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ABSTRACT. Let G(v,e) be the set of all simple graphs withvertices ande edges and let
P»(G) =Y d? denote the sum of the squares of the degrégs, ., d,, of the vertices of7.

It is known that the maximum value d%(G) for G € G(v, e) occurs at one or both of two
special graphs ig (v, e)—the quasi-star graph or the quasi-complete graph. For eacfvpajr
we determine which of these two graphs has the larger valug @¥). We also determine all
pairs(v, e) for which the values of,(G) are the same for the quasi-star and the quasi-complete
graph. In addition to the quasi-star and quasi-complete graphs, we find all other grgifhsein
for which the maximum value dP, (G) is attained. Density questions posed by previous authors
are examined.
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1. INTRODUCTION

Let G(v, e) be the set of all simple graphs withvertices ana edges and le®,(G) = 5 d?
denote the sum of the squares of the degrégs, ., d,, of the vertices of>. The purpose of
this paper is to finish the solution of an old problem:

(1) What is the maximum value a%(G), for a graphG in G(v, e)?
(2) For which graph&7 in G(v, e) is the maximum value of,(G) attained?

The first two authors acknowledge partial support by CIMAT, Guanajuato, México.
We are grateful to an anonymous referee who made us aware of Byer's work.
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Throughout, we say that a graphis optimalin G(v, e), if P»(G) is maximum and we denote
this maximum value bynax(v, e).

These problems were first investigated by Katz [8] in 1971 and by R. Ahlswede and G.O.H.
Katona [2] in 1978. In his review of the paper by Ahlswede and Katona, FsE/] com-
mented that “the solution is more difficult than one would expect.” Ahlswede and Katona were
interested in an equivalent form of the problem: they wanted to find the maximum number of
pairs of different edges that have a common vertex. In other words, they wanted to maximize
the number of edges in the line graphG) asG ranges oveg (v, ¢). That these two formula-
tions of the problem are equivalent follows from an examination of the vertex-edge incidence
matrix IV for a graphG € G(v, e):

trace((NNT)?) = Py (G) + 2e,
trace((NTN)?) = trace(AL(G)?) + 4e,

whereA [ (G) is the adjacency matrix of the line graph@f ThusP,(G) = trace(AL(G)?)+2e.
(trace(AL(G)?) is twice the number of edges in the line graph(oj

Ahlswede and Katona showed that the maximum valae (v, e) is always attained at one
or both of two special graphs (v, e).

They called the first of the two special graphguasi-completgraph. The quasi-complete
graph inG (v, e) has the largest possible complete subgrAphLet k, j be unique integers such

that
kE+1 k
e:( ;L )—j:(2>+k—j,where1§j§k.

The quasi-complete graph (v, ¢), which is denoted b¥)C(v, ¢), is obtained from the
complete graph on the verticesl, 2, ..., k by addingv — k verticesk + 1,k + 2,...,v, and
the edgesl, k+ 1), (2,k+1),...,(k—j,k+1).

The other special graph @(v, e) is thequasi-star which we denote b®S(v, e). This graph
has as many dominant vertices as possibldd@inant vertexs one with maximum degree
v — 1). Perhaps the easiest way to descfiligv, ) is to say that it is the graph complement of
QC(v,¢'), wheree’ = (3) —e.

Define the functiorC(v, e) to be the sum of the squares of the degree sequence of the quasi-
complete graph ig (v, e), and define (v, e) to be the sum of the squares of the degree sequence
of the quasi-star graph (v, e). The value ofC (v, e) can be computed as follows:

Lete = (*3') — j, with 1 < j < k. The degree sequence of the quasi-complete graph in
G(v,e)is

dy=-=dpj=k, dpjyn=-=di=k—1, dppr=k—j, dppo=---=d,=0.
Hence

(1.2) C(v,e) =j(k— 1)+ (k— k> + (k — j)*.

SinceQS(v, e) is the complement o C(v, ¢’), it is straightforward to show that

(1.2) S(v,e) =C(v,e')+ (v —1)(4e — v(v — 1))

from which it follows that, for fixedy, the functionS(v, e) — C(v, e) is point-symmetric about
the middle of the intervad < e < (3). In other words,

S(v,e) — C(v,e) = —(S(v,€e) — Clv,€)).

It also follows from equatior] (1]2) th&C(v, e) is optimal inG (v, e) if and only if QS(v, ¢’) is
optimal inG (v, ¢’). This allows us to restrict our attention to valueg df the intervall0, (3) /2]
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or equivalently the interval(3) /2, (3)]. On occasion, we will do so but we will always state
results for all values of.

As the midpoint of the range of values foplays a recurring role in what follows, we denote
it by

and definég:, = ko (v) to be the integer such that

(1.3) (’“20> <m< (k(); 1).

To state the results df[[2] we need one more notion, that of the distance( 1o m. Write

by = bo(v) =m — (l;o)

We are now ready to summarize the results of [2]:
Theorem 1.1([2, Theorem 2]) max(v, ) is the larger of the two valueS (v, e) and.S(v, e).

Theorem 1.2([2, Theorem 3]) max(v,e) = S(v,e) if 0 < e < m—4 andmax(v,e) = C(v,e)
ifm+3 <e< (;)
Lemma 1.3([2, Lemma 8]) If 2by > kg, Or 2v — 2ky — 1 < 2by < ko, then

C(v,e) < S(v,e) forall 0 < e <mand

C(v,e) > S(v,e)forallm < e < (;)
If 200 < ko and2ky + 2by < 2v — 1, then there exists aR with by < R < min{v/2, ko — by}
such that
S(v,e)forall0 <e<m—R

<
C(v,e) > S(v,e)forallm — R <e<m
< S(v,e)forallm<e<m+R

IV

C(v,e) > S(v,e)forallm+ R < e < (;’)

Ahlswede and Katona pose some open questions at the end of [2]. “Some strange number-
theoretic combinatorial questions arise. What is the relative density of the numieenshich
R = 0[max(v,e) = S(v,e) forall 0 < e < mandmax(v,e) = C(v,e)forallm < e < (3)]?"

This is the point of departure for our paper. Our first main result, Thepregm 2.3, strengthens
Ahlswede and Katona’'s Theorem 2; not only does the maximum valér(6f) occur at either
the quasi-star or quasi-complete graplgin, ), but all optimal graphs g (v, ¢) are related
to the quasi-star or quasi-complete graphs via their so-called diagonal sequence. As a result
of their relationship to the quasi-star and quasi-complete graphs, all optimal graphs can be and
are described in our second main result, Thedrein 2.4. Our third main result, THeorem 2.8, is
a refinement of Lemma 8 in[[2]. Theordm [2.8 characterizes the valuesnfle for which
S(v,e) = C(v,e) and gives an explicit expression for the valdén Lemma 8 of [2]. Finally,
the “strange number-theoretic combinatorial" aspects of the problem, mentioned by Ahlswede
and Katona, turn out to be Pell's Equatigh— 22% = +1. Corollary[2.11 answers the density
guestion posed by Ahlswede and Katona. We have just recently learned that Wagner and Wang
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[16] have independently answered this question as well. Their approach is similar to ours, as
they also find an expression f&in Lemma 8 of [2].

Before stating some new results, we summarize the work on the problem that followed [2].

A generalization of the problem of maximizing the sum of the squares of the degree sequence
was investigated by Katz [8] in 1971 and R. Aharani [1] in 1980. Katz's problem was to
maximize the sum of the elements i, whereA runs over all(0, 1)-square matrices of size
with preciselyj ones. He found the maxima and the matrices for which the maxima are attained
for the special cases where there t@nes or where there aré — k? ones in th€0, 1)-matrix.
Aharoni 1] extended Katz’s results for genejand showed that the maximum is achieved at
one of four possible forms fod.

If Aisasymmetrig0, 1)-matrix, with zeros on the diagonal, thehis the adjacency matrix
A(QG) for a graphG. Now let G be a graph in(v,e). Then the adjacency matriA(G) of
G is av x v (0,1)-matrix with 2e ones. ButA(G) satisfies two additional restrictionst(G)
is symmetric, and all diagonal entries are zero. However, the sum of all entriéli? is
precisely}" d;(G)2. Thus our problem is essentially the same as Aharoni’s in that both ask for
the maximum of the sum of the elements4f. The graph-theory problem simply restricts the
set of(0, 1)-matrices to those witRe ones that are symmetric and have zeros on the diagonal.

Olpp [14], apparently unaware of the work of Ahlswede and Katona, reproved the basic
result thatmax (v, e) = max(S(v,e),C(v,e)), but his results are stated in the context of two-
colorings of a graph. He investigates a question of Goodmalnl [5, 6]: maximize the number
of monochromatic triangles in a two-coloring of the complete graph with a fixed number of
vertices and a fixed number of red edges. Olpp shows that Goodman’s problem is equivalent to
finding the two-coloring that maximizes the sum of squares of the red-degrees of the vertices.
Of course, a two-coloring of the complete graphwowmertices gives rise to two graphs on
vertices: the grapli- whose edges are colored red, and its complem#ntSo Goodman’s
problem is to find the maximum value 6%(G) for G € G(v, e).

Olpp [14] shows that either the quasi-star or the quasi-complete graph is optigal,if),
but he does not discuss which of the two valdés, e), C(v, e) is larger. He leaves this question
unanswered and does not attempt to identify all optimal grapgsuine).

In 1999, Peled, Pedreschi, and Sterbini [13] showed that the only possible graphs for which
the maximum value is attained are the so-called threshold graphs. The main result in [13] is
that all optimal graphs are in one of six classes of threshold graphs. They end with the remark,
“Further questions suggested by this work are the existence and uniqueness of the [graphs in
G(v,e)] in each class, and the precise optimality conditions."

Also in 1999, Byerl[3] approached the problem in yet another equivalent context: he studied
the maximum number of paths of length two over all graphg(in, ¢). Every path of length
two in G represents an edge in the line grdpldr), so this problem is equivalent to studying the
graphs that achieveax (v, e). For each(v, e), Byer shows that there are at most six graphs in
G(v, e) that achieve the maximum. These maximal graphs come from among six general types
of graphs for which there is at most one of each typé&(n, ¢). He also extended his results
to the problem of finding the maximum number of monochromatic triangles (or any other fixed
connected graph with 3 edges) among two-colorings of the complete grapbeotices, where
exactlye edges are colored red. However, Byer did not discuss how to computé@, ¢), or
how to determine when any of the six graphs is optimal.

