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ABSTRACT. We study the equation−∆pu+|x|a|u|p−2u = |x|b|u|q−2u with Dirichlet boundary
condition onB(0, R) or on RN . We prove the existence of the radial solution and nonradial
solutions of this equation.
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1. I NTRODUCTION AND M AIN RESULT

Equations of the form

(1.1)

{
−∆tu + g(x)|u|s−2u = f(x, u) in Ω

u = 0, on∂Ω

have attracted much attention. Many papers deal with the problem (1.1) in the case oft =
2, Ω = RN , s = 2, g large at infinity andf superlinear, subcritical and bounded inx, see e.g.
[1], [2] and [4]. The problem (1.1) witht = 2, Ω = B(0, 1), g(x) = 0 andf(x, u) = |x|bul−1

was studied in [9]; in particular, it was proved that under some conditions the ground states
are not radial symmetric. The caset = 2, Ω = B(0, 1) or on RN , g(x) = 1 andf(x, u) =
|x|b|u|l−2u was studied in [7]. The problem (1.1) witht = s, Ω = RN , g(x) = V (|x|) and
f(x, u) = Q(|x|)|u|l−2u was studied by J. Su., Z.-Q. Wang and M. Willem ([11], [12]). They
proved embedding results for functions in the weightedW 1,p(RN) space of radial symmetry.
The results were then used to obtain ground state and bound state solutions of equations with
unbounded or decaying radial potentials.
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In this paper, we consider the nonlinear elliptic problem

(1.2)


−∆pu + |x|a|u|p−2u = |x|b|u|q−2u in Ω

u > 0, u ∈ W 1,p(Ω),

u = 0, on∂Ω

and prove the existence of the radial and the nonradial solutions of the problem (1.2). Here,
∆pu = div(|∇u|p−2∇u) is thep-Laplacian operator, and1 < p < N, a ≥ 0, b ≥ 0.

We denote byW 1,p
r (RN) the space of radially symmetric functions in

W 1,p(RN) =
{
u ∈ Lp(RN) : ∇u ∈ Lp(RN)

}
.

W 1,p
r,a (RN) is denoted by the space of radially symmetric functions in

W 1,p
a (RN) =

{
u ∈ W 1,p(RN) :

∫
RN

|x|a|u|p < ∞
}

.

We also denote byD1,p
r (RN) the space of radially symmetric functions in

D1,p(RN) =
{

u ∈ L
Np

N−p
(
RN

)
: ∇u ∈ Lp

(
RN

)}
.

Our main results are:

Theorem 1.1. If a ≥ 0, b ≥ 0, 1 < p < N and

p < q < q̃ =
Np

N − p
+

bp

N − p
,

pb− a

(
p +

(p− 1)(q − p)

p

)
< (q − p)(N − 1),

then the problem (1.2) has a radial solution.

Remark 1. In [8], Sirakov proves that the problem (1.2) withp = 2 has a solution for

2 < q < q# =
2N

N − 2
− 4b

a(N − 2)
.

In [6], P. Sintzoff and M. Willem proved the existence of a solution of the problem (1.2) with

p = 2, q ≤ 2∗, 2b− a
(
1 +

q

2

)
< (N − 1)(q − 2).

Theorem 1.1 extends the results of [6] to the general equation with ap−Laplacian operator.

Theorem 1.2.Suppose thata ≥ 0, b ≥ 0, 1 < p < N and

p < q <
Np

N − p
,

pb− a

(
p +

(p− 1)(q − p)

p

)
< (q − p)(N − 1), aq < pb,

then for everyR, problem (1.2) withΩ = B(0, R), R large enough has a radial and a nonradial
solution.

This paper is organized as follows: In Section 2, we study (1.2) in the case ofΩ = RN . We
prove the existence of a radial least energy solution of (1.2) when

1 < p < N, p < q < q̃, pb− a

(
p +

(p− 1)(q − p)

p

)
< (q − p)(N − 1).
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In Section 3, we consider the existence of nonradial solutions of (1.2) withΩ = B(0, R), R
large enough. Finally, in Section 4, we consider necessary conditions for the existence of solu-
tions of (1.2).

