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ABSTRACT. Let G(v, e) be the set of all simple graphs withv vertices ande edges and let
P2(G) =

∑
d2

i denote the sum of the squares of the degrees,d1, . . . , dv, of the vertices ofG.
It is known that the maximum value ofP2(G) for G ∈ G(v, e) occurs at one or both of two

special graphs inG(v, e)—the quasi-star graph or the quasi-complete graph. For each pair(v, e),
we determine which of these two graphs has the larger value ofP2(G). We also determine all
pairs(v, e) for which the values ofP2(G) are the same for the quasi-star and the quasi-complete
graph. In addition to the quasi-star and quasi-complete graphs, we find all other graphs inG(v, e)
for which the maximum value ofP2(G) is attained. Density questions posed by previous authors
are examined.
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1. I NTRODUCTION

Let G(v, e) be the set of all simple graphs withv vertices ande edges and letP2(G) =
∑

d2
i

denote the sum of the squares of the degrees,d1, . . . , dv, of the vertices ofG. The purpose of
this paper is to finish the solution of an old problem:

(1) What is the maximum value ofP2(G), for a graphG in G(v, e)?
(2) For which graphsG in G(v, e) is the maximum value ofP2(G) attained?
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Throughout, we say that a graphG is optimalin G(v, e), if P2(G) is maximum and we denote
this maximum value bymax(v, e).

These problems were first investigated by Katz [8] in 1971 and by R. Ahlswede and G.O.H.
Katona [2] in 1978. In his review of the paper by Ahlswede and Katona, P. Erdős [4] com-
mented that “the solution is more difficult than one would expect." Ahlswede and Katona were
interested in an equivalent form of the problem: they wanted to find the maximum number of
pairs of different edges that have a common vertex. In other words, they wanted to maximize
the number of edges in the line graphL(G) asG ranges overG(v, e). That these two formula-
tions of the problem are equivalent follows from an examination of the vertex-edge incidence
matrixN for a graphG ∈ G(v, e):

trace((NNT )2) = P2(G) + 2e,

trace((NT N)2) = trace(AL(G)2) + 4e,

whereAL(G) is the adjacency matrix of the line graph ofG. ThusP2(G) = trace(AL(G)2)+2e.
(trace(AL(G)2) is twice the number of edges in the line graph ofG.)

Ahlswede and Katona showed that the maximum valuemax(v, e) is always attained at one
or both of two special graphs inG(v, e).

They called the first of the two special graphs aquasi-completegraph. The quasi-complete
graph inG(v, e) has the largest possible complete subgraphKk. Letk, j be unique integers such
that

e =

(
k + 1

2

)
− j =

(
k

2

)
+ k − j, where1 ≤ j ≤ k.

The quasi-complete graph inG(v, e), which is denoted byQC(v, e), is obtained from the
complete graph on thek vertices1, 2, . . . , k by addingv − k verticesk + 1, k + 2, . . . , v, and
the edges(1, k + 1), (2, k + 1), . . . , (k − j, k + 1).

The other special graph inG(v, e) is thequasi-star, which we denote byQS(v, e). This graph
has as many dominant vertices as possible (adominant vertexis one with maximum degree
v− 1). Perhaps the easiest way to describeQS(v, e) is to say that it is the graph complement of
QC(v, e′), wheree′ =

(
v
2

)
− e.

Define the functionC(v, e) to be the sum of the squares of the degree sequence of the quasi-
complete graph inG(v, e), and defineS(v, e) to be the sum of the squares of the degree sequence
of the quasi-star graph inG(v, e). The value ofC(v, e) can be computed as follows:

Let e =
(

k+1
2

)
− j, with 1 ≤ j ≤ k. The degree sequence of the quasi-complete graph in

G(v, e) is

d1 = · · · = dk−j = k, dk−j+1 = · · · = dk = k − 1, dk+1 = k − j, dk+2 = · · · = dv = 0.

Hence

(1.1) C(v, e) = j(k − 1)2 + (k − j)k2 + (k − j)2.

SinceQS(v, e) is the complement ofQC(v, e′), it is straightforward to show that

(1.2) S(v, e) = C(v, e′) + (v − 1)(4e− v(v − 1))

from which it follows that, for fixedv, the functionS(v, e)− C(v, e) is point-symmetric about
the middle of the interval0 ≤ e ≤

(
v
2

)
. In other words,

S(v, e)− C(v, e) = − (S(v, e′)− C(v, e′)) .