In Sectior 2, we have unified some of the earlier work on this problem by using partitions,
threshold graphs, and the idea of a diagonal sequence.
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2. STATEMENTS OF THE MAIN RESULTS

2.1. Threshold graphs. All optimal graphs come from a class of special graphs cahessh-

old graphs. The quasi-star and quasi-complete graphs are just two among the many threshold
graphs inG (v, e). The adjacency matrix of a threshold graph has a special form. The upper-
triangular part of the adjacency matrix of a threshold graph is left justified and the number of
zeros in each row of the upper-triangular part of the adjacency matrix does not decrease. We
will show adjacency matrices using-" for the main diagonal, an empty circle™for the zero
entries, and a black dots" for the entries equal to one.

For example, the grap@ whose adjacency matrix is shown in Figlire|2.1(a) is a threshold
graph inG(8, 13) with degree sequendé, 5, 5, 3,3, 3, 1,0).

By looking at the upper-triangular part of the adjacency matrix, we can associate the distinct
partition7 = (6,4, 3) of 13 with the graph. In general, thresholdgraphTh(7) € G(v,e)
corresponding to a distinct partition= (ag, a1, . . ., a,) of e, all of whose parts are less than
is the graph with an adjacency matrix whose upper-triangular part is left-justified and contains
as ones in rows. Thus the threshold graphs @(v, ¢) are in one-to-one correspondence with
the set of distinct partitions, Dis, ¢) of e with all parts less than:

Dis(v,e):{W:(ao,al,...,ap):v>a0>a1>--~>ap>O,Zas:e}

We denote the adjacency matrix of the threshold grépk) corresponding to the distinct
partitionm by Adj(r).

Peled, Pedreschi, and Sterbini [13] showed that all optimal graphs in a grapt;¢lass
must be threshold graphs.

Lemma 2.1([13]). If G is an optimal graph irG (v, e), thenG is a threshold graph.

Thus we can limit the search for optimal graphs to the threshold graphs.

Actually, a much larger class of functions, including the power functidhs; - - - + d? for
p > 2, on the degrees of a graph are maximized only at threshold graphs. In fact, every Schur
convex function of the degrees is maximized only at the threshold graphs. The reason is that the
degree sequences of threshold graphs are maximal with respect to the majorization order among
all graphical sequences. Seéel[11] for a discussion of majorization and Schur convex functions
and [10] for a discussion of the degree sequences of threshold graphs.

2.2. The Diagonal Sequence of a Threshold GraphTo state the first main theorem, we must
now digress to describe the diagonal sequence of a threshold graph in the gragh«lass

Returning to the example in Figre P.1(a) corresponding to the distinct partitiofG, 4, 3) €
Dis(8, 13), we superimpose diagonal lines on the adjacency maktdjr) for the threshold
graphTh(r) as shown in Figurge 2.1(b).

The number of black dots in the upper triangular part of the adjacency matrix on each of
the diagonal lines is called tlidagonal sequencef the partitions (or of the threshold graph
Th(m)). The diagonal sequence foris denoted by (7) and forr = (6, 4, 3) shown in Figure
2.1,6(m) = (1,1,2,2,3,3,1). The value of»(Th(r)) is determined by the diagonal sequence
of .

Lemma 2.2. Letr be a distinct partition irDis(v, ) with diagonal sequencEn) = (61, ...,4).
ThenP,(Th(w)) is the dot product

Py(Th(r)) = 26(x) - (1,2,3,...,t) = zimi.
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Figure 2.1: The adjacency matriddj(n), for the threshold graph irG(8,13) corresponding to the distinct
partition = = (6,4, 3) € Dis(8, 13) with diagonal sequenc&(7) = (1,1,2,2,3,3,1).

For example, ifr = (6,4, 3) as in Figur¢ 2]1, then
Py(Th(m)) = 2(1,1,2,2,3,3,1) - (1,2,3,4,5,6,7) = 114,

which equals the sum of squares of the degree sequénee, 3, 3, 3, 1) of the grapHT'h(r).

Theorem 2 in[[2] guarantees that one (or both) of the grapb&, ¢), QC(v, e) must be
optimal inG (v, e). However, there may be other optimal graph§im, ¢), as the next example
shows.

The quasi-complete grapQC(10, 30), which corresponds to the distinct partitidg, 7,
5,4,3,2,1) is optimal inG(10,30). The threshold graplir,, corresponding to the distinct
partition (9,6, 5, 4, 3,2, 1) is also optimal inG(10, 30), but is neither quasi-star (10, 30) nor
quasi-complete i (v, 30) for anyv. The adjacency matrices for these two graphs are shown
in Figure[2.2. They have the same diagonal sequénee(1, 1,2, 2,3,3,4,4,4,2,2,1,1) and
both are optimal.

Figure 2.2: Adjacency matrices for two optimal graphsdfl0, 30), QC(10,30) = Th(8,7,5,4,3,2,1) and
Th(9,6,5,4, 3,2, 1), having the same diagonal sequeince (1,1,2,2,3,3,4,4,4,2,2,1,1)

We know that either the quasi-star or the quasi-complete gragluire) is optimal and that
any threshold graph with the same diagonal sequence as an optimal graph is also optimal. In
fact, the converse is also true. Indeed, the relationship between the optimal graphs and the
quasi-star and quasi-complete graphs in a graph ¢Jésse) is described in our first main
theorem.
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Theorem 2.3.Let G be an optimal graph i (v, ). ThenG = Th(r) is a threshold graph for
some partitionr € Dis(v, e) and the diagonal sequenéér) is equal to the diagonal sequence
of either the quasi-star graph or the quasi-complete grapé(n,e).

Theoren{ 2.3 is stronger than Lemma 8laf [2] because it charactatlizegtimal graphs in
G(v,e). In Sectior] 2.3 we describe all optimal graphs in detail.

2.3. Optimal Graphs. Every optimal graphig (v, e) is a threshold grapfi h(r), correspond-
ing to a partitionr in Dis(v, e). So we extend the terminology and say that the partitias
optimalin Dis(v, e), if its threshold grapfC'h(r) is optimal inG (v, e). We say that the partition
7 € Dis(v, e) is thequasi-star partitionif Th(r) is the quasi-star graph (v, e). Similarly,
7 € Dis(v, e) is thequasi-complete partitionf Th(x) is the quasi-complete graph @{v, e).
We now describe the quasi-star and quasi-complete partitions {n,Bjs
First, the quasi-complete graphs. Lebe a positive integer andan integer such that <
e < (3). There exists unique integetsand;j such that

k+1
e:( ;r )—j and 1<j5<k.
The partition

r(v,e,qe) = (kk—1,...,j+1,j—1,.... 1) = k—1,....7,...,2,1)
corresponds to the quasi-complete threshold g@ffiv, ¢) in G(v,e). The symbolj means

that; is missing.
To describe the quasi-star partitiafiv, e, gs) in Dis(v, e), let &/, j' be the unique integers

such that Yo
e:(;>—( 2+>+j’ and 1<j <FK.

(v, e,qs) = (v —1,v — LK 41,50
corresponds to the quasi-star grap®(v, e) in G(v, e).
In general, there may be many partitions with the same diagonal sequen¢e asjc) or
m(v,e,qs). For example, if(v,e) = (14,28), thenn(14,28,qc) = (7,6,5,4,3,2,1) and all
of the partitions in Figurg 2|3 have the same diagonal sequénee(1,1,2,2,3,3,4,3,3,2,
2,1,1). However, none of the threshold graphs corresponding to the partitions in Figj .Jre 2.31is

-

(7,6,5,4,3,2,1) (13,5,4,3,2,1) (13,9,3,2,1) (13,9,5,1)

Then the partition

Figure 2.3: Four partitions with the same diagonal sequence @4, 28, qc)

optimal. Indeed, if the quasi-complete graph is optimal in(Dis), then there are at most three
partitions in Digv, e) with the same diagonal sequence as the quasi-complete graph. The same
is true for the quasi-star partition. If the quasi-star partition is optimal i:Dig, then there
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are at most three partitions in Dise) having the same diagonal sequence as the quasi-star
partition. As a consequence, there are at most six optimal partitions (n,Bjsand so at most

six optimal graphs iG(v,e). Our second main result, Theor¢m|2.4, entails Thedrem 2.3; it
describes the optimal partitionsi{v, e) in detail. The six partitions described in Theoren] 2.4
correspond to the six graphs determined by Byelriin [3]. However, we give precise conditions to
determine when each of these partitions is optimal.

Theorem 2.4. Letv be a positive integer anelan integer such thai < e < (;’) Letk, k', 4,7
be the unique integers satisfying

1 .
e:(k;r )—j, with 1< j <k,

K41 .
e:(;>—( 2+>+j’, with 1<j <Fk.

Then every optimal partition in Dis(v, e) is one of the following six partitions:
1.1:m,=@w—-1,v—-2,...,kK +1,7), the quasi-star partition foe,
1.2 ma=Ww—1,0—2,. .. 2k — 5 —1,.. . K —1),if i +1<2k —j —1<v—1,
1.3:ms3=@w—-1v—-2,..., K +1,2/1),if j/ =3 andv > 4,
2.1:my = (k,k—1,...,7,...,2,1), the quasi-complete partition fer,
22:me=02k—j—-1,k—2k—3,...2,1),ifk+1<2k—j—-1<v-1,
2.3: m3=(k,k—1,...,3),if j =3andv > 4.

Partitions 7, ; and w1 always exist and at least one of them is optimal. Furthermoye,
and 3 (if they exist) have the same diagonal sequence asand if S(v,e) > C(v, e), then
they are all optimal. Similarlyz,» andm 3 (if they exist) have the same diagonal sequence as
mo.1, and if S(v, e) < C(v, e), then they are all optimal.

A few words of explanation are in order regarding the notation for the optimal partitions in
Theoren] 24. Ift’ = v, thenj’ = v,e = 0, andm; = 0. If ¥ = v — 1, thene = j/ < v — 1,
andm; ; = (j'); further, if j/ = 3, thenm, 3 = (2,1). In all other cases’ < v — 2 and thenn, 4,

71 2, @andm 3 are properly defined.

