2
(x0

1, x
0
2) 6= 0. Then there exists a neighborhoodV = I × J of (x0

1, x
0
2)

such that either
∣∣∣∂2ϕ
∂x2

1
(x1, x2)

∣∣∣ ≥ c > 0 or
∣∣∣∂2ϕ
∂x2

2
(x1, x2)

∣∣∣ ≥ c > 0 uniformly on V. So from

Remark 4 we obtain that

(4.2)
∥∥RV

∥∥
Lp(R3),Lq(ΣV )

<∞

for 1
q

= 3
(
1− 1

p

)
and 3

4
< 1

p
≤ 1. From (4.1), (4.2) and Hölder´s inequality, it follows that

(4.3)
∥∥RA0

∥∥
Lp(R3),Lq(ΣA0) <∞

for 1
q
≥ 3

(
1− 1

p

)
and 3

4
< 1

p
≤ 1. So, if a+b+ab

a+b
≥ 3, the theorem follows from Remark 2. The

only cases left are(a, b) = (3, 4) , (a, b) = (3, 5) , (a, b) = (4, 5) and(a, b) = (2, b) , b > 2.
If (a, b) = (3, 4) andϕ has a monomial of the formai,jxiyj, with aij 6= 0, then i

3
+ j

4
= 1 so

4i + 3j = 12 and so either(i, j) = (0, 4) or (i, j) = (3, 0). Soϕ (x1, x2) = a3,0x
3
1 + a0,4x

4
2.
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6 E. FERREYRA AND M. URCIUOLO

The hypothesis about the derivatives ofϕ imply that a3,0 6= 0 anda0,4 6= 0 and the theorem
follows using Theorem 3.1 in each quadrant. The cases(a, b) = (3, 5) , or (a, b) = (4, 5) are
completely analogous.

Now we deal with the cases(a, b) = (2, b) , b > 2. We note that

(4.4) ϕ (x1, x2) = Ax2
1 +Bx1x

b
2
2 + Cxb2

whereB = 0 for b odd. The hypothesis aboutϕ impliesA 6= 0. For b odd, ϕ (x1, x2) =
Ax2

1 + Cxb2 and sinceC 6= 0 (on the contraryHessϕ (x1, x2) ≡ 0), the theorem follows using
Theorem 3.1 as before. Now we considerb even andϕ given by (4.4). IfB = 0 the theorem
follows as above, so we supposeB 6= 0.

(4.5) Hessϕ (x1, x2) = −x
b
2
−2

2

4

((
B2b2 + 8ACb− 8ACb2

)
x

b
2
2 − 2(b− 2)ABbx1

)
.

So ifHessϕ (x0
1, x

0
2) = 0 then eitherx0

2 = 0 or(
B2b2 + 8ACb− 8ACb2

) (
x0

2

) b
2 − 2(b− 2)ABbx0

1 = 0.

In the first case we haveb > 4.We take a neighborhoodW1 = I×
[
−2−k0 , 2−k0

]
⊂ A0, k0 ∈ N,

of the point(x0
1, 0) such thatHessϕ vanishes, onW1, only along thex1 axes. Fork ∈ N,

k > k0, we takeUk = I × Jk whereJk = [−2−k+1,−2−k] ∪ [2−k, 2−k+1] . SoW1 = ∪Uk. For
(x1, x2) ∈ Uk, it follows from (4.5) that

|Hessϕ (x1, x2)| ≥ c2−k(
b
2
−2),

so forξ = (ξ1, ξ2, ξ3) ∈ R3, ∣∣∣σ̂Uk (ξ)
∣∣∣ ≤ c2k

b−4
4 (1 + |ξ3|)−1

and from Remark 3 we get

(4.6)
∥∥RUk

∥∥
L

4
3 (R3),L2(ΣUk)

≤ c2k
b−4
16 .