It also follows from equation (1.2) thatQC(v, e) is optimal inG(v, e) if and only if QS(v, e′) is
optimal inG(v, e′). This allows us to restrict our attention to values ofe in the interval[0,

(
v
2

)
/2]
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or equivalently the interval[
(

v
2

)/
2,

(
v
2

)
]. On occasion, we will do so but we will always state

results for all values ofe.
As the midpoint of the range of values fore plays a recurring role in what follows, we denote

it by

m = m(v) =
1

2

(
v

2

)
and definek0 = k0(v) to be the integer such that

(1.3)

(
k0

2

)
≤ m <

(
k0 + 1

2

)
.

To state the results of [2] we need one more notion, that of the distance from
(

k0

2

)
to m. Write

b0 = b0(v) = m−
(

k0

2

)
.

We are now ready to summarize the results of [2]:

Theorem 1.1([2, Theorem 2]). max(v, e) is the larger of the two valuesC(v, e) andS(v, e).

Theorem 1.2([2, Theorem 3]). max(v, e) = S(v, e) if 0 ≤ e < m− v
2

andmax(v, e) = C(v, e)

if m + v
2

< e ≤
(

v
2

)
Lemma 1.3([2, Lemma 8]). If 2b0 ≥ k0, or 2v − 2k0 − 1 ≤ 2b0 < k0, then

C(v, e) ≤ S(v, e) for all 0 ≤ e ≤ m and

C(v, e) ≥ S(v, e) for all m ≤ e ≤
(

v

2

)
.

If 2b0 < k0 and2k0 + 2b0 < 2v − 1, then there exists anR with b0 ≤ R ≤ min {v/2, k0 − b0}
such that

C(v, e) ≤ S(v, e) for all 0 ≤ e ≤ m−R

C(v, e) ≥ S(v, e) for all m−R ≤ e ≤ m

C(v, e) ≤ S(v, e) for all m ≤ e ≤ m + R

C(v, e) ≥ S(v, e) for all m + R ≤ e ≤
(

v

2

)
.

Ahlswede and Katona pose some open questions at the end of [2]. “Some strange number-
theoretic combinatorial questions arise. What is the relative density of the numbersv for which
R = 0 [max(v, e) = S(v, e) for all 0 ≤ e < m andmax(v, e) = C(v, e) for all m < e ≤

(
v
2

)
]?"

This is the point of departure for our paper. Our first main result, Theorem 2.3, strengthens
Ahlswede and Katona’s Theorem 2; not only does the maximum value ofP2(G) occur at either
the quasi-star or quasi-complete graph inG(v, e), but all optimal graphs inG(v, e) are related
to the quasi-star or quasi-complete graphs via their so-called diagonal sequence. As a result
of their relationship to the quasi-star and quasi-complete graphs, all optimal graphs can be and
are described in our second main result, Theorem 2.4. Our third main result, Theorem 2.8, is
a refinement of Lemma 8 in [2]. Theorem 2.8 characterizes the values ofv ande for which
S(v, e) = C(v, e) and gives an explicit expression for the valueR in Lemma 8 of [2]. Finally,
the “strange number-theoretic combinatorial" aspects of the problem, mentioned by Ahlswede
and Katona, turn out to be Pell’s Equationy2 − 2x2 = ±1. Corollary 2.11 answers the density
question posed by Ahlswede and Katona. We have just recently learned that Wagner and Wang
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[16] have independently answered this question as well. Their approach is similar to ours, as
they also find an expression forR in Lemma 8 of [2].

Before stating some new results, we summarize the work on the problem that followed [2].
A generalization of the problem of maximizing the sum of the squares of the degree sequence

was investigated by Katz [8] in 1971 and R. Aharoni [1] in 1980. Katz’s problem was to
maximize the sum of the elements inA2, whereA runs over all(0, 1)-square matrices of sizen
with preciselyj ones. He found the maxima and the matrices for which the maxima are attained
for the special cases where there arek2 ones or where there aren2−k2 ones in the(0, 1)-matrix.
Aharoni [1] extended Katz’s results for generalj and showed that the maximum is achieved at
one of four possible forms forA.