If 7/ = k' orj’ = k' — 1, then both partitions in 1.1 and 1.2 would be equalite- 1,v —
2,...,kK)yand(v —1,v—2,... kK + 1,k — 1) respectively. So the conditidrf + 1 < 2k’ —

j" — 1 merely ensures that; ; # 7. A similar remark holds for the partitions in 2.1 and
2.2. By definition the partitions; ; andr, 5 are always distinct; the same holds for partitions
mo1 andmy 3. In general, the partitions; ; described in items 1.1-1.3 and 2.1-2.3 (and their
corresponding threshold graphs) are all different. All the exceptions are illustrated in[Fidure 2.4
and are as follows: For any if e € {0,1,2} ore’ € {0, 1,2} thenm, ; = 7. FOr anyv > 4,

if e=3o0re = 3, then7r1,3 = T2 and7r1,1 = T2.3. If (U,B) = (5,5) then’/Tl.l = T2.2 and

1.2 = mo1. Finally, if (v,e) = (6,7) or (7,12), thenm, 5 = my3. Similarly, if (v,e) = (6,8)

or (7,9), thenm 5 = mo. Forv > 8and4 < e < (3) — 4, all the partitionsr; ; are pairwise
distinct (when they exist).

In the next section, we determine the pa&jrse) having a prescribed number of optimal
partitions (and hence graphs)dtv, e).

2.4. Pairs (v, e) with a Prescribed Number of Optimal Partitions. In principle, a given

pair (v, e), could have between one and six optimal partitions. It is easy to see that there are
infinitely many pairs(v, e¢) with only one optimal partition (either the quasi-star or the quasi-
complete). For example the pdir, (3)) only has the quasi-complete partition. Similarly, there
are infinitely many pairs with exactly two optimal partitions and this can be achieved in many
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Figure 2.4: Instances of pair&, e) where two partitionsr; ; coincide

different ways. For instance, (), ¢) = (v,2v —5) andv > 9, thenk’ = v —2,j =v—4 > 3,
andS(v,e) > C(v,e) (c.f. Corollary[2.1D). Thus only the partitions ; andr , are optimal.
The interesting question is the existence of pairs with 3,4,5, or 6 optimal partitions.

Often, both partitionsr; ; and 3 in Theore exist for the same péir, ¢); however it
turns out that this almost never happens when they are optimal partitions. More precisely,

Theorem 2.5.1f ;5 and; 3 are optimal partitions theriv, e) = (7,9) or (9, 18). Similarly,

if Ty andm, 3 are optimal partitions, therjv,e) = (7,12) or (9, 18). Furthermore, the pair

(9, 18) is the only one with six optimal partitions, there are no pairs with five. If there are
more than two optimal partitions for a paifw, ¢), thenS(v,e) = C(v,e), that is, both the
guasi-complete and the quasi-star partitions must be optimal.

In the next two results, we describe two infinite families of partitions inDis), and hence
graph classe§ (v, e), for which there are exactly three (four) optimal partitions. The fact that
they are infinite is proved in Sectipn 9.

Theorem 2.6.Letv > 5 andk be positive integers that satisfy the Pell’s Equation
(2.1) (20 —3)? —2(2k —1)* = —1
and lete = (£). Then (using the notation of Theor2:;4),: k' =k+1,5 =2k —v+2,
and there are exactly three optimal partitionsis(v, ¢), namely
mi=@w—-1v—-2,....,k+22k—v+2)
moe=@W—2v-3,...,k)
M1 = (k—1,k—2,...,2,1).
The partitionsr, 3, 7.2, andm, 3 do Not exist.
Theorem 2.7.Letv > 9 andk be positive integers that satisfy the Pell’s Equation
(2.2) (20 —1)% = 2(2k + 1)* = —49
ande = m = }(3). Then (using the notation of Theorém|2.#)= ;' = 3, k = k', and there
are exactly four optimal partitions iDis(v, ), namely
(v—1,v—2,...,k+1,3)
ms=@w—-1v—-2,...,k+1,2,1)
mo1=(k—1,k—2,...,4,2,1)
mo3=(k—1,k—2,...,4,3).
The partitionsr; , andm, 5 do not exist.

1=
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2.5. Quasi-star versus quasi-completeln this section, we compat&(v, ¢) andC (v, e). The
main result of the section, Theor¢m|2.8, is a theorem very much like Lemma B of [2], with the
addition that our results give conditions for equality of the two functions.

If e =0,1,2,3, thenS(v,e) = C(v,e) for all v. Of course, ife = 0, e = 1 andv > 2, or
e < 3andv = 3, there is only one graph in the graph clég®,e). If e = 2 andv > 4, then
there are two graphs in the graph cl@g®, 2): the pathP and the partial matching/, with
degree sequencés, 1,1) and(1, 1,1, 1), respectively. The path is optimal &(P) = 6 and
Py(M) = 4. However, the path is both the quasi-star and the quasi-complete gréph, i2).
If e = 3 andv > 4, then the quasi-star graph has degree sequg@hdel, 1) and the quasi-
complete graph is a triangle with degree sequéfc®, 2). SinceP»(G) = 12 for both of these
graphs, both are optimal. Similarlg(v, e) = C (v, e) for e = (”; —jforj=0,1,2,3.

Now, we consider the cases where e < (}) — 4. Figure.?, a@.S show the
values of the differenc8 (v, e) — C(v, e). When the graph is above the horizontal ai&y, e)
is strictly larger tharC'(v, ) and so the quasi-star graph is optimal and the quasi-complete is
not optimal. And when the graph is on the horizontal a%ig),e) = C(v,e) and both the
quasi-star and the quasi-complete graph are optimal. Since the futttion) — C'(v,e) is
central symmetric, we shall consider only the values @&fom 4 to the midpoint,m, of the

interval[0, (3)]
Figure 2.5 shows thai(25,¢) > C(25, e) for all values ofe: 4 < e < m = 150. So, when
v = 25, the quasi-star graph is optimal for< e < m = 150 and the quasi-complete graph
is not optimal. Fore = m(25) = 150, the quasi-star and the quasi-complete graphs are both
optimal.

LYY S 8 % 3 8 8
SR
A
‘-/'-./. /7
N O © M 4 9Q X Wy
S8§88 5 g ¢

Figure 2.5:5(25,¢) — C(25,¢) > 0for4d < e < m = 150

Figure[2.6 shows that(15,e) > C(15,¢) for4 < e < 45 and45 < e < m = 52.5. But
S(15,45) = C(15,45). So the quasi-star graph is optimal and the quasi-complete graph is not
optimal for all0 < e < 52 except fore = 45. Both the quasi-star and the quasi-complete graphs
are optimal inG (15, 45).

Figure[2.7 shows thaf(17,¢) > C(17,¢) for 4 < e < 63, S(17,64) = C(17,64),
S(17,e) < C(17,¢) for 65 < e < m = 68, andS(17,68) = C(17,68).

Finally, Figurg 2.8 shows that(23, ¢) > C(23,¢) for 4 < e < 119, butS(23,e) = C(23,¢)
for 120 < e <m = 126.5.
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Figure 2.8:5(23,¢) — C(23,¢) > 0ford < e < 119, §(23,¢) = C(23,¢) for 120 < e < m = 126.5

These four examples exhibit the types of behavior of the fundiene) — C(v, e), for fixed
v. The main thing that determines this behavior is the quadratic function

q(v) == }1 (1 —2(2ko — 3)> + (2v — 5)?)
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(the integerk, = ko(v) depends om). For example, ifjy(v) > 0, thenS(v,e) — C(v,e) > 0
for all values ofe < m. To describe the behavior 6fv, ¢) — C(v, e) for ¢o(v) < 0, we need to
define

B B 8(m — eo) (ko — 2)
Ry = Ro(v) = 1 —2(2ky — 42+ (20— 5)2

eo = eo(v) = (";0) =m — by

Our third main theorem is the following:

where

Theorem 2.8. Letv be a positive integer
(1) If go(v) > 0, then
S(v,e) > C(v,e)forall0 <e<m and
S(v,e) < C(v,e) forallm <e < (3).
S(v,e) = C(v,e) if and only ife,e’ € {0,1,2,3,m}, ore,e’ = eg and (2v — 3)% —

2(2ko — 3)2 = —1,7.
(2) If go(v) < 0, then

C(v,e) < S(v,e)forall 0 < e <m — Ry;

C(v,e) > S(v,e)forallm — Ry < e <m;
C(v,e) < S(v,e) forall m < e < m+ Ry;
C(v,e) > S(v,e)forall m+ Ry < e < (3).

S(v,e) = C(v,e) ifand only ife, ¢’ € {0,1,2,3,m — Ry, m}.
(3) If go(v) =0, then

S(v,e) > C(v,e)forall 0 <e<m and
S(v,e) < C(v,e)forallm <e < (3).
S(v,e) = C(v,e) ifand only ife, e’ € {0,1,2,3, e, ..., m}.

The conditions in Theorem 2.8 involving the quantjfyv) simplify and refine the conditions
in [2] involving k&, andby. The conditioreb, > kq in Lemma 8 of [2] can be removed and the
result restated in terms of the sign of the quarity + 2by — (2v — 1) = 3qo(v). While [2]
considers only the two casegv) < 0 andgy(v) > 0, we analyze the cagg(v) = 0 separately.

It is apparent from Theorefn 2.8 théifv, ¢) > C(v,e) for 0 < e <m —avif o > Oislarge
enough. Indeed, Ahlswede and Katona [2, Theorem 3] show this forl /2, thus establishing
an inequality that holds for all values ofegardless of the sign gf(v). We improve this result
and show that the inequality holds when= 1 — v/2/2 ~ 0.2929.

Corollary 2.9. Leta = 1 —+/2/2. ThenS(v,e) > C(v,e) forall 0 < e < m — av and
S(v,e) < C(v,e) forall m + av < e < (3). Furthermore, the constant cannot be replaced
by a smaller value.

Theorem 3 in[[2] can be improved in another way. The inequalities are actually strict.

Corollary 2.10. S(v,e) > C(v,e) ford <e <m —wv/2andS(v,e) < C(v,e) form +v/2 <
e<(p) -4
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2.6. Asymptotics and Density. We now turn to the questions askedlin [2]:

What is the relative density of the positive integer$or which max(v,e) = S(v,e) for
0 < e < m? Of coursemax(v,e) = S(v,e) for 0 < e < mif and only if max(v,e) = C(v,e)
form <e < (3).

Corollary 2.11. Lett be a positive integer and let(¢) denote the number of integersn the
interval [1, t] such that
max(v,e) = S(v,e),
forall 0 < e <m. Then
t
Jim @ =2 — 2~ 0.5858.
2.7. Piecewise Linearity of S(v,e) — C(v,e). The diagonal sequence for a threshold graph

helps explain the behavior of the differenév,e) — C(v,e) for fixed v and0 < e < ().