Also, since
∣∣∣∂2ϕ
∂x2

1
(x1, x2)

∣∣∣ ≥ c > 0 uniformly onUk, as in (2.4) we obtain

(4.7)
∥∥RUk

∥∥
Lp(R3),Lq(ΣUk) ≤ c2−k(2− 2

p)

for 3
4
< 1

p
≤ 1 and 1

q
= 3

(
1− 1

p

)
. From (4.6), (4.7) and the Riesz Thorin theorem we obtain

(4.8)
∥∥RUk

∥∥
Lpt (R3),Lqt(ΣUk) ≤ c2k(t

b−4
16

−(1−t)(2− 2
p))

for 1
qt

= t1
2

+ (1− t) 3
(
1− 1

p

)
and 1

pt
= t3

4
+ (1− t) 1

p
.

A simple computation shows that if1
p

= 3
4

then the exponent in (4.8) is negative fort < t0 =
8

4+b
and that

1

qt0
− 2 + 3b

4 (2 + b)
< 0,

so for 1
p
> 3

4
andt < t0, both near enough, the exponent is still negative and

1

qt
− 2 + 3b

2 + b

(
1− 1

pt

)
< 0,
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thus

(4.9)
∥∥RW1

∥∥
Lp(R3),Lq(ΣW1) <∞

for 3
4
< 1

p
near enough and1

q
= 2+3b

2+b

(
1− 1

p

)
. Finally, if(

B2b2 + 8ACb− 8ACb2
) (
x0

2

) b
2 − 2(b− 2)ABbx0

1 = 0

then we study the order ofHessϕ (x1, x
0
2) for 2−k−1 ≤ |x1 − x0

1| ≤ 2−k, k ∈ N.

(4.10)

∣∣∣∣∣(x0
2)

b
2
−2

4

((
B2b2 + 8ACb− 8ACb2

) (
x0

2

) b
2 − 2(b− 2)ABbx1

)∣∣∣∣∣
=

∣∣∣∣∣(x0
2)

b
2
−2

2
(b− 2)ABb

(
x1 − x0

1

)∣∣∣∣∣ ≥ c2−k.

We take the following neighborhood of(x0
1, x

0
2) , W2 = ∪k∈NVk, with

Vk =

{(
r

1
2x1, r

1
bx0

2

)
: 2−k−1 ≤

∣∣x1 − x0
1

∣∣ ≤ 2−k,
1

2
≤ r ≤ 2

}
.

From the homogeneity ofϕ and (4.10) we obtain∣∣∣Hessϕ(
r

1
2x1, r

1
bx0

2

)∣∣∣ = r1− 2
b

∣∣Hessϕ (
x1, x

0
2

)∣∣ ≥ c2−k,

then from Proposition 6 in [8, p. 344], we get forξ = (ξ1, ξ2, ξ3) ∈ R3∣∣∣σ̂Vk (ξ)
∣∣∣ ≤ c2

k
2 (1 + |ξ3|)−1 ,

so from Remark 3 ∥∥RVk
∥∥
L

4
3 (R3),L2(ΣVk)

≤ c2
k
8

and by Hölder’s inequality, forq < 2 we have∥∥RVk
∥∥
L

4
3 (R3),Lq(ΣVk)

≤ c2k(
1
8
− 2−q

2q ).

This exponent is negative for1
q
> 5

8
and so we sum onk to obtain

(4.11)
∥∥RW2

∥∥
L

4
3 (R3),Lq(ΣW2)

<∞

for 5
8
< 1

q
≤ 1. Sinceb ≥ 6, 5

8
≤ 2+3b

4(2+b)
and then from (4.1), (4.9) and (4.11), we get∥∥RA0
∥∥
Lp(R3),Lq(ΣA0) <∞,

for 3
4
< 1

p
near enough and1

q
> 2+3b

2+b

(
1− 1

p

)
and the theorem follows from standard consider-

ations involving Hölder’s inequality, the Riesz Thorin theorem and from Remark 2. �

Remark 6. In the case(a, b) = (2, b) , b > 2, we have (4.11). In a similar way we get, from
(4.6) and Hölder’s inequality, ∥∥RW1