2. RADIAL SOLUTION

In this paper, unless stated otherwise, all integrals are understood to be taken over all ofRN .
Also, throughout the paper, we will often denote various constants by the same letter.

Lemma 2.1. Suppose that1 < p < N. There existAN > 0, such that, for everyu ∈
W 1,p

r,a (RN), u ∈ C(RN\{0}), for a ≥ p
p−1

(1−N), we have that

|x|
N−1

p
+

a(p−1)

p2 |u(x)| ≤ AN

(∫
|x|a|u|p

) p−1

p2
(∫

|∇u|p
) 1

p2

.

Proof. Since

d

dr

(
|u|pra· p−1

p rN−1
)

=
p

2

(
|u|2

) p
2
−1 · 2u · du

dr
ra· p−1

p rN−1

+ |u|p
(

a · p− 1

p
+ N − 1

)
ra· p−1

p
−1rN−1,

and
a ≥ p

p− 1
(1−N),

we get that
d

dr

(
|u|pra· p−1

p rN−1
)
≥ pu|u|p−2du

dr
ra· p−1

p rN−1

and obtain

ra· p−1
p rN−1|u(r)|p ≤ AN

∫ +∞

r

|u|p−1

∣∣∣∣du

dr

∣∣∣∣ SN−1Sa· p−1
p dS

≤ AN

∫
|u|p−1

∣∣∣∣du

dr

∣∣∣∣ |x|a· p−1
p dx

≤ AN

(∫
|x|a|u|p

) p−1
p

(∫
|∇u|p

) 1
p

.

It follows that

|x|N−1+a· p
p−1 |u(x)|p ≤ AN

(∫
|x|a|u|p

) p−1
p

(∫
|∇u|p

) 1
p

,

and we have

|x|
N−1

p
+

a(p−1)

p2 |u(x)| ≤ AN

(∫
|x|a|u|p

) p−1

p2
(∫

|∇u|p
) 1

p2

.

�

Lemma 2.2. If 1 < p < N, p ≤ r < pN
N−p

, then for anyu ∈ W 1,p(RN), we have that∫
|u|rdx ≤ C

(∫
|∇u|p

)N(r−p)

p2
(∫

|u|p
)Np+r(p−N)

p2

.
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Proof. The proof can be adapted directly from the Gagliardo-Nirenberg inequality. �

The following inequality extends the results of [5] to the general equation with thep−Laplacian
operator.

Lemma 2.3. For

1 < p < N, p < q <
pN

N − p
+

c
N−1

p
+ a(p−1)

p2

, a ≥ p

p− 1
(1−N),

there existBN,p,c such that for everyu ∈ D1,p
r (RN), we have∫

|x|c|u|qdx ≤ BN,p,c

(∫
|∇u|p

) c
p(N−1)+a(p−1)

+ N
p2

(
q−p− cp2

p(N−1)+a(p−1)

)
.

Proof. Using Lemma 2.1 and Lemma 2.2, we have∫
|x|c|u|qdx

=

∫ (
|x|

N−1
p

+
a(p−1)

p2

) c
(N−1)/p+a(p−1)p−2

(
|u|

) c
(N−1)/p+a(p−1)p−2

(
|u|

)q− c
(N−1)/p+a(p−1)p−2

dx

≤
(∫

|x|a|u|p
) p−1

p2 · c
(N−1)/p+a(p−1)p−2

(∫
|∇u|p

) 1
p2 ·

c
(N−1)/p+a(p−1)p−2

·
(∫

|∇u|p
) N

p2 (q−p− c
(N−1)/p+a(p−1)p−2 ) (∫

|u|p
)Np

p2 + p−N

p2

(
q− c

(N−1)/p+a(p−1)p−2

)

=

(∫
|x|a|u|pdx

) c(p−1)
p(N−1)+a(p−1)

(∫
|u|p

)Np

p2 + p−N

p2

(
q− cp2

p(N−1)+a(p−1)

)

·
(∫

|∇u|p
) c

p(N−1)+a(p−1)
+ N

p2

(
q−p− cp2

p(N−1)+a(p−1)

)

≤ BN,p,c

(∫
|∇u|p

) c
p(N−1)+a(p−1)

+ N
p2

(
q−p− cp2

p(N−1)+a(p−1)

)
.