From Figure$ 2]9, 26, 2.7, and .8, we see #1at ¢) — C(v, ¢), regarded as a function ef
is piecewise linear and the ends of the intervals on which the function is linear oecer @)
ande = (3) — (J) forj = 1,2,...,v. We prove this fact in Lemnfa 6.7. For now, we present
an example.

Takev = 15, for example. Figure 2|6 shows linear behavior on the intef@éls9], [39, 45,
[45,50], [50, 55], [55,60], [60,66], and[66, 69]. There are 14 binomial coefficient$) for 2 <
j < 15:

1,3,6,10, 15,21, 28, 36,45, 55, 66, 78,91, 105.
The complements with respect {§) = 105 are
104,102, 99,95, 90, 84, 77, 69, 60, 50, 39, 27, 14, 0.

The union of these two sets of integers coincides with the end points for the intervals on which
S(15,e) — C(15,¢) is linear. In this case, the function is linear on the 27 intervals with end
points:

0,1,3,6,10,14, 15,21, 27, 28, 36, 39, 45, 50, 55, 60,
66,69, 77,78,84,90,91, 95,99, 102, 104, 105.

These special values efcorrespond to special types of quasi-star and quasi-complete graphs.
If e = (;) then the quasi-complete gragpiC(v, e) is the sum of a complete graph gn
vertices and) — j isolated vertices. For exampleif= 15 and;j = 9, ande = (g) = 36, then
the upper-triangular part of the adjacency matrix@ (15, 21) is shown on the left in Figure
. And ife = (3) — (;) then the quasi-star gragS(v, e) has;j dominant vertices and none
of the otherv — j vertices are adjacent to each other. For example, the lower triangular part of
the adjacency matrix for the quasi-star graph with 15, j = 12, ande = (%)) — () = 39, is
shown on the right in Figurje 2.9.
As additional dots are added to the adjacency matrices for the quasi-complete graphs with
e = 37, 38, 39, the value ofU(15, e) increases by8, 20, 22. And the value of5(15, e) increases
by 28, 30, 32. Thus, the differencencreasedy a constant amount df). Indeed, the diagonal
lines are a distance of five apart. Hence the grapl(ab,e) — C(15,¢) for 36 < e < 39
is linear with a slope ofi0. However, fore = 40, the adjacency matrix for the quasi-star
graph has an additional dot on the diagonal corresponditg, twhereas the adjacency matrix
for the quasi-complete graph has an additional dot on the diagonal correspondifig $m
S(15,40) — C(15,40) decreaseby 10. The decrease df) continues until the adjacency matrix
for the quasi-complete graph contains a complete columan=att5. Then the next matrix for

e = 46 has an additional dot in the first row and next column and the slope changes again.
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quasi-complete partition

7=(8,7,6,5,4,3,2,1) 7=(9,7,6,5,4,3,2,1) 7=(9,8,6,5,4,3,2,1) 7=(9,8,7,5,4,3,2,1)
quasi-star partition
7=(14,13,9) m=(14,13,10) 7=(14,13,11) m=(14,13,12)

eeee0eo00o0o0ee0 00 0 +

M| eoeeeeeeeeceocsso

Figure 2.9: Adjacency matrices for quasi-complete and quasi-star graphswithi5 and36 < e < 39

3. PROOF OF LEMMA 2.2

Returning for a moment to the threshold gréph(r) from Figure[ 2.1, which corresponds
to the distinct partitionr = (6, 4, 3), we see the graph complement shown with the white dots.
Counting white dots in the rows from bottom to top and from the left to the diagonal, we have
7,5,2,1. These same numbers appear in columns reading from right to left and then top to the
diagonal. SoifT'h(r) is the threshold graph associated wittthen the set-wise complement of
7 (r€)inthe set{1,2,... v — 1} corresponds to the threshold graph(w)“—the complement
of Th(r). That s,

Th(7¢) = Th(n)".

The diagonal sequence allows us to evaluate the sum of squares of the degree sequence of
a threshold graph. Each black dot contributes a certain amount to the sum of squares. The
amount depends on the location of the black dot in the adjacency matrix. In fact all of the dots
on a particular diagonal line contribute the same amount to the sum of squares=Rirthe

value of a black dot in positio(i, j) is given by the entry in the following matrix:

11 13 7
11 13
11 13
11 13
11 13
11 13
+ 13
13 +

—m R
WWWwWwwt -
Ul Ot Ot Ot Ot 4+ W W
N~~~ 4+ otota

+ © v o o o

© O O+ TN

—_ =
—_ =

This follows from the fact that a sum of consecutive odd integers is a square. So to get the sum
of squared?,(Th(w)) of the degrees of the threshold graph associated with the distinct partition
m, sum the values in the numerical matrix above that occur in the positions with black dots.
Of course, an adjacency matrix is symmetric. So if we use only the black dots in the upper
triangular part, then we must replace tligj)-entry in the upper-triangular part of the matrix
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above with the sum of th@, ;)- and the(;, i)-entry, which gives the following matrix:

[+ 2 4 6 & 10 12 141
+ 6 8 10 12 14 16

+ 10 12 14 16 18

+ 14 16 18 20

+ 18 20 22

+ 22 24

+ 20

_l_

Thus,P,(Th(r)) = 2(1,2,3,...) - 6(w). Lemmd 2.2 is proved.

(3.1) E=

4. PROOFS OF THEOREMS [Z.3AND 2.4

Theorenj 2.3 is an immediate consequence of Theprem 2.4 (and Lémmas .1} and 2.2). The-
orem 2.4 can be proved using the following central lemma:

Lemmad.l.Letr = (v—l,c,c—l,...,3,...,2,1) be an optimal partition irDis(v, e), where
e—(v=1)=142+4+--+c—j>4andl <j<c<wv—2. Thenj=cand2c>v—1s0
that

=(w—-1l,c—1,c—2,...,2/1).

We defer the proof of Lemmnja 4.1 until Sectign 5 and proceed now with the proof of Theorem
[2.4. The proof of Theorefn 4.4 is an inductionan

Proof of Theorerm 2]4Let = be an optimal partition in D{®, ¢), thenz¢ is optimal in Digv, ¢’).
One of the patrtitionsy, 7¢ contains the part — 1. We may assume without loss of generality
thatm = (v — 1 : p), wherey is a partition in Digv — 1,e — (v — 1)). The cases where is
a decreasing partition af, 1, 2, and3 will be considered later. For now we shall assume that
e—(v—1)>4. O

Sincer is optimal, it follows thatu is optimal and hence by the induction hypothegiss
one of the following partitions in Di® — 1,e¢ — (v — 1)):

li1a: 1= (v—2,...,k +1,5'), the quasi-star partition far— (v — 1),

l2a: o= wW—2,....2K =7 = 1,.. K = 1), if K +1 <2k —j/ -1 <v—-2,
13ai s =(v—2,...,kK +121), Ifj—3,
2.1a: poq = (k1, k1 —1,...,51,...,2,1), the quasi-complete partition fer— (v — 1),
2.2a: M2‘2—(2k1_‘71_1 ki — 2,k1—372,1),|fk1+1 §2k1—j1—1 <v-—2,
2.3a: o3 = (kl, ki — s ) if jl =3,

where

In symbols,m = (v — 1, 41, ;), for one of the partitiong:; ; above. For each partition, ;, we
will show that(v — 1, i; ;) = 7, for one of the six partitionsy, ,, in the statement of Theorem
2.4.
The first three cases are obvious:
(U - 1>M1.1) =T1.1,
(U - 17/L1A2) = T1.2,
(v—1,13) =m3.
Next suppose thagt = o1, j12.2, OF io.3. The partitionsus » and ps 3 do not exist unless
certain conditions oR;, j;, andv are met. And whenever those conditions are met, the partition
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2.1 is also optimal. Thus; = (v—1, ug 1) is optimal. Also, since — (v—1) > 4, thenk; > 3.
There are two case$; = v — 2,k < v — 3. If by = v — 2, thenus,, does not exist and

(1}—1 ’u) N 772.17”::”:,”2.17
7 1.1, if,U:,UQ.S-

If k1 <v—3,thenby Lemma4|ly; = (v—1,k1—1,...,2,1), with j; = k; and2k; > v—1.
We will show thatk = k£, + 1 andv — 1 = 2k — 5 — 1. The above inequalities imply that

1
(k1+ ):1+2+---+k1§e

2
= (k1;1> —k+w-1)< <k1;1> + (b 4+1) = (k1;2>.

But & is the unique integer satisfying) < e < (*}'). Thusk = &, + 1.
It follows that

e:(v—1)+1+2+---+(k—2)=(k—;l)—j’

and sk — j = v.

We now consider the cases 2.1a, 2.2a, and 2.3a individually. Actuallydoes not exist
sincek; = ji. If p = pa3, theny = (3) sincek; = j; = 3. This contradicts the assumption
thaty is a partition of an integer greater than 3. Therefore

,u:,um:(kl,kl—l,...,j:,...,ll):(k—2,k—3,...2,1),
sincek, = j; andk = k; + 1. Now since2k — j — 1 = v — 1 we have

Mo if € = (;’) ore= (;’) — (v —2),

T=0Qk—j—1,k—2k—3,...21)= :
9.9 Otherwise.

Finally, if .« is a decreasing partition of 1,2, or 3, then eitherr = (v — 1,2,1) = m 3, Or
T=(@w-—1)=m4,0r7m=(v—1,5)=m, forsomel < j' <3.

Now, we prove thatr; , and ;53 (if they exist) have the same diagonal sequence;as
(which always exists). This in turn implies (by using the duality argument mentioned in Section
[3) thatm, » and, 5 also have the same diagonal sequence agwhich always exists). We use
the following observation. If we index the rows and columns of the adjacency nmedjixr)
starting at zero instead of one, then two positiong) and(i’, ;') are in the same diagonal if and
only if the sum of their entries are equal, thatiis; j = ¢ + j'. If 715 exists ther2k’ — 5/ < v.
Applying the previous argument to ; andr; 5, we observe that the top row of the following
lists shows the positions where there is a black datdj(m; 1) but not in Adj(m; ) and the
bottom row shows the positions where there is a black déidj{r o) but not inAdj(m ;).

