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ABSTRACT. We study the equatior A yu+|z|*|u[P~2u = |x|°|u|?~2u with Dirichlet boundary
condition onB(0, R) or onRY. We prove the existence of the radial solution and nonradial
solutions of this equation.
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1. INTRODUCTION AND MAIN RESULT

Equations of the form

A+ g(@)|ulf?u = f(z,u) InQ
(1.1)
u =0, onof2

have attracted much attention. Many papers deal with the prolplein (1.1) in the case of

2, 0 =RY s =2 glarge atinfinity andf superlinear, subcritical and boundedinsee e.qg.

[1], [2] and [4]. The problem (1]1) with = 2, Q = B(0,1), g(z) = 0 and f(x,u) = |z|>u!!

was studied in[[9]; in particular, it was proved that under some conditions the ground states
are not radial symmetric. The case= 2, 2 = B(0,1) or onRY, g(z) = 1 and f(z,u) =
||°|u|'~2u was studied in[[7]. The probler (1.1) with= s, @ = R, g(z) = V(|z|) and

f(z,u) = Q(|z])|ul'~2u was studied by J. Su., Z.-Q. Wang and M. Willem {[11],/[12]). They
proved embedding results for functions in the weightEd?(R") space of radial symmetry.

The results were then used to obtain ground state and bound state solutions of equations with
unbounded or decaying radial potentials.
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In this paper, we consider the nonlinear elliptic problem
—Apu+ |z uP?u = |z|°|u)tu inQ
(1.2) u>0, ue Wh(Q),
u =0, onof)

and prove the existence of the radial and the nonradial solutions of the prgblem (1.2). Here,
Ayu = div(|[Vul[P~2Vu) is thep-Laplacian operator, and< p < N, a > 0, b > 0.
We denote by !*(RY) the space of radially symmetric functions in

WP (RY) = {u € LP(RY) : Vu € LP(RY)}.

Wr{g’(RN) is denoted by the space of radially symmetric functions in

WiP(RY) = {u c WHP(RY) / ||| ul? < oo}
RN
We also denote byp!*(RY) the space of radially symmetric functions in
D(RY) = {ue L35 (RY) : Vue L7 (RY)}.
Our main results are:

Theorem1.1.1fa>0,6>0, 1 <p< N and
N b

p i p 7
N—-—p N-p

- a(pe PR v o)

then the problen] (1} 2) has a radial solution.

Remark 1. In [8], Sirakov proves that the problein (IL.2) wjth= 2 has a solution for
2N 4b
N—-2 a(N-2)
In [6], P. Sintzoff and M. Willem proved the existence of a solution of the probfem (1.2) with
q

p=2,q<2%, 2b—a<1+§> < (N —=1)(¢g —2).

p<qg<q=

2<qg<q’ =

Theorenj 1.]1 extends the results(of [6] to the general equation witi_aplacian operator.
Theorem 1.2. Suppose that > 0, b >0, 1 <p < N and

Np
N—p’

p<q<

po—a (o EENIZI) v 1), ag <

then for every, problem[(1.2) with2 = B(0, R), R large enough has a radial and a nonradial
solution.

This paper is organized as follows: In Sectign 2, we stlidyf (1.2) in the ca#3e-oR". We
prove the existence of a radial least energy solutiofi of (1.2) when

(p—1)(g—p)
) <

l<p<N,p<q<4q, pb—aGH- q—p)(N —1).
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In Sectior] 8, we consider the existence of nonradial solutions df (1.2)(With B(0, R), R
large enough. Finally, in Secti¢n 4, we consider necessary conditions for the existence of solu-

tions of [1.2).

2. RADIAL SOLUTION

In this paper, unless stated otherwise, all integrals are understood to be taken ov&’all of
Also, throughout the paper, we will often denote various constants by the same letter.