If A is a symmetric(0, 1)-matrix, with zeros on the diagonal, thenA is the adjacency matrix
A(G) for a graphG. Now let G be a graph inG(v, e). Then the adjacency matrixA(G) of
G is av × v (0, 1)-matrix with 2e ones. ButA(G) satisfies two additional restrictions:A(G)
is symmetric, and all diagonal entries are zero. However, the sum of all entries inA(G)2 is
precisely

∑
di(G)2. Thus our problem is essentially the same as Aharoni’s in that both ask for

the maximum of the sum of the elements inA2. The graph-theory problem simply restricts the
set of(0, 1)-matrices to those with2e ones that are symmetric and have zeros on the diagonal.

Olpp [14], apparently unaware of the work of Ahlswede and Katona, reproved the basic
result thatmax(v, e) = max(S(v, e), C(v, e)), but his results are stated in the context of two-
colorings of a graph. He investigates a question of Goodman [5, 6]: maximize the number
of monochromatic triangles in a two-coloring of the complete graph with a fixed number of
vertices and a fixed number of red edges. Olpp shows that Goodman’s problem is equivalent to
finding the two-coloring that maximizes the sum of squares of the red-degrees of the vertices.
Of course, a two-coloring of the complete graph onv vertices gives rise to two graphs onv
vertices: the graphG whose edges are colored red, and its complementG′. So Goodman’s
problem is to find the maximum value ofP2(G) for G ∈ G(v, e).

Olpp [14] shows that either the quasi-star or the quasi-complete graph is optimal inG(v, e),
but he does not discuss which of the two valuesS(v, e), C(v, e) is larger. He leaves this question
unanswered and does not attempt to identify all optimal graphs inG(v, e).

In 1999, Peled, Pedreschi, and Sterbini [13] showed that the only possible graphs for which
the maximum value is attained are the so-called threshold graphs. The main result in [13] is
that all optimal graphs are in one of six classes of threshold graphs. They end with the remark,
“Further questions suggested by this work are the existence and uniqueness of the [graphs in
G(v, e)] in each class, and the precise optimality conditions."

Also in 1999, Byer [3] approached the problem in yet another equivalent context: he studied
the maximum number of paths of length two over all graphs inG(v, e). Every path of length
two in G represents an edge in the line graphL(G), so this problem is equivalent to studying the
graphs that achievemax(v, e). For each(v, e), Byer shows that there are at most six graphs in
G(v, e) that achieve the maximum. These maximal graphs come from among six general types
of graphs for which there is at most one of each type inG(v, e). He also extended his results
to the problem of finding the maximum number of monochromatic triangles (or any other fixed
connected graph with 3 edges) among two-colorings of the complete graph onv vertices, where
exactlye edges are colored red. However, Byer did not discuss how to computemax(v, e), or
how to determine when any of the six graphs is optimal.

In Section 2, we have unified some of the earlier work on this problem by using partitions,
threshold graphs, and the idea of a diagonal sequence.
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2. STATEMENTS OF THE M AIN RESULTS

2.1. Threshold graphs. All optimal graphs come from a class of special graphs calledthresh-
old graphs. The quasi-star and quasi-complete graphs are just two among the many threshold
graphs inG(v, e). The adjacency matrix of a threshold graph has a special form. The upper-
triangular part of the adjacency matrix of a threshold graph is left justified and the number of
zeros in each row of the upper-triangular part of the adjacency matrix does not decrease. We
will show adjacency matrices using “+" for the main diagonal, an empty circle “◦" for the zero
entries, and a black dot, “•" for the entries equal to one.

For example, the graphG whose adjacency matrix is shown in Figure 2.1(a) is a threshold
graph inG(8, 13) with degree sequence(6, 5, 5, 3, 3, 3, 1, 0).

By looking at the upper-triangular part of the adjacency matrix, we can associate the distinct
partitionπ = (6, 4, 3) of 13 with the graph. In general, thethresholdgraphTh(π) ∈ G(v, e)
corresponding to a distinct partitionπ = (a0, a1, . . . , ap) of e, all of whose parts are less thanv,
is the graph with an adjacency matrix whose upper-triangular part is left-justified and contains
as ones in rows. Thus the threshold graphs inG(v, e) are in one-to-one correspondence with
the set of distinct partitions, Dis(v, e) of e with all parts less thanv:

Dis(v, e) =
{

π = (a0, a1, . . . , ap) : v > a0 > a1 > · · · > ap > 0,
∑

as = e
}

We denote the adjacency matrix of the threshold graphTh(π) corresponding to the distinct
partitionπ by Adj(π).