(w—k-2v-1) ... W=K—-t,bv-1) ... (v=K—-(FK —7),v-1)
(v=1—-kK,v=2) ... (w=1—-kK,v—t) ... (v—1-FK,v—(K—j)).
Each position in the top row is in the same diagonal as the corresponding position in the second
row. Thus the number of positions per diagonal is the samg jras inm 5. Thatis,d (71) =
Y (771.2)-
Similarly, if 7 5 exists therk’ > j' = 3. To show thab (m; 1) = J (71.3) note that the only
position where there is a black dotAalj(7 1) but notinAdj(m 5) is (v—1—k,v—1—k"+3),
and the only position where there is a black doidj(r; 3) but notinAdj(m 1) is (v — k', v —
1 — k' 4 2). Since these positions are in the same diagonaldlien,) = J (7 3).
Theorenj Z.}4 is proved.
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5. PROOF OF LEMMA (4.1

There is a variation of the formula fdf,(Th(r)) in Lemma[ 2.2 that is useful in the proof
of Lemmg 4.1L. We have seen that each black dot in the adjacency matrix for a threshold graph
contributes a summand, depending on the location of the black dot in the mainix(3.7)).
For example, ift = (3,1), then the part of1/2) E' that corresponds to the black dots in the
adjacency matridj(r) for « is

+ 3

e o
+ e
+

_|_

1 2
Adj((3,1)) = o

+ o o e

_|_

Thus P(Th(m)) = 2(1 + 2 + 3 + 3) = 18. Now if we index the rows and columns of the
adjacency matrix starting with zero instead of one, then the integer appearing in the matrix
(1/2)E atentry(i, 7) is justi + j. So we can compute(Th(n)) by adding all of the positions
(i, 7) corresponding to the positions of black dots in the upper-triangular part of the adjacency
matrix of Th(w). What are the positions of the black dots in the adjacency matrix for the
threshold graph corresponding to a partitior- (ag, a1, . . ., a,)? The positions corresponding
to aq are

(0,1),(0,2),...,(0,a0)
and the positions correspondingdpare

(1,2),(1,3),..., (1,1 +aq).
In general, the positions corresponding:tan 7 are
(t7t+ 1)7(t7t+2)>"'7(t7t+@t)'

We use these facts in the proof of Lemimd 4.1.

Let y = (¢,c—1,...,7,...,2,1) be the quasi-complete partition in Dise — (v — 1)),
wherel < j<c<wv—2andl+2+---+c—j > 4. We deal with the casegs= 1, j = ¢, and
2 < j < c¢— 1separately. Specifically, we show thatrif= (v — 1 : p) is optimal, thenj = ¢
and
(5.1) T=w-1,c—1,...,2,1),

with 2¢ > v — 1.
Arguments for the cases are given below.

51.j=1:p=(¢,e—1,...,3,2). Since2 +3+ ---+ ¢ > 4thenc > 3. We show that
m = (v—1: p)is notoptimal. In this case, the adjacency matrix;fdras the following form:

012 .- c v —1
0 _|_ e o .-
1 _|_ ® ---
2 +
c—1 + o
C 4+ o
c+1 + o
o
v—1 +
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51.1.2¢<wv—1. Let
7=w-1,2c—1,c—2,¢c—3,...,3,2).

The parts ofr” are distinct and decreasing sire< v — 1. Thusz’ € Dis(v, e).

The adjacency matricesdj(w) andAdj(n’) each have black dots, many of which appear in
the same positions. But there are differences. Using the fact thdt > 2, the first row of the
following list shows the positions in which a black dot appeard.itj(w) but not in Adj(#’).
And the second row shows the positions in which a black dot appeakdjifr’) but not in
Adj(m):

(2,¢+1) 3,c+1) -+ (c—=1,c+1) (c—1,¢)
(1,e4+2) (1,e+3) - (1,2¢—1)  (1,20)

For each of the positions in the list, except the last ones, the sum of the coordinates for the
positions is the same in the first row as it is in the second row. But the coordinates of the last
pair in the first row sum t@c — 1 whereas the coordinates of the last pair in the second row sum
to 2c + 1. It follows that P»(7") = Py(m) + 4. Thus,r is not optimal.

512.2¢>v—1. Letn' = (v—2,¢,c—1,...,3,2,1). Sincec < v — 2, the partitionz’ is in
Dis(v, e). The positions of the black dots in the adjacency matricég~) andAdj(=’) are the
same but with only two exceptions. There is a black dot in position — 1) in 7 but not in7”’,
and there is a black dot in positidn, ¢ + 1) in 7’ but not inw. Sincec+ (¢+1) > 0+ (v —1),
7 IS not optimal.

52. j=cip=(c—1,...,2,1). Sincel +2+---+ (c — 1) > 4, thenc > 4. We will show
that if 2c > v — 1, thenrw has the same diagonal sequence as the quasi-complete partition. And
if 2¢c < v — 1, thenr is not optimal.

The adjacency matrix for is of the following form:

012 -+ ¢ - v—1
O 4+ o © --- o @ --. Y
1 + o e © o

+ e © o

C 4+ o o
+ - o

v—1 +

5.2.1. 2¢ > v — 1. The quasi-complete partition (v, e) is7’ = (c+ 1,¢,. .. ,%, 5 2,1),
wherek = 2¢ — v + 2. To see this, notice that

1+2+-4c+(c+1l)—k=14+2+---+(c—1)+(v—1)

for k = 2c — v+ 2. Since2c > v — 1 ande < v — 2, thenl < k < ¢ andn’ € Dis(v, e).
To see thatr and#’ have the same diagonal sequence, we again make a list of the positions
in which there is a black dot iAdj(7) but not inAdj(#’) (the top row below), and the positions
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in which there is a black dot iAdj(7’) but not inAdj(=) (the bottom row below):
(0,¢+2) (0,c+3) -+ (0,c+t+1) --- (0,v—1)
(Le+1) (2,e+1) -~ (t,c+1) -+ (v—c—2,c+1).

Each position in the top row is in the same diagonal as the corresponding position in the bottom
row, thatis,0 + (¢c+t+ 1) =t + (¢ + 1). Thus the diagonal sequences) = (7).

5.2.2.2¢ < v—1. Inthiscase, let’ = (v—1,2¢—2,¢—3,...,3,2). And since2c—2 < v—3,
the parts ofr’ are distinct and decreasing. Thati$,c Dis(v, e).

Using the fact that — 2 > 2, we again list the positions in which there is a black dot in
Adj(m) but not inAdj(x’) (the top row below), and the positions in which there is a black dot
in Adj(=’) but not inAdj(r):

(2,¢) (3,¢) -+ (c—1,¢) (c—2,¢—1)
(Lc+1) (Le+2) - (1,2c—2) (1,2¢—1).

All of the positions but the last in the top row are on the same diagonal as the corresponding
position in the bottom rowt + ¢ = 1 + (¢ — 1 4 t). Butin the last positions we haye — 2) +
(c—1)=2c—3andl + (2¢ — 1) = 2c. ThusP,(n") = P»(7) + 6 and sor is not optimal.

531 <j<c:pu=(cc— 1,...,},...,2,1). We will show thatr = (v — 1,¢,¢ —

1,...,4,...,2,1)is not optimal. The adjacency matrix ferhas the following form:

— — —

I+ + |

012 OV VO )

0 + o o e o o °

1 + e e o O o

c—7 e ¢ O --- O

c—7+1 e O O -+- ©

c—1 4+ e o© o
C 4+ o o
c+1 + o
: +

v—1 +

There are two cases.

5.3.1.2¢ > v—1. Letn’ = (v—r,c,c—1,...,] T1- r,...,2,1),wherer = min(v—1-—c, j).
Thenr > 1 becausg > 1 andc < v — 2. We show that’ € Dis(v, ) and Po(1') > Ps(7).

In order forz’ to be in Digwv, ), the sum of the parts in’ must equal the sum of the parts in
T

1424 Fc+w—r)—(G+1-r)=1424+c+(v—1)—j
And the parts oft’ must be distinct and decreasing:

v—r>c>75+1—-—7r>1
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The first inequality holds because— 1 — ¢ > r. The last two inequalities hold because
¢>j>r>1. Thusr' € Dis(v,e).

The top row below lists the positions where there is a black daidj{=) but not inAdj(7');
the bottom row lists the positions where there is a black détdj(7’) but not inAdj(r):

(0,v—1) o (0,v—1) o (0, —=r+1)

(c—j+r—1,c+1) -+ (¢c—j4+r—tic+1) -+ (c—j+1lc+1).
Sincer > 1, the lists above are non-empty. Thus, to ensurefh@t’) > P (7), it is sufficient
to show that for eachh < ¢t < r — 1, position(0,v — t) is in a diagonal to the left of position
(c—j+r—tc+1). Thatis,

O<[(c—j4+r+1—=t)4+(c+1)]=-[0+@w—-1t)]=2¢c+r—v—14,
or equivalently,
v—2c+j—1<r=min(v—1-¢7j).

The inequalityy — 2¢ + j < v — 1 — ¢ holds becausg < ¢, andv — 2¢ + j < j holds because
v — 1 < 2¢. It follows thatr is not an optimal partition.

5.3.2. 2¢ < v —1. Again we show that = (v—1,¢,c—1,... ,5, ...,2,1)is not optimal. Let
P=Ww—1,2—2¢c-2...,j—1,...,2,1).
The sum of the parts in equals the sum of the partsi And the partitiont’ is decreasing:
1<j—-1<c—-2<2c-2<v—1.

The first three inequalities follow from the assumption that ;7 < ¢. And the fourth inequality
holds becausgc < v — 1. Son’ € Dis(v, e).

The adjacency matrice’sdj(7) andAdj(=’) differ as follows. The top rows of the following
two lists contain the positions where there is a black dodAdj(7) but not in Adj(n’); the
bottom row lists the positions where there is a black dotdj(7’) but not inAdj(r).

Listl (2,c+1) cee (te+ 1) oo (e—j,e+ 1)
(Le+2) o (Lett) o (L2e—))
List2 (¢c—j+1,¢) -+ (c—j+tc) -+ (c—1¢)
(1,2c—j+1) - (L,2c—j+t) --- (1,2¢—1).
Each position(t,c+ 1) (t = 2,...,c — 7), in the top row in List 1 is in the same diagonal as
the corresponding positiofil, ¢ + t), in the bottom row of List 1. Each positiof; — j + ¢, ¢)
(t=1,...,57—1),in the top row of List 2 is in a diagonal to the left of the corresponding

position,(1,2¢c — j + t) in the bottom row of List 2. Indeed¢ — j +t) +c=2c—j+1t <
2c—j+t+1 =14 (2c—j+1t). And sincel < j, List 2 is not empty. It follows that
Py(n'") > P»(m) and sor is not a optimal partition.

The proof of Lemma 4]1 is complete.