�

Next, to prove Theorem 1.1, we consider the following minimization problem

m = m(a, b, p, q) = inf
u∈W 1,p

r,a (RN )∫
|x|b|u|qdx=1

∫ (
|∇u|p + |x|a|u|p

)
dx.

Theorem 2.4. If a ≥ 0, b ≥ 0, 1 < p < N and

p < q < q̃ =
Np

N − p
+

bp

N − p
,

pb− a

(
p +

(p− 1)(q − p)

p

)
< (q − p)(N − 1),

thenm(a, b, p, q) is achieved.
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Proof. Let (un) ⊂ W 1,p
r,a (RN) be a minimizing sequence form = m(a, b, p, q) :∫

|x|b|un|qdx = 1,∫
(|∇un|p + |x|a|un|p) dx → m.

By going (if necessary) to a subsequence, we can assume thatun ⇀ u in W 1,p
r,a (RN). Hence, by

weak lower semicontinuity, we have∫
(|∇u|p + |x|a|u|p) dx ≤ m,∫

|x|b|u|qdx ≤ 1.

If c is defined byq = pN
N−p

+ pc
N−p

, thenc < b and it follows from Lemma 2.3 that∫
|x|≤ε

|x|b|un|qdx ≤ εb−c

∫
|x|c|un|qdx ≤ Cεb−c.

Since(un) is bounded inW 1,p
r,a (RN). We deduce from Lemma 2.1 that∫

|x|≥ 1
ε

|x|b|un|qdx =

∫
|x|≥ 1

ε

|x|b−a|un|q−p|x|a|un|pdx

≤
(

1

ε

)b−a−(q−p)(N−1
p

+
a(p−1)

p2 )

C

∫
|x|a|u|pdx

≤ Cε
a( q+1

p
− q

p2 )−b+
(q−p)(N−1)

p .

So we get that, for everyt < 1, there existsε > 0, such that for everyn,∫
ε≤|x|≤ 1

ε

|x|b|un|qdx ≥ t.

By the Rellich theorem and Lemma 2.1,

1 ≥
∫
|x|b|un|qdx ≥

∫
ε≤|x|≤ 1

ε

|x|b|un|qdx ≥ t.

Finally
∫
|x|b|u|qdx = 1 andm = m(a, b, p, q) is achieved atu. �

Now we will prove Theorem 1.1.

Proof. By Theorem 2.4,m is achieved. Then by the Lagrange multiplier rule, the symmetric
criticality principle (see e.g. [13]) and the maximum principle, we obtain a solution of −∆pυ + |x|a|υ|p−2υ = λ|x|b|υ|q−2υ,

υ > 0, υ ∈ W 1,p(RN).

Henceu = λ
1

q−p υ is a radial solution of (1.2), withλ = p
q
m. �
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3. NONRADIAL SOLUTIONS

In this section, we will prove Theorem 1.2. We use the preceding results to construct nonra-
dial solutions of problem (1.2) in the caseΩ = B(0, R).

Consider

M = M(a, b, p, q) = inf
u∈W 1,p

a (RN )∫
|x|b|u|qdx=1

∫ (
|∇u|p + |x|a|u|p

)
dx.

It is clear thatM ≤ m, and using our previous results, we prove thatM is achieved under some
conditions.

Theorem 3.1. If a ≥ 0, b ≥ 0, 1 < p < N and

p < q < q# =
pN

N − p
− p2b

a(N − p)
,

thenM(a, b, p, q) is achieved.

Proof. Let (un) ⊂ W 1,p
a (RN) be a minimizing sequence forM = M(a, b, p, q) :∫

|x|b|un|qdx = 1,∫ (
|∇un|p + |x|a|un|p

)
dx → M.

By going (if necessary) to a subsequence, we can assume thatun ⇀ u in W 1,p
a (RN). Hence, by

weak lower semicontinuity, we have∫ (
|∇u|p + |x|a|u|p

)
dx ≤ M,∫

|x|b|u|qdx ≤ 1.