∥∥
L

4
3 (R3),Lq(ΣW1)

<∞

for b+4
16

< 1
q
≤ 1. So

‖R‖
L

4
3 (R3),Lq(Σ)

<∞
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8 E. FERREYRA AND M. URCIUOLO

for max
{

5
8
, b+4

16
, 2+3b

8+4b

}
< 1

q
≤ 1. We observe that ifb = 6 then 5

8
= b+4

16
= 2+3b

8+4b
, thus from

Remark 1 we see that, in this case, this condition for1
q

is sharp, up to the end point.

Now we will show some examples of functionsϕ not satisfying the hypothesis of the previous
theorem, for which we obtain that the portion of the type setE in the region3

4
< 1

p
≤ 1 is smaller

than the region

Ea,b =

{(
1

p
,
1

q

)
:
3

4
<

1

p
≤ 1,

a+ b+ ab

a+ b

(
1− 1

p

)
<

1

q
≤ 1

}
stated in Theorem 4.1.

We considerϕ (x1, x2) = x2
1, which is a mixed homogeneous function satisfying (1.1) for

anyb > 2. In this caseϕx1x1 ≡ 2 butHessϕ ≡ 0. From Remark 2.8 in [4] and Remark 4 we

obtain that the corresponding type set is the region1
q
≥ 3

(
1− 1

p

)
, 3

4
< 1

p
≤ 1 which is smaller

than the regionEa,b.
We consider now a mixed homogeneous functionϕ satisfying (1.1), of the form

(4.12) ϕ (x1, x2) = xl2P (x1, x2) ,

with P (x1, 0) 6= 0 for x1 6= 0. Sincea < b it can be checked thatl ≥ 2 and that forl > 2,
ϕx1x1 (x1, 0) = ϕx2x2 (x1, 0) = 0. Moreover

(4.13) Hessϕ = x2l−2
2

(
Px1x1

(
l (l − 1)P + 2lx2Px2 + x2

2Px2x2

)
− (lPx1 + x2Px1x2)

2) ,
which vanishes at(x1, 0) . A computation shows that the second factor is different from zero at
a point of the form(x1, 0) . SoHessϕ does not vanish identically.

Proposition 4.2.Letϕ be a mixed homogeneous function satisfying (1.1) and (4.12). If
(

1
p
, 1
q

)
∈

E then 1
q
≥ (l + 1)

(
1− 1

p

)
.

Proof. Let fε = χKε the characteristic function of the setKε =
[
0, 1

3

]
×

[
0, ε

−1

3

]
×

[
0, ε

−l

3M

]
,

with M = max
(x1,x2)∈[0,1]×[0,1]

P (x1, x2) . If
(

1
p
, 1
q

)
∈ E then

(4.14) ‖Rfε‖Lq(Σ) ≤ c ‖fε‖Lp(R3) = cε−
1+l
p .

By the other side,

‖Rfε‖Lq(Σ) ≥
(∫

Wε

∣∣∣f̂ε (x1, x2, ϕ (x1, x2))
∣∣∣q dx1dx2

) 1
q

whereWε =
[

1
2
, 1

]
× [0, ε] . Now, for (x1, x2) ∈ Wε and(y1, y2, y3) ∈ Kε,

|x1y1 + x2y2 + ϕ (x1, x2) y3| ≤ 1

so ∣∣∣f̂ε (x1, x2, ϕ (x1, x2))
∣∣∣

=

∣∣∣∣∫
Kε

e−i(x1y1+x2y2+ϕ(x1,x2)y3)dy1dy2dy3

∣∣∣∣
≥

∫
Kε

cos (x1y1 + x2y2 + ϕ (x1, x2) y3) dy1dy2dy3 ≥ cε−1−l.