6. PROOF OF THEOREM [2.§ AND COROLLARIES 2.9AND [2.10

The notation in this section changes a little from that used in Sefclion 1. In Sggtion 1, we
write e = (*1') — j, with 1 < j < k. Here, we let = k — j so that

(6.1) e= (g) +t,

with 0 <t < k — 1. Then Equation (I]1) is equivalent to
6.2)  C(v,e)=Ck,t) = (k—t)(k—1)? +th* +t? = k(k — 1)* + > +t(2k — 1).
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Before proceeding, we should say that the abuse of notatiéi(ine) = C(k,t) should not
cause confusion as it will be clear which set of paramdiers) vs. (k, t) are being used. Also
notice that if we were to expand the rangetdb 0 < ¢ < k, that is allowt = k, then the
representation of in Equation [(6.]L) is not unique:

() (1)

But the value of”(v, e) is the same in either case:
C(k,k) = C(k+1,0) = (k+ 1)k

Thus we may také <t < k.

We begin the proofs now. At the beginning of Secfior] 2.5, we showedihat) = C (v, ¢)
fore = 0,1,2,3. Also note that, whemr is an integerDiff (v, m) = 0. We now compare
S(v,e) with C'(v,e) for 4 < e < m. The first task is to show th&t(v, ¢) > C(v, e) for all but a
few values of that are close tan. We start by finding upper and lower bounds$, ¢) and
C(v,e).

Define

U(e):e(m—l) and

Uk, t) = ((S) +t> ( (2k—1)2+8t—1>.

The first lemma shows that(e) is an upper bound fof’(v, ) and leads to an upper bound
for S(v,e). The arguments used here to obtain upper and lower bounds are similar to those in
[12].
Lemma6.1l. Fore > 2,
C(v,e) <U(e) and
S(v,e) <U(e) + (v —1)(4e — v(v —1)).
It is clearly enough to prove the first inequality. The second one is trivially obtained from
Equation[(1.2) on linking the values v, ¢) andC(v, ).
Proof. We prove the inequality in each intervé@) <e< (’“;1) and so fixk > 2 for now.
We make yet another change of variables to remove the square root in the above expression of
U(k,t).
Sett(r) = (2* — (2k — 1)?)/8,for2k — 1 <z < 2k + 1. Then

_ 6i4(a: — @k =D))(k+1) =) (+* +4(k = 2)(k +2) - 1),

which is easily seen to be positive for &ll> 2 and all2k — 1 <z < 2k + 1. O

U(k,t(z)) — C(k,t(z))

Now define

L(e)=e (\/m — 1.5) and

Lk,t) = ((S) +t) ( 2k —1)2 + 8t — 1.5).

The next lemma shows thafe) is a lower bound for’ (v, e) and leads to a lower bound for
S(v,e).
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Lemma6.2.Fore > 3

C(v,e) > L(e) and

S(v,e) > L(e') + (v —1)(4e — v(v — 1)).
Proof. As above, set(r) = (2? — (2k — 1)?)/8, 2k — 1 < x < 2k + 1, andz(k,b) = 2k + b,
—1<b< 1. Then

C(k,t(z(k,b))) — L(k,t(x(k,b)))

v, e
v, e

1 1 2k+1)\*  4k(22k —49) + 13
= b (b+4k —4)* + —(4k—-T7) (b
61 (0t S5l )(+4k—7) 64(4k — 7)

This expression is easily seen to be positiveifor 3. O

We are now ready to prove thatv,e) > C(v,e) for 0 < e < m for all but a few small
values and some values closento

Lemma 6.3. Assume > 5. For4 < e < v we haveC'(v,e) < S(v,e).

Proof. As we showed above in Lemrha Bel(/8e + 1 — 1) is an upper bound o@'(v, e) for
all 1 <e < (3). Furthermore, it is easy to see that fo e < v we haveS(v,e) = e* +¢. In
fact, the quasi-star graph is optimal fbK e < v. The rest is then straightforward. FbK e,
we have

0<(e—3)e—1)=(e+2)*— (8e+1).
Taking square roots and rearranging some terms proves the result. O

Lemma 6.4. Assume > 5. Forv < e < m — 0.55v we have
S(v,e) > C(v,e).

Proof. Assume tha0 < e < m. Lete = m — dwith 0 < d < m. By Lemmag 6.1 and 6.2, we
have

S(v,e) — C(v,e) > L(e') + (v —1)(de —v(v — 1)) — Ule)
=(m+d\/8(m+d) +1—(m—d)\/8(m—d)+1

—((Mv—w+g)d+%>.

We focus on the first two terms. Set
h(d) = (m+d)\/8(d+m)+1—(m—d)\/8(m—d)+ 1.

By considering a real variablg, it is easy to see that' (d) > 0, h?(0) = 0, andh® (d) < 0
on the interval in question. Thugd) is concave down ofi < d < m. We are comparing(d)
with the line(4(v — 1) + 5/2)d + m/2 on the interval0.55v, m — v]|. The concavity ofi(d)
allows us to check only the end points. kbt m — v, we need to check

1 1
v ((0=3) VAT =20+ 1 - 280+ 1) > 70 (002 210 +7).
It is messy, but elementary to verify this inequality fo? 9.

Ford = 0.55v we need to check

2

2
<UZ + 0.3”0) V202 + 240+ 1 — (v_ — O.81}> V202 — 6.4v + 1 > v(2.3250 — 0.95).

4
This inequality holds for > 29. This time the calculations are rather messier, yet still elemen-
tary. Ford < v < 28, we verify the result directly by calculation. O
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In Sectiorﬂz, we introduced the valag= (%9).

We now define
o (ko — 1)
1 — 2 )

v kﬁg + 2
w- ()= (")
The next lemma shows that those binomial coefficients and their complements are all we
need to consider.

Lemma 6.5. e, fo < m — 0.550.

As a consequencév,e) > C(v,e) forall 4 < e < max{ey, fo}. We need a small result on
the relationship betweéen, andv first. The upper bound will be used later in this section.

Lemma 6.6. 2 (v— 1) — 3 < ko < Lo+ 1
Proof. Since(*) < m < (*") — 1, we have

2ko(ko — 1) < v? —v < 2ko(ko + 1) — 2.

Thus
2(kg —1/2)? < (v —1/2)? +1/4 < 2(ko + 1/2)* —
That is,
v2 <V 1
— = +——§_ - = +—+§
The result follows usmgv — 1/2) (v—1/2)*+ 9/4 and(v — 1/2) +1/4 < v? O

Proof of Lemma 6]5Note thate; = ey — (kg — 1) <m — (kg — 1) andfy = f1 — (ko + 1) <

— (ko +1) < m — (ko — 1). Hence, it is enough to show that5v < (kg — 1). This
follows from the previous lemma far > 12. For5 < v < 11, we verify the statement by direct
calculation. O

Next, we show that the difference function
Diff(v,e) = S(v,e) — C(v, e)

is piecewise linear on the intervals induced by the binomial coefficiéj)tsz <k <w,and
their complementﬁg) — (’2“) 2 < k <w.In Sectio , we show a specific example.

Lemma 6.7. As a function ot, the functionDiff (v, e) is linear on the interval

(0 0-0)

(6.3) _}1 (1—(2k—3)"— (21 =3+ (2v —5)?).
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Proof. If e = (*}') — jwith 1 < j <k, then itis easy to see from EquaU@l 1) that
Cv,e+1)—C(v,e) =2e — 2(;) + 2k = 2e — k(k — 3).
Using Equatlon'Z) an 6.2), we find thateif= ( ) +c¢1<c<lI then
S(v,e+1) —S(v,e) =2e+4(v—1) —2(2> —2l+2< ) +2.

We now have
(S(v,e+1)—C(v,e+1))— (S
=k(k-3)+1(1-3)—(v—1)
= —i( —(2k —3)* — (21 - 3)* + (2 v—5)2).
The conclusion follows. O

Since we already know thdiff(v,e) > 0 for 4 < e < max{ey, fo}, andDiff(v,e) = 0
fore = 0,1,2,3, or m, we can now focus on the intervadl = (max{e;, fo},m). The only
binomial coefficients or complements of binomial coefficients that can fall into this interval are
eo andfi.
There are two possible arrangements we need to consider
(1) e, fo<eo < fr <mand
(2) f1 <eo <m.
The next result deals with the first arrangement.

v, e) — (v e))

Lemma 6.8.1f ¢y < f; < m, thengy(v) > 0. Furthermore,S(v,e) > C(v,e)for0 <e <m
with equality if and only it = 0, 1,2, 3, or m; or e = ¢g and (2v — 3)* — 2(2ky — 1)* = —1,7.

Proof. ¢y < fi impliese, < m — ko /2. By Lemmd 6.5, we conclude that for> 12,
4qo(v) = 1 — 2(2ko — 3)? + (2v — 5)?
= 16(m — eg) — 16(v — ko) + 8
> 24ky — 16v + 8
> 24 (\/§/2(u —1/2) - 1/2) 160+ 8

— (12v2 - 16) v — (6v2+ 4)
> 0.
For smaller values, we verify thag(v) > 0 by direct calculation.

If e = £, in Equation ), and sincg < f; < m, thenk = k, andt = f; — (*?). Using
Equation|(1.2)Diff (v, f1) = (m — f1)go(v) > 0. Similarly, sincefs < eq < f1, then fore = ¢,
in Equation |(6.2), we have = &, + 1 andt = ¢, — (*;!). Again, using Equatio.2),
(6.4)  Diff(v,e9) = (v? — 3v — 2k + 2k + 2)(v* — 3v — 2k3 + 2kq) /4

= ((2v — 3)* — 2(2ko — 1)* + 1)((2v — 3)* — 2(2ko — 1)* — 7)/64.
Notice thatDiff (v, eg) > 0 since both factors irj (6/4) are even and differ by 2. Equality occurs
if and only if (2v — 3)? — 2(2ky — 1)> = —1 or 7. Finally, observe thaDiff(v,e;) > 0
and Diff(v, f,) > 0 by Lemmag 64 anf 6.5, and and f, are both less tharf,. Hence

Diff(v,e) > 0 for e € [max{ey, fo}, m| follows from the piecewise linearity ddiff (v, e). The
rest follows from Lemma®&l4. O
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Now we deal with the casg¢ < ey. There are three cases depending on the sigp(of.
All these cases require the following fact. fif < ey, then fore, < e < m in Equation[(6.R),
k = ko andt = e — (%). Sincef, < e < m, for ¢’ in Equation[(6.R)k = ko andt = ¢’ — (7).
Thus, using Equation (1.2),
(6.5) Diff(v,e) = (m — e)qo(v)
wheneverf; < ¢y < e < m. This automatically gives the sign &fiff(v, ¢) nearm. By the
piecewise linearity oDiff (v, €) given by Lemma 6]7, the only thing remaining is to investigate
the sign ofDiff (v, f1).