Lemma 2.1. Suppose that < p < N. There existAy > 0, such that, for everyu €
WiP(RY), u € C(RM\{0}), fora > -25(1 — N), we have that

N-1_ a(p—1) pp;21 p%
2] 75 ()| < Ay ( / |x|a|u|p) ( / |Vu|p) .

d a-2=1 N—-1 p 2 %—1 du a-2=1 N-1
dr<|u\pr P >:§(|u|) -2u-d—r P

Proof. Since

r
+ |ul? (a BT + N — 1) P TN
and
a > L(1 —N)
p—1 ’
we get that
d p—1 d P
5 <‘u|p7,a.TTN—1) 2pu|u|p 2d:f7,,a7 N 1
and obtain
p=1l N oo 1 |du] (v
r N u(r) P §AN/ lu|P™ - SN-15+"7 4s
d
<Ay [t | 5] ol o

< Ay (/yww)p (/|vu|f’>’l’
2N T (2P < A (/ |$|a|u|p)p: (/ |Vu|p); 7

1

a(p pp;zl »?
o 5 o < v ([1atetar) 7 (f1vur)”

Lemmaz22.fl<p< N, p<r< ]5—11’][) then for anyu € lep(RN), we have that

/|u|’"da: <c (/ \vu|p)

It follows that

and we have

Np+7(p

()
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Proof. The proof can be adapted directly from the Gagliardo-Nirenberg inequality. [

The following inequality extends the resultsof [5] to the general equation wigh-theplacian
operator.

Lemma 2.3. For

pN c p
1<p<N, p<Q<N—p+M+a(p—1)’ Z -1

p p

there existBy , . such that for every. € D}?(R"), we have

1;‘2
W*%(q—p—m>
/|;c|°’|uyqu < By /\vu|p .

Proof. Using Lemma 2J1 and Lemma .2, we have

/|I|C]u\qu
N— _|-a(1’2 1) m (N—l)/p+(;(p,1)p—2 q— (Nfl)/p+i(p,1>p—2
) e [ |ul dx
p—1 . ) )
< (/| |a| |p) P2 (N=1)/pta(p—1)p—2 </|V |p) 22 (N“D)/ptalp—1)p—2
>~ || u
2P (N— 1)/p+a(p 1)p—2)
wr)’ )
(/| ‘ | ’pd )p(N 1)+a(p 0 </| |p> Np+p (q W)
T |u €T U

PN DTar D T 52 <q P =Ty 1))
. IVul?
++ﬁ _ ,#
PN—Dralp—1)  p2 \ TP D tap-1)
< Bnp.e |Vul? .

(‘7 (N—1)/prato= 1>p—2>

O
Next, to prove Theorein 1.1, we consider the following minimization problem
m =m(a,b,p,q) =  inf / <|Vu|p + |x|“|u|p>dx.
ueW, P (RN)

J |z lu|?dz=1
Theorem2.4.1fa>0,b6>0, 1 <p< N and

- N b
P<qg<q= P + P

(p—1)(g -

pb—a(p+

thenm(a, b, p, q) is achieved.
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Proof. Let (u,,) C W,'»(R") be a minimizing sequence far = m(a, b, p, q) :
/|m|b|un|qu =1,
‘/(Rhmw+ﬂwﬂuﬁﬂdx—+m.

By going (if necessary) to a subsequence, we can assume,thatu in I,!?(R"). Hence, by
weak lower semicontinuity, we have

[ 49ap + ol )z < m,

/ummwaL

If is defined by = £~ + 2=, thenc < b and it follows from Lemma 2|3 that

/ |2|? |, |%dx < €bc/ ||| up|da < CeP°.
|z|<e

Since(uy) is bounded i¥!,?(RY). We deduce from Lemnia 2.1 that

[

[

!wlblun|qdw—/ E T e T
: ]2 2
a(p—1)

b—a—(q—p)( o)
( > C’/|x|“|u|pdx

atl_ )y (ap)(N-D)
< Cé P2 T

So we get that, for every< 1, there existgs > 0, such that for every,

/ |2|® |y, | 2 > ¢
e<|z|<1

By the Rellich theorem and LemrmaP.1,

1> /]m\b\un\qdm > / |2|% |y, | 2dz > t.
e<lz|<i

Finally [ |z|°|u|?dz = 1 andm = m(a, b, p, q) is achieved at. O
Now we will prove Theorer T}1.

Proof. By Theoren] 24m is achieved. Then by the Lagrange multiplier rule, the symmetric
criticality principle (see e.gl [13]) and the maximum principle, we obtain a solution of

—Apu + [2[* P70 = Az |v]t,
v>0, veWP(RY).