If c is defined byq = pN
N−p

− p2c
a(N−p)

, thenc > b and

r =
a

c
, s =

aNp
N−p

aq − pc

are conjugate. It follows from the Hölder and Sobolev inequalities that∫
|x|≥ 1

ε

|x|b|un|qdx ≤
(

1

ε

)b−c ∫
|x|c|un|qdx

=

(
1

ε

)b−c ∫
|x|c|un|

pc
a |un|q−

pc
a dx

≤ εc−b

(∫
|x|a|un|pdx

) 1
r
(∫

|un|
Np

N−p dx

) 1
s

≤ Cεc−b.

As in Theorem 2.4, for everyt < 1, there existsε > 0 such that, for everyn,∫
|x|≤ 1

ε

|x|b|un|qdx ≥ t.
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By the compactness of the Sobolev theorem in the bounded domain, for1 < p < N, p < q <
Np

N−p
,

1 ≥
∫
|x|b|u|qdx ≥

∫
|x|≤ 1

ε

|x|b|un|qdx ≥ t.

Hence
∫
|x|b|u|qdx = 1 andM = M(a, b, p, q) is achieved atu. �

Now we will prove Theorem 1.2.

Proof. By Theorem 2.4,m(a, b, p, q) is positive. Sincepb > aq, it is easy to verify that
M(a, b, p, q) = 0. Let us define

M(a, b, p, q, R) = inf
u∈W 1,p

a (B(0,R))∫
B(0,R) |x|

b|u|qdx=1

∫
B(0,R)

(
|∇u|p + |x|a|u|p

)
dx,

m(a, b, p, q, R) = inf
u∈W 1,p

r,a (B(0,R))∫
B(0,R) |x|

b|u|qdx=1

∫
B(0,R)

(
|∇u|p + |x|a|u|p

)
dx.

It is clear that, for everyR > 0, M(a, b, p, q, R) andm(a, b, p, q, R) are achieved and

lim
R→∞

M(a, b, p, q, R) = M(a, b, p, q) = 0,

lim
R→∞

m(a, b, p, q, R) = m(a, b, p, q) > 0.

Then from Theorem 1.1, we know that problem (1.2) withB(0, R) has a radial solution.
On the other hand, by the Lagrange multiplier rule, the symmetric criticality principle (see

e.g.[13]) and the maximum principle, we obtain a solution of
−∆pυ + |x|a|υ|p−2υ = λ|x|b|υ|q−2υ in B(0, R)

υ > 0, u ∈ W 1,p(B(0, R)),

υ = 0, on∂B(0, R).

Henceu = λ
1

q−p υ is a solution of (1.2), withλ = p
q
M(a, b, p, q, R). Thus, Problem (1.2) has a

nonradial solution. �

4. NECESSARY CONDITIONS

In this section we obtain a nonexistence result for the solution of problem (1.2) using a
Pohozaev-type identity. The Pohozaev identity has been derived for very general problems by
H. Egnell [3].

Lemma 4.1. Letu ∈ W 1,p(RN) be a solution of (1.2), thenu satisfies

N − p

p

∫
|∇u|pdx +

N + a

p

∫
|x|a|u|pdx− N + b

q

∫
|x|b|u|qdx = 0.

Theorem 4.2.Suppose that

q̃ =
Np

N − p
+

pb

N − p
≤ q

or
N + a

p
≤ N + b

q
.

Then there is no solution for problem (1.2).
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Proof. Multiplying (1.2) byu and integrating, we see that∫
|x|b|u|qdx =

∫ (
|∇u|p + |x|a|u|p

)
dx.

On the other hand, using Lemma 4.1, we obtain(
N − p

p
− N + b

q

) ∫
|∇u|pdx +

(
N + a

p
− N + b

q

) ∫
|x|a|u|pdx = 0.

So, if u is a solution of problem (1.2), we must have

N − p

p
<

N + b

q
,

N + a

p
>

N + b

q
.

�

Remark 2. The second assumption of Theorem 2.4,

pb− a

(
p +

(q − p)(p− 1)

p

)
< (q − p)(N − 1)

implies that
N + b

q
<

N + a

p
.
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