Thus

(4.15) ‖Rfε‖Lq(Σ) ≥ cε−1−l+ 1
q .
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The proposition follows from (4.14) and (4.15). �

We note that in the case that(a+ b) l > ab (for exampleϕ (x1, x2) = x4
2 (x2

1 + x4
2)) the

portion of the type set corresponding to3
4
< 1

p
≤ 1 will be smaller than the regionEa,b.

Also,ϕ (x1, x2) = x2
2 (x1 + x2

2) is an example wherea = 2, b = 4, Hessϕ (x1, x2) = −4x2
2

and ifx2 = 0 andx1 6= 0, ϕx2x2 (x1, x2) = 2x1 6= 0. Again, since12 = (a+ b) l > ab = 8, we
get that the portion of the type set corresponding to3

4
< 1

p
≤ 1 will be smaller than the region

Ea,b.

Proposition 4.3. Letϕ be a mixed homogeneous function satisfying (1.1) and (4.12) withl ≥ b
2
.

If 3
4
≤ 1

p
≤ 1 and 1

q
> (l + 1)

(
1− 1

p

)
, then∥∥RA0
∥∥
Lp(R3),Lq(ΣA0) ≤ c.

Proof. Let (x0
1, x

0
2) ∈ A0, if Hessϕ (x0

1, x
0
2) 6= 0, as in the proof of Theorem 4.1 we find a

neighborhoodU of (x0
1, x

0
2) such that (4.1) holds. IfHessϕ (x0

1, x
0
2) = 0, by (4.13), eitherx0

2 =
0 or the polynomialQ given byPx1x1 (l (l − 1)P + 2lx2Px2 + x2

2Px2x2) − (lPx1 + x2Px1x2)
2

vanishes at(x0
1, x

0
2) . In the first case, using the fact thatP (x1, 0) 6= 0 for x1 6= 0, we get that(

Px1x1l (l − 1)P − l2P 2
x1

) (
x0

1, 0
)
6= 0.

We take a neighborhoodW1 of the point(x0
1, 0) andUk as in the proof of Theorem 4.1. So for

(x1, x2) ∈ Uk,
|Hessϕ (x1, x2)| ≥ c2−k(2l−2)

and so ∣∣∣σ̂Uk (ξ1, ξ2, ξ3)
∣∣∣ ≤ 2k(l−1)

1 + |ξ3|
.

By the other side, ∣∣∣σ̂Uk (ξ1, ξ2, ξ3)
∣∣∣ ≤ 2−k

so for0 ≤ τ ≤ 1, ∣∣∣σ̂Uk (ξ1, ξ2, ξ3)
∣∣∣ ≤ 2k(τl−1)

(1 + |ξ3|)τ

and by Remark 3 ∥∥RUk
∥∥
Lp(R3),L2(ΣUk) ≤ cτ2

k(τl−1)
2(1+τ)

for p = 2(1+τ)
2+τ

and so Hölder’s inequality implies, for1 ≤ q < 2,∥∥RUk
∥∥
Lp(R3),Lq(ΣUk) ≤ cτ2

k( τl−1
2(1+τ)

− 2−q
2q )

and a computation shows that this exponent is negative for1
q
> (l + 1)

(
1− 1

p

)
. Thus

(4.16)
∥∥RW1

∥∥
Lp(R3),Lq(ΣW1) <∞

for 3
4
≤ 1

p
≤ 1 and(l + 1)

(
1− 1

p

)
< 1

q
≤ 1. Now we supposeQ (x0

1, x
0
2) = 0. We observe that

degQ ≤ 2 degP − 2 ≤ 2 (b− l)− 2 ≤ 2l − 2

and soHessϕ (x1, x
0
2) vanishes atx0

1 with order at most2l − 2. Then definingW2 andVk as in
the proof of Theorem 4.1, we have∣∣Hessϕ (

x1, x
0
2

)∣∣ ≥ 2−k(2l−2)
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10 E. FERREYRA AND M. URCIUOLO

and as in the previous case we obtain

(4.17)
∥∥RW2

∥∥
Lp(R3),Lq(ΣW2) <∞

for 3
4
≤ 1

p
≤ 1 and 1

q
> (l + 1)

(
1− 1

p

)
. The proposition follows from (4.16), (4.17) and

(4.1). �

From Proposition 4.3 and Remark 2 we obtain the following result, sharp up to the end points,
for 3

4
≤ 1

p
≤ 1.