Henceu = \<—»rv is a radial solution 02), with = gm. O
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3. NONRADIAL SOLUTIONS

In this section, we will prove Theorejm 1.2. We use the preceding results to construct nonra-
dial solutions of problend (1}2) in the cage= B(0, R).
Consider
M=Mbpa) = it [ (19uP el )do
ueWy P (RY)
J |z |u|?daz=1
It is clear thatM/ < m, and using our previous results, we prove thats achieved under some
conditions.

Theorem3.1.1fa>0,b6>0, 1 <p< N and

2

4 pN p°b
p<qg<qn = - )
N—p a(N—p)

thenM (a, b, p, q) is achieved.
Proof. Let (u,,) C W1P(RY) be a minimizing sequence fal = M (a, b, p,q) :

/|x|b|un|qd=’f =1,
/vaw+mwhﬂ¢wﬁM.

By going (if necessary) to a subsequence, we can assume,thatu in W*(RY). Hence, by
weak lower semicontinuity, we have

/ <|Vu\p + |x|“|u|p> dx < M,
/mmmwng

If ¢ is defined by; = £~ — a(]pvzfp), thenc > b and

aNp

a N—

r=-, S = P
Cc aq — pc

are conjugate. It follows from the Hélder and Sobolev inequalities that

1 b—c
[ fePlfra < (—) JRRE
|z[>1 €
1 b—c e
B (E) /|$|C|un|“|un|q_ada:
<o ([hattapis) ([l #a)

< e,

As in Theoreny 24, for every < 1, there exists > 0 such that, for every,

/ ol 7 > 1.
lz[<2

1
s
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By the compactness of the Sobolev theorem in the bounded domain<fgr < N, p < q <

Np
N-p’
1> /\x|b|u|qdac > / |2|® [y, |2 > 2.
|z|<1
Hence[ |z|°|u|?dz = 1 andM = M (a, b, p, q) is achieved at. O

Now we will prove Theorer Tj2.

Proof. By Theorem| 2.4,m(a,b,p,q) is positive. Sincepb > ag, it is easy to verify that
M(a,b,p,q) = 0. Let us define

M(a,b,p,q, R) = inf / (|VulP + |z|*|uP)dz
(0,R)

u€WLP(B(0,R))
JB0,R) |z[?u|dz=1

uEer,’f(B(QR)) BO.R)
IB((LR) ‘$|b|u|QdI:1

It is clear that, for everyk > 0, M(a, b, p, q, R) andm(a, b, p, ¢, R) are achieved and
dim M(a,b,p,q, R) = M(a,b,p,q) = 0,

Rhm m(a7 b,p, q, R) = m<a7 b’p’ q> > 0.

Then from Theorerp 1]1, we know that problgm [1.2) witf0, R) has a radial solution.
On the other hand, by the Lagrange multiplier rule, the symmetric criticality principle (see
e.g.[13]) and the maximum principle, we obtain a solution of

—A,v + |z|*vP~2u = Mz[Plv]7?v  in B(0, R)
v >0, ue W(B(0,R)),
v =0, ondB(0, R).
Henceu = \a-rv is a solution of.) with\ = pM(a b,p,q, R). Thus, Proble2) has a
nonradial solution. O
4. NECESSARY CONDITIONS

In this section we obtain a nonexistence result for the solution of proljler (1.2) using a
Pohozaev-type identity. The Pohozaev identity has been derived for very general problems by
H. Egnell [3].

Lemma 4.1. Letu € W'P(R") be a solution of[(1]2), then satisfies
N — N+b
2 [19apas+ 22 [faptupds - =52 [ fapuptd o
p

Theorem 4.2. Suppose that

N b
p n p
N-p N-p
N +a < N + b‘
p q
Then there is no solution for problemn (IL.2).

q:

<q
or
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Proof. Multiplying (I.2) by« and integrating, we see that

/|x|b|u|qd:v = / (|Vu|p+ |:B|“|u|p)d$.

On the other hand, using Leminaj4.1, we obtain

N—p N+b N N
( p_4+ )/|vu|de+< ra_ +b) /|x|a|u|l’dx:().
P q p q

So, ifu is a solution of probleny (I} 2), we must have
N—p N+b N+a N+b
< : > :
p q p q

Remark 2. The second assumption of Theorgm 2.4,

p-a (o D) gy -

implies that

N+b N+a
< )
q p
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