Lemma 6.9. Assumef; < ey andgy(v) > 0. ThenS(v,e) > C(v,e) for 0 < e < m, with
equality ifand only il = 0,1, 2, 3, m.
Proof. First, note that; < f; < eg < m, sincee; > f; occurs only ifm = ¢, and thus
qo(v) =2 —4(v— ko) < 0. Forey < e < m, by Equation|[(6.5)Diff (v, e) = (m — €)go(v) > 0.
Furthermore, ife = f; in Equation ), the = k, — 1 andt = f; — (™, '). Thus, by
Equation[(1.R),

Diff (v, f1) = (—4kg + 16k3 + 40°k2 — 120k3 — 8v?kg + 4ko — v* + 60° + 0 — 6v) /4,
and

Diff (v, f1) — Diff(v, eg) = (2kj — v* + v) (=2 — 2kg + 8ko + v* — 5v) /2.

The first factor is positive becauge < ¢,. The second factor is positive for > 15. This

follows from the fact that < v/2ko-+(v/2+1)/2 by Lemmd 6.5, ane-2—2k2+2ko+v2—v > 0
because; < f;. Forv > 15,

—2 — 2kg + 8k + v — 5v = (=2 — 2kg + 2ko + v* — v) + 2(3ko — 2v)
> 2(3ko — 20)
> 0.

SinceDiff (v, eq) > 0, thenDiff (v, f1) > 0 for v > 15. The only case left to verify satisfying
the conditions of this lemma is= 14. In this casef,; = 36 andDiff(14, 36) = 30 > 0. O

The previous two lemmas provide a proof of part 1 of Thedrern 2.8.

Lemma 6.10. Assumef; < ¢y andgp(v) = 0. ThenS(v,e) > C(v,e) for 0 < e < m with
equality ifand only il = 0,1,2,3,eq,e9 + 1,...,m.

Proof. Forey < e < m, by Equation[(65)Diff (v, e) = (m — €)go(v) = 0. As in the previous
lemma, forv > 15

Diff (v, f;) — Diff(v, eg) = (2k§ — v* 4+ v)(—=2 — 2kg + 8ko + v* — 5v)/2 > 0
and thusDiff (v, f;) > 0. The only value ofv < 15 satisfying the conditions of this lemma is
v = 6 with f; = 5, andDiff(6,5) = 4 > 0. O
The previous lemma provides a proof for part 3 of Thedrem 2.8.

Lemma 6.11.Assumef; < eg < mandgy(v) < 0. ThenS(v,e) > C(v,e)for0 < e < m—Ry
andS(v,e) < C(v,e) form—Ry < e < mwith equality ifand only it = 0,1, 2,3, m— Ry, m.

Proof. Fore, < e < m, by Equation|[(6 5)Diff (v, e) = (m—e)go(v) < 0. This time it is possi-
ble thatf; < e;. In this case, by Lemmas 6.4 gnd|6.5, we know idt(v, f1), Diff (v, e;) > 0.
Also, m = ey and Ry = 0, implying Diff (v, eg) = 0 andDiff(v,e) > 0foralle; < e < ey =
m— Ry = m.
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If e < f1, by Lemmad] 6. Diff (v, ¢) is linear as a function of on the interval[fi, ¢)].
Let —q;(v) be the slope of this line. Sincg < f; < ¢y < m, thenk = ky andl = ko
in Lemma[6.7. Thus;(v) = (=1 — 2(2ko — 4)% + (20 — 5)?)/4 = qo(v) + 2ko — 4 and
Diff (v, f1) = (m — e0)qo(v) + (eo — f1)q1(v). The line through the two pointg,, Diff (v, ey))
and(fi, Diff (v, f1)) crosses the-axis atm — Ry. We now show thaf; < m — Ry < eg, which
in turn proves thabiff (v, f) > 0.

We have
(6.6) m— Ry =ey+ (m — eo)cq](l)gg
B 2k — 4
(6.7) =m— (m—ep) (o)

Sinceey < m andv > 4, then

—2
(6.8) ko < = +,/ + <2+,/U

which is equivalent t@; (v) > 0. Thusm — Ry < eq by Equatlon‘) To prové, < m — Ry,
according to Equation (6.7), we need to show

m-w < (*)) -

After multiplying by ¢, (v), the last inequality becomes

(m— (k0;1> +%> (2ko — 4) < <(k0;1) —m> (v=2)(v—3)—2(ko — 2)%),

which is equivalent to

2t -0 < ((751) - m) (- 203 - 200 - 20 -3).

Since f; < eo we know thatk,/2 < (") — m. Also, Inequality ) is equivalent to
2ky —4 < (v —2)(v —3) — 2(ko — 2)(ko — 3). Multiplying these two inequalities yields the
result. O

The previous lemma provides a proof of part 2 of Thedrem 2.8.

The expression fom — R, is sometimes an integer. Those< 1000 for whichm — R, is an
integer are 14, 17, 21, 120, 224, 309, 376, 393, 428, 461, 529, 648, 697, and 801.

In the remaining part of this section, we prove Corollafie$ 2.9and 2.10.

Lemma 6.12. Assume that > 4 andqy(v) < 0. ThenR, < av wherea = 1 — v/2/2.
Proof. We show that?, < aw for v > 4. Recall that
(m — 60)(2k0 — 4:)

R f—
‘ QI(U7 ko)

Thus we need to show

avgy (v, ko) — (m — eg)(2ky — 4) > 0.
Define the functiom(z) = avg(v,z) — (m — (3)) (2z — 4). The interval forz is limited by
the condition that,(v) < 0 which implies that

V2 52
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Furthermore, since, < m, we know thati, := (v/2/2)v 4+ 1/2 > ky. We show that(z) is
increasing ol := [iy, i»]. Note that, since > 4,

Wi(w) = =6 — (4= 2v2) v+ 62 > 0
for x € 1. Henceh(x) is concave up oi. Furthermore

11 15 73
h'(i1) = (3_2\/§>U2+(_10+7\/§)U_Z 2+§>0

forv > 11, and hence
h(z) > h(iy)

_ 312 ((—72+58\/§>U—I—23 (6—5¢§>) >0

for v > 11. The only values of) greater than 4 and smaller than 11 for whigkv) < 0 are
v = 17,10. The result is easily verified in those two cases. O

How good is the boundk, < av? Suppose there is a parametesuch thatR, < (v with
8 < a. Assume thaty(v) = —2. There are infinitely many values offor which this is true
(see Sectiom9). In all of those casegv) = 1/24/(9 + (2v — 5)2)/2 + 3/2. We have the
following

(Bugr(v) — (m — e0)(2kg — 4)) /0> = V28— V2+1>0
asv — oo. Thusf > « and hencev is the greatest number for which the boundm/yholds.
SinceS(v,e) > C(v,e) forall 1 < e < m — Ry, we have proved Corollafy 2.9.
To prove Corollary 2.70, we need to investigate the other non-trivial case of equality in The-

orem|2.8. It occurs when = ¢, and (2v — 3)? — 2(2k, — 1)*> = —1,7. Notice that this
implies

1

m—e = (20— 1) — 2(2ky — 1)* + 1)
v v—1
=— or

2 2

There are infinitely many values ofsuch that2v — 3)? — 2(2k, — 1)*> = —1, and infinitely

many values of such that2v — 3)? — 2(2k, — 1)? = 7 (see Sectiop|9). Thus the most we can
say is thatS(v,e) > C(v,e) forall 4 < e < m — v/2, and Corollary 2.10 is proved.

7. PROOF OF COROLLARY [2.11

Recall that for each, ky(v) = ko is a unique positive integer such that
k’o < 1 (Y < k?() +1 .
2) 7 2\2 2
It follows that

(7.1) 1< (2v—1)> =22k —1)? and (2v—1)* —2(2ky+1)* < —17.
Let us restrict our attention to the parts of the hyperbolas
How: (20— 1) =22k — 1)> = =1, Hpgn: (20— 1)* =22k +1)* = 17

that occupy the first quadrant as shown in Fiduré 7.1. Then each lattice @oiky) is in the
closed region bounded b¥,,, below andHg, above. Furthermore, the sign of the quadratic
form (2v — 5)? — 2(2k — 3)? + 1 determines whether the quasi-star graph is optimél(in ¢)
forall 0 < e < m. By Theorenj 2.8, if2v — 5)% — 2(2k — 3)2 + 1 > 0, thenS(v,e) > C(v, e)
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\
4 \

Figure 7.1: Hyperbolag2v —1)2 —2(2k—1)? = —1, (2v—1)>—2(2k+1)? = —17, (2v—5)>—2(2k—3)? = -1

(and the quasi-star graph is optimal) foK e < m. Thus, if the lattice poinfv, k) is between
Hhign and the hyperbola
H: (2v—5)*—2(2k — 3)* = —1,

then the quasi-star graph is optimaldiu, e) for all 0 < e < m. But if the lattice point(v, k)
is betweenHd and H,,, then there exists a value efin the interval4 < ¢ < m such that
the quasi-complete graph is optimal and the quasi-star graph is not optimal. Of course, if the
lattice point(v, ko) is on H, then the quasi-star graph is optimal for @li< e < m but the
guasi-complete graph is also optimal (cﬁj) < e < m. Apparently, the density limit

lim M

v—0oo U
from Corollar depends on the density of lattice points:) in the region betweefpign
andH.

We can give a heuristic argument to suggest that the lingitis\/2. The asymptotes for the

three hyperbolas are
A;v—g—\/é<k—§>,

2

1 1
A|owiv—§:\/§(/€—§>a

1 1
Ahighiv—az\/i(k“f'é),
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and intersect thé-axis at

. 6—5\/5’
4
2 -2
klow— )
4
—2-2
Fhigh = T

The horizontal distance betweehig, and Aqy, IS
Fiow — Fhigh = 1
and the horizontal distance betweépy, andA is
k = knigh =2 — V2.

To make the plausibility argument rigorous, we need a theorem of Weyl [15, Satz 13, page
334], |9, page 92]:

For any real number, let (r) denote the fractional part of That is,(r) is the unique number
in the half-open interval0, 1) such that- — (r) is an integer. Now letl be an irrational real
number. Then the sequenge’), n = 1,2, 3, ..., is uniformly distributed on the intervé, 1).