Theorem 4.4. Letϕ be a mixed homogeneous function satisfying (1.1) and (4.12) withl ≥ b
2
.

If m = max
{
l + 1, a+b+ab

a+b

}
, 3

4
≤ 1

p
≤ 1 and 1

q
> m

(
1− 1

p

)
, then

(
1
p
, 1
q

)
∈ E.

4.1. Sharp Lp − L2 Estimates. In [4] we obtain sharpLp − L2 estimates for the restriction
of the Fourier transform to homogeneous polynomial surfaces inR3. The principal tools we
used there were two Littlewood Paley decompositions. Adapting this proof to the setting of non
isotropic dilations we obtain the following results.

Lemma 4.5. Let a+b+2ab
2a+2b+2ab

≤ 1
p
≤ 1. If∥∥RA0

∥∥
Lp(R3),L2(ΣA0) <∞

then
(

1
p
, 1

2

)
∈ E.

Proof. From (2.1), the lemma follows from a process analogous to the proof of Lemma 4.3 in
[4]. �

Theorem 4.6.
i) If ϕ is a mixed homogeneous polynomial function satisfying the hypothesis of Theorem

4.1 then
(
a+b+2ab

2a+2b+2ab
, 1

2

)
∈ E.

ii) Let 1
p0

= max
{

a+b+2ab
2a+2b+2ab

, 2l+1
2l+2

}
. If ϕ is a mixed homogeneous polynomial function

satisfying the hypothesis of Theorem 4.4 then
(

1
p0
, 1

2

)
∈ E.

Proof. i) If a+b+ab
a+b

≥ 3, i) follows from (4.3) and Lemma 4.5. The cases(a, b) = (3, 4) ,
(a, b) = (3, 5) and(a, b) = (4, 5) are solved in Remark 5, partii). The cases(a, b) = (2, b)
with b odd orB = 0 are also included in Remark 5, partii). For the remainder cases(2, b), we
observe that, ifb > 6, from the proof of Theorem 4.1 we obtain

(4.18)
∥∥RA0

∥∥
Lp(R3),L2(ΣA0) <∞,

for 1
p

= a+b+2ab
2a+2b+2ab

, soi) follows from Lemma 4.5. Forb = 6, as before we get∥∥RW1
∥∥
Lp(R3),L2(ΣW1) <∞,

and ∥∥RVk
∥∥
Lp(R3),L2(ΣVk) <∞

for k ∈ N, 1
p

= a+b+2ab
2a+2b+2ab

. In a similar way to Lemma 4.3 of [4], we use a uni-dimensional
Littlewood Paley decomposition to obtain∥∥RW2

∥∥
Lp(R3),L2(ΣW2) <∞

and then we have (4.18) for1
p

= a+b+2ab
2a+2b+2ab

. Soi) follows from Lemma 4.5.
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ii) From the proof of Proposition 4.3, we use a uni-dimensional Littlewood Paley decomposition
to obtain (4.18) for1

p
= max

{
a+b+2ab

2a+2b+2ab
, 2l+1

2l+2

}
, andii) follows from Lemma 4.5. �

Remark 7. In [7] the authors obtain sharp estimates for the Fourier transform of measuresσ
associated to surfacesΣ like ours, whenϕ is a polynomial function satisfiyng (1.1) and the
condition thatϕ andHessϕ do not vanish simultaneously onB − {(0, 0)} . In these cases,
part i) of the above theorem follows from Remark 3. We observe that our hypotheses are less
restrictive, for exampleϕ (x1, x2) = x4

1x
2
2 + x10

2 satisfies the hypothesis of parti) of the above
theorem butϕ andHessϕ vanish at any(x1, x2) with x2 = 0.
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