Peled, Pedreschi, and Sterbini [13] showed that all optimal graphs in a graph classG(v, e)
must be threshold graphs.

Lemma 2.1([13]). If G is an optimal graph inG(v, e), thenG is a threshold graph.

Thus we can limit the search for optimal graphs to the threshold graphs.
Actually, a much larger class of functions, including the power functions,dp

1 + · · · + dp
v for

p ≥ 2, on the degrees of a graph are maximized only at threshold graphs. In fact, every Schur
convex function of the degrees is maximized only at the threshold graphs. The reason is that the
degree sequences of threshold graphs are maximal with respect to the majorization order among
all graphical sequences. See [11] for a discussion of majorization and Schur convex functions
and [10] for a discussion of the degree sequences of threshold graphs.

2.2. The Diagonal Sequence of a Threshold Graph.To state the first main theorem, we must
now digress to describe the diagonal sequence of a threshold graph in the graph classG(v, e).

Returning to the example in Figure 2.1(a) corresponding to the distinct partitionπ = (6, 4, 3) ∈
Dis(8, 13), we superimpose diagonal lines on the adjacency matrixAdj(π) for the threshold
graphTh(π) as shown in Figure 2.1(b).

The number of black dots in the upper triangular part of the adjacency matrix on each of
the diagonal lines is called thediagonal sequenceof the partitionπ (or of the threshold graph
Th(π)). The diagonal sequence forπ is denoted byδ(π) and forπ = (6, 4, 3) shown in Figure
2.1,δ(π) = (1, 1, 2, 2, 3, 3, 1). The value ofP2(Th(π)) is determined by the diagonal sequence
of π.

Lemma 2.2.Letπ be a distinct partition inDis(v, e) with diagonal sequenceδ(π) = (δ1, . . . , δt).
ThenP2(Th(π)) is the dot product

P2(Th(π)) = 2δ(π) · (1, 2, 3, . . . , t) = 2
t∑

i=1

iδi.
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(a) (b)

Figure 2.1: The adjacency matrix,Adj(π), for the threshold graph inG(8, 13) corresponding to the distinct
partition π = (6, 4, 3) ∈ Dis(8, 13) with diagonal sequenceδ(π) = (1, 1, 2, 2, 3, 3, 1).

For example, ifπ = (6, 4, 3) as in Figure 2.1, then

P2(Th(π)) = 2(1, 1, 2, 2, 3, 3, 1) · (1, 2, 3, 4, 5, 6, 7) = 114,

which equals the sum of squares of the degree sequence(6, 5, 5, 3, 3, 3, 1) of the graphTh(π).
Theorem 2 in [2] guarantees that one (or both) of the graphsQS(v, e), QC(v, e) must be

optimal inG(v, e). However, there may be other optimal graphs inG(v, e), as the next example
shows.

The quasi-complete graphQC(10, 30), which corresponds to the distinct partition(8, 7,
5, 4, 3, 2, 1) is optimal inG(10, 30). The threshold graphG2, corresponding to the distinct
partition(9, 6, 5, 4, 3, 2, 1) is also optimal inG(10, 30), but is neither quasi-star inG(10, 30) nor
quasi-complete inG(v, 30) for anyv. The adjacency matrices for these two graphs are shown
in Figure 2.2. They have the same diagonal sequenceδ = (1, 1, 2, 2, 3, 3, 4, 4, 4, 2, 2, 1, 1) and
both are optimal.

Figure 2.2: Adjacency matrices for two optimal graphs inG(10, 30), QC(10, 30) = Th(8, 7, 5, 4, 3, 2, 1) and
Th(9, 6, 5, 4, 3, 2, 1), having the same diagonal sequenceδ = (1, 1, 2, 2, 3, 3, 4, 4, 4, 2, 2, 1, 1)

We know that either the quasi-star or the quasi-complete graph inG(v, e) is optimal and that
any threshold graph with the same diagonal sequence as an optimal graph is also optimal. In
fact, the converse is also true. Indeed, the relationship between the optimal graphs and the
quasi-star and quasi-complete graphs in a graph classG(v, e) is described in our first main
theorem.
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Theorem 2.3.LetG be an optimal graph inG(v, e). ThenG = Th(π) is a threshold graph for
some partitionπ ∈ Dis(v, e) and the diagonal sequenceδ(π) is equal to the diagonal sequence
of either the quasi-star graph or the quasi-complete graph inG(v, e).

Theorem 2.3 is stronger than Lemma 8 of [2] because it characterizesall optimal graphs in
G(v, e). In Section 2.3 we describe all optimal graphs in detail.

2.3. Optimal Graphs. Every optimal graph inG(v, e) is a threshold graph,Th(π), correspond-
ing to a partitionπ in Dis(v, e). So we extend the terminology and say that the partitionπ is
optimal in Dis(v, e), if its threshold graphTh(π) is optimal inG(v, e). We say that the partition
π ∈ Dis(v, e) is thequasi-star partition, if Th(π) is the quasi-star graph inG(v, e). Similarly,
π ∈ Dis(v, e) is thequasi-complete partition, if Th(π) is the quasi-complete graph inG(v, e).

We now describe the quasi-star and quasi-complete partitions in Dis(v, e).
First, the quasi-complete graphs. Letv be a positive integer ande an integer such that0 ≤

e ≤
(

v
2

)
. There exists unique integersk andj such that

e =

(
k + 1

2

)
− j and 1 ≤ j ≤ k.

The partition

π(v, e, qc) := (k, k − 1, . . . , j + 1, j − 1, . . . , 1) = (k, k − 1, . . . , ĵ, . . . , 2, 1)

corresponds to the quasi-complete threshold graphQC(v, e) in G(v, e). The symbol̂j means
thatj is missing.

To describe the quasi-star partitionπ(v, e, qs) in Dis(v, e), let k′, j′ be the unique integers
such that

e =

(
v

2

)
−

(
k′ + 1

2

)
+ j′ and 1 ≤ j′ ≤ k′.

Then the partition
π(v, e, qs) = (v − 1, v − 2, . . . , k′ + 1, j′)

corresponds to the quasi-star graphQS(v, e) in G(v, e).
In general, there may be many partitions with the same diagonal sequence asπ(v, e, qc) or

π(v, e, qs). For example, if(v, e) = (14, 28), thenπ(14, 28, qc) = (7, 6, 5, 4, 3, 2, 1) and all
of the partitions in Figure 2.3 have the same diagonal sequence,δ = (1, 1, 2, 2, 3, 3, 4, 3, 3, 2,
2, 1, 1). However, none of the threshold graphs corresponding to the partitions in Figure 2.3 is

Figure 2.3: Four partitions with the same diagonal sequence asπ(14, 28, qc)

optimal. Indeed, if the quasi-complete graph is optimal in Dis(v, e), then there are at most three
partitions in Dis(v, e) with the same diagonal sequence as the quasi-complete graph. The same
is true for the quasi-star partition. If the quasi-star partition is optimal in Dis(v, e), then there
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are at most three partitions in Dis(v, e) having the same diagonal sequence as the quasi-star
partition. As a consequence, there are at most six optimal partitions in Dis(v, e) and so at most
six optimal graphs inG(v, e). Our second main result, Theorem 2.4, entails Theorem 2.3; it
describes the optimal partitions inG(v, e) in detail. The six partitions described in Theorem 2.4
correspond to the six graphs determined by Byer in [3]. However, we give precise conditions to
determine when each of these partitions is optimal.

Theorem 2.4.Letv be a positive integer ande an integer such that0 ≤ e ≤
(

v
2

)
. Letk, k′, j, j′

be the unique integers satisfying

e =

(
k + 1

2

)
− j, with 1 ≤ j ≤ k,

and

e =

(
v

2

)
−

(
k′ + 1

2

)
+ j′, with 1 ≤ j′ ≤ k′.

Then every optimal partitionπ in Dis(v, e) is one of the following six partitions:

1.1: π1.1 = (v − 1, v − 2, . . . , k′ + 1, j′), the quasi-star partition fore,

1.2: π1.2 = (v − 1, v − 2, . . . , ̂2k′ − j′ − 1, . . . , k′ − 1), if k′ + 1 ≤ 2k′ − j′ − 1 ≤ v − 1,
1.3: π1.3 = (v − 1, v − 2, . . . , k′ + 1, 2, 1), if j′ = 3 andv ≥ 4,
2.1: π2.1 = (k, k − 1, . . . , ĵ, . . . , 2, 1), the quasi-complete partition fore,
2.2: π2.2 = (2k − j − 1, k − 2, k − 3, . . . 2, 1), if k + 1 ≤ 2k − j − 1 ≤ v − 1,
2.3: π2.3 = (k, k − 1, . . . , 3), if j = 3 andv ≥ 4.

Partitionsπ1.1 andπ2.1 always exist and at least one of them is optimal. Furthermore,π1.2

andπ1.3 (if they exist) have the same diagonal sequence asπ1.1, and ifS(v, e) ≥ C(v, e), then
they are all optimal. Similarly,π2.2 andπ2.3 (if they exist) have the same diagonal sequence as
π2.1, and ifS(v, e) ≤ C(v, e), then they are all optimal.

A few words of explanation are in order regarding the notation for the optimal partitions in
Theorem 2.4. Ifk′ = v, thenj′ = v, e = 0, andπ1.1 = ∅. If k′ = v − 1, thene = j′ ≤ v − 1,
andπ1.1 = (j′); further, if j′ = 3, thenπ1.3 = (2, 1). In all other casesk′ ≤ v − 2 and thenπ1.1,
π1.2, andπ1.3 are properly defined.

If j′ = k′ or j′ = k′ − 1, then both partitions in 1.1 and 1.2 would be equal to(v − 1, v −
2, . . . , k′) and(v − 1, v − 2, . . . , k′ + 1, k′ − 1) respectively. So the conditionk′ + 1 ≤ 2k′ −
j′ − 1 merely ensures thatπ1.1 6= π1.2. A similar remark holds for the partitions in 2.1 and
2.2. By definition the partitionsπ1.1 andπ1.3 are always distinct; the same holds for partitions
π2.1 andπ2.3. In general, the partitionsπi.j described in items 1.1-1.3 and 2.1-2.3 (and their
corresponding threshold graphs) are all different. All the exceptions are illustrated in Figure 2.4
and are as follows: For anyv, if e ∈ {0, 1, 2} or e′ ∈ {0, 1, 2} thenπ1.1 = π2.1. For anyv ≥ 4,
if e = 3 or e′ = 3, thenπ1.3 = π2.1 andπ1.1 = π2.3. If (v, e) = (5, 5) thenπ1.1 = π2.2 and
π1.2 = π2.1. Finally, if (v, e) = (6, 7) or (7, 12), thenπ1.2 = π2.3. Similarly, if (v, e) = (6, 8)
or (7, 9), thenπ1.3 = π2.2. For v ≥ 8 and4 ≤ e ≤

(
v
2

)
− 4, all the partitionsπi.j are pairwise

distinct (when they exist).
In the next section, we determine the pairs(v, e) having a prescribed number of optimal

partitions (and hence graphs) inG(v, e).

2.4. Pairs (v, e) with a Prescribed Number of Optimal Partitions. In principle, a given
pair (v, e), could have between one and six optimal partitions. It is easy to see that there are
infinitely many pairs(v, e) with only one optimal partition (either the quasi-star or the quasi-
complete). For example the pair

(
v,

(
v
2

))
only has the quasi-complete partition. Similarly, there

are infinitely many pairs with exactly two optimal partitions and this can be achieved in many
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Figure 2.4: Instances of pairs(v, e) where two partitionsπi.j coincide

different ways. For instance, if(v, e) = (v, 2v− 5) andv ≥ 9, thenk′ = v− 2, j′ = v− 4 > 3,
andS(v, e) > C(v, e) (c.f. Corollary 2.10). Thus only the partitionsπ1.1 andπ1.2 are optimal.
The interesting question is the existence of pairs with 3,4,5, or 6 optimal partitions.

Often, both partitionsπ1.2 andπ1.3 in Theorem 2.4 exist for the same pair(v, e); however it
turns out that this almost never happens when they are optimal partitions. More precisely,

Theorem 2.5. If π1.2 andπ1.3 are optimal partitions then(v, e) = (7, 9) or (9, 18). Similarly,
if π2.2 andπ2.3 are optimal partitions, then(v, e) = (7, 12) or (9, 18). Furthermore, the pair
(9, 18) is the only one with six optimal partitions, there are no pairs with five. If there are
more than two optimal partitions for a pair(v, e), thenS(v, e) = C(v, e), that is, both the
quasi-complete and the quasi-star partitions must be optimal.

In the next two results, we describe two infinite families of partitions in Dis(v, e), and hence
graph classesG(v, e), for which there are exactly three (four) optimal partitions. The fact that
they are infinite is proved in Section 9.

Theorem 2.6.Letv > 5 andk be positive integers that satisfy the Pell’s Equation

(2.1) (2v − 3)2 − 2(2k − 1)2 = −1

and lete =
(

k
2

)
. Then (using the notation of Theorem 2.4),j = k, k′ = k + 1, j′ = 2k − v + 2,

and there are exactly three optimal partitions inDis(v, e), namely

π1.1 = (v − 1, v − 2, . . . , k + 2, 2k − v + 2)

π1.2 = (v − 2, v − 3, . . . , k)

π2.1 = (k − 1, k − 2, . . . , 2, 1).

The partitionsπ1.3, π2.2, andπ2.3 do not exist.

Theorem 2.7.Letv > 9 andk be positive integers that satisfy the Pell’s Equation

(2.2) (2v − 1)2 − 2(2k + 1)2 = −49

ande = m = 1
2

(
v
2

)
. Then (using the notation of Theorem 2.4),j = j′ = 3, k = k′, and there

are exactly four optimal partitions inDis(v, e), namely

π1.1 = (v − 1, v − 2, . . . , k + 1, 3)

π1.3 = (v − 1, v − 2, . . . , k + 1, 2, 1)

π2.1 = (k − 1, k − 2, . . . , 4, 2, 1)

π2.3 = (k − 1, k − 2, . . . , 4, 3).

The partitionsπ1.2 andπ2.2 do not exist.
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2.5. Quasi-star versus quasi-complete.In this section, we compareS(v, e) andC(v, e). The
main result of the section, Theorem 2.8, is a theorem very much like Lemma 8 of [2], with the
addition that our results give conditions for equality of the two functions.

If e = 0, 1, 2, 3, thenS(v, e) = C(v, e) for all v. Of course, ife = 0, e = 1 andv ≥ 2, or
e ≤ 3 andv = 3, there is only one graph in the graph classG(v, e). If e = 2 andv ≥ 4, then
there are two graphs in the graph classG(v, 2): the pathP and the partial matchingM , with
degree sequences(2, 1, 1) and(1, 1, 1, 1), respectively. The path is optimal asP2(P ) = 6 and
P2(M) = 4. However, the path is both the quasi-star and the quasi-complete graph inG(v, 2).
If e = 3 andv ≥ 4, then the quasi-star graph has degree sequence(3, 1, 1, 1) and the quasi-
complete graph is a triangle with degree sequence(2, 2, 2). SinceP2(G) = 12 for both of these
graphs, both are optimal. Similarly,S(v, e) = C(v, e) for e =

(
v
2

)
− j for j = 0, 1, 2, 3.

Now, we consider the cases where4 ≤ e ≤
(

v
4

)
− 4. Figures 2.5, 2.6, 2.7, and 2.8 show the

values of the differenceS(v, e)−C(v, e). When the graph is above the horizontal axis,S(v, e)
is strictly larger thanC(v, e) and so the quasi-star graph is optimal and the quasi-complete is
not optimal. And when the graph is on the horizontal axis,S(v, e) = C(v, e) and both the
quasi-star and the quasi-complete graph are optimal. Since the functionS(v, e) − C(v, e) is
central symmetric, we shall consider only the values ofe from 4 to the midpoint,m, of the
interval[0,

(
v
2

)
].

Figure 2.5 shows thatS(25, e) > C(25, e) for all values ofe: 4 ≤ e < m = 150. So, when
v = 25, the quasi-star graph is optimal for0 ≤ e < m = 150 and the quasi-complete graph
is not optimal. Fore = m(25) = 150, the quasi-star and the quasi-complete graphs are both
optimal.

19
5

18
0

16
4

14
7

12
9

11
0

10
5

12
0

13
6

15
3

17
1

19
0

Figure 2.5:S(25, e)− C(25, e) > 0 for 4 ≤ e < m = 150

Figure 2.6 shows thatS(15, e) > C(15, e) for 4 ≤ e < 45 and45 < e ≤ m = 52.5. But
S(