In our problem, the pointv, k) is between the hyperbolds,, and Hng, and, with few
exceptions(v, ko) is also between the asymptotdg,, and Anigh. TO be precise, suppose that

(v, ko) satisfies Inequalitie$ (4.1). We need an easy fact from number theory here. Namely that
y> — 222 = —1 (mod 8) for all odd integers:, . Thus

2(2ko — 1)? < (20 — 1)% < 2(2kg + 1),
unless(2v — 1)% — 2(2ky — 1)? = —1 (these are the exceptions). But for all other pointsk)

we have
V2 (e — NI
03 <w 2< ot5 )
Thus
0<\/7§(v—%)+%—k0<1
and so

V2 1\ 1 V2 1\ 1
7<U—§)+§—]€0— T(U—§)+§ .
Next, consider the conditiop (v, ko) > 0, which is equivalent to

(2v — 5)% — 2(2kg — 3)* > —1.
Unless(2v — 5)? — 2(2ky — 3)? = —1, qo(v, ko) > 0 is equivalent to

<§<v—%>+%>>\/§—1.

To summarize, ifv, k) does not satisfy either of these Pell's Equations
(v —1)2 —2(2ko — 1)2 = —1, (2v—5)* —2(2ky — 3)* = —1,
thengo (v, ko) > 0 if and only if

Aot (P (og) 5y
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From Weyl's Theorem, we know that the fractional part in the above inequality is uniformly
distributed in the interval0, 1). Since the density of the values offor which (v, k) is a
solution to one of the Pell's Equations above is zero, thep ... n(v)/v =1 — (vV2 —1) =

2 — /2. The proof of Corollary 2.11 is complete.

8. PROOFS OF THEOREMS[2.5,[2.6,AND [2.7

We first prove Theorein 2.5. #; , andr, 5 are optimal partitions, then according to Theorem
24,7 =3,k >4 +2=25,and sov > 2k’ — j/ > 7. In addition, the quasi-star partition
is optimal, that is,5(v,e) > C(v,e). Thus by Corollary 2.10, either > (5) —3 ore <
m+v/2=(3)/2+v/2. If e > (}) — 3 and since/’ = 3, thenk’ < 3, contradictingk’ > 5.

Thuse < 1 (%) + £. Since2k’ — 3 < wvande = (%) — (1) + 3, then

3+%<g> < (k/;1>+g§ ((v+3)2/2+1) +g_

Therefore7 < v < 13. In this range ofv, the only pairs(v, ¢) that satisfy all the required
inequalities argv, e) = (7,9) or (9, 18).

Using the relation between a graph and its complement described below, Equatjon (1.2), we
conclude that ifr, » andm, 5 are optimal partitions, thefv, e) = (7,12) or (9, 18).

As a consequence, we see that the p@in8) is the only candidate to have six different
optimal partitions. This in fact is the case. The six graphs and partitions are depicted in Figure
[8.1. We note here that Byerl[3] also observed that the (pair) = (9, 18) yields six different
optimal graphs. Another consequence is that the pai®) and(7, 12) are the only candidates
to have five different optimal partitions. For the p@ir9), the partitionsr, 1, 7.5, 71 3, T2.1 @nd
oo all exist and are optimal. However; ; = m, 5. Thus the pai(7,9) only has four distinct
optimal partitions. Similarly, for the paif7, 12) the partitionsm 1, m 2, 2.1, T2 @andmy 3 all
exist and are optimal, but; ; = 75 5. So there are no pairs with five optimal partitions, and thus
all other pairs have at most four optimal partitions. Moreo%ét, ¢) = C'(v, e) is a hecessary
condition to have more than two optimal partitions, since any pair other(than or (7, 12)
must satisfy that both, ; andn, ; are optimal. The proof of Theorgm 2.5 is complete.

In Theoreﬁ = (5) = (*/") — k and thusj = k. Note that, ifv > 5 andk satisfy

2
Equation ), thel + 2 < v < 2k — 1, and sok > 4. Thuse = (3) — (*1%) + (2k +2 — v)
with4 < 2k+2—v < k+ 1, thatis,k’ = k+1andj’ = 2k + 2 — v. Hence,m;; =
(v—1,v—=2,...,k+22k+2—v)andm; = (k—1,..., 1) (which always exist) are different
becausek + 2 — v > 4 > 1. The partitionr;» = (v — 2,..., k) exists becausg < v — 3,
and it is different tory ; becausé: > 4 > 1 (w2 # 711 by definition). Finally, the partitions
1.3, o0, aNdmy 3 do NOt exist becausg =2k +2 —v >4, k+1>k—-1=2k—j—1, and

j =k > 4, respectively. Theorem 2.6 is proved.

= () =3= ()~ (*3")+3, with > 3
because > 1. Thatis,k = k' andj = j' = 3. Thusm; = (v—1,v—2,...k+1,3),m3 =
(v—1,0—2,.. k+1,2,1),m1 = (k—1,k—2,..,4,3), andmas = (k — 1,k — 2,...,4,2,1)
all exist and are different becauke= v does not yield a solution tp (2.2). Alsq ., and, , do
not exist becausgk — j — 1 =2k — j' = 1 =2k — 4 > v — 1. Theorenj 2.J7 is proved.

9. PELL’S EQUATION
Pell's Equation
(9.1) VZ_2J? =P,
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w%w

7T11— 873 7T12— 765 T3 — 87,2,1
7T21— 65421 7T22— 84321 7T23— 6543

Figure 8.1: (v,e) = (9, 18) is the only pair with six different optimal graphs. For all graph,(Th(r; ;)) =
max(v,e) = C(v,e) = S(v,e) =192

whereP = —1 (mod 8), appears several times in this paper. For example, a condition for the
equality ofS(v, e) andC(v, e) in Theorenj 2.8 involves the Pell's Equatittv — 5)% — 2(2k, —

3)2 = —1. And in Theoren 2]7, we hav@v — 1)? — 2(2k + 1)> = —49. There are infinitely
many solutions to each of these equations. In each instan@d.J in Equation [(9.]L) are
positive odd integers an = —1 (mod 8) . The following lemma describes the solutions to
the fundamental Pell's Equation.

Lemma 9.1([[7]). All positive integral solutions of
(9.2) V2—2J% = —
are given by

V+IV2=(1+vV2)(3+2V2)",

wheren is a nonnegative integer.

It follows from the lemma that ifV, J) is a solution to Equation (9.2), then bdthand./ are
odd. We list the first several solutions to Equation](9.2):

V\l 7 41 239 1393
J\1529 169 985 °

Now let us consider the equati¢aw — 3)* — 2(2k — 1)> = —1 from Theorenj 2J6. Since all
of the positive solutiongV, .J) consist of odd integers, the pdir, k) defined by

_V+3 b J+1

T FT T
are integers and satisfy Equati¢n (2.1). Thus there is an infinite family of values-fdr such
that there are exactly 3 optimal partitions in Rise), wheree = (’;) The following is a list of

the first three values af, &, e in this family:

v | 22 121 698
15 85 493
e | 105 3570 121278
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Next, consider Equatiofi (2.2) from Theorgm|2.7 and the corresponding Pell’s Equation:
VZ—2J% = —49.

A simple argument using the norm functioM(V" + J+/2) = V2 — 2J? shows that all positive
integral solutions are given by
V+JV2=(1+5V2)(3+2v2)", (T+7V2)(3+2V2)", or
(17 + 13v2)(3 + 2v2)",
wheren is a nonnegative integer. The first several solutions are
V\l 7 17 23 49 103 137
J\5713 17 35 73 97
Thus the pairsv, k), defined by
V+1 J—1
v = T, k == T
satisfy Equation[(2]2). The first three membefs,k, ¢) of this infinite family of partitions
Dis(v, ¢) with v > 9, e = (3) /2, and exactly 4 optimal partitions are:

v|12 25 52 69
8§ 17 36 48
e| 33 150 663 1173

The Pell's Equation
(9.3) 4go(v) = (20 — 5)* —2(2kg —3)*+1=0
appears in Theorefn 2.8. Here again there are infinitely many solutions to the eqaatien
5)2 — 2(2k — 3)? = —1 starting with:
v|[2 2 3 3 6 23 122
k1 2 1 2 4 16 86

The proof of Corollany 2J9 requires infinitely many solutions to the equafién) = —2,
which is equivalent to the Pell’s Equation

(9.4) (2v —5)? —2(2k — 3)* = —9.
All its positive integral solutions are given by
V+5 J+3
v:—é;g k:—%%y V4 JV2Z = (3+3V2)(3 + 2V2)",

wheren is a nonnegative integer. The first several solutions are

v|3 12 63 360 2091
k|2 8 44 254 1478

The proof of Corollary 2.710 requires infinitely many solutions to the Pell's Equation

(9.5) (2v—3)? —2(2k — 1)* =1,
and infinitely many solutions to the Pell's Equation
(9.6) (2v—3)? —2(2k —1)* = —1.
All positive integral solutions td (9]5) are given by
V43 J+1
v=ge, k= V4HJIV2 = (3+V2)3+2V2)",  (5+3vV2)(3+2V2)",
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wheren is a nonnegative integer. The first several solutions are

v[3 4 8 15 39 80
K|1T 2 5 10 27 56

We have shown that Equation (P.6) has infinitely many solutions, as it is the same equation
that appears in Theorem 2.6. However, in Corollary RA®nust bek,, the unique integer
that satisfies Inequality (1.3). This condition is also necessary for Equafions [(9.8), (9.4), and
(9.9). In other words, we must show that fotarge enough, every solutidm, k) to one of the

Equations[(9.3)[(9]4), of (9.5), satisfies Inequality](1.3). We do this only for Equatidn (9.3) as
all other cases are similar.

Lemma 9.2. Let (v, k) be a positive integral solution to Equatidn (p.3) with> 3. Then(v, k)
satisfies Inequality (I13). That i&,= k.

Proof. Suppose thatv, k) is a solution to Equatior] (9.3) with > 3. Thenk < v < 2k.
Inequality [I.8) consists of two parts, the first of which is

k 1 /v
< = .
To prove this part, we compute

%(;) . (’;) - %(;) - (/;) — (20 =5)> = 2(2k — 3)> +1) /16

1
:(U—]{f)—§>0

The second part of Inequality (1.3) is

l v < k+1 |
2\2/) — 2
This time, we have

() 73()= (15 ) —3(0) - emormseesr e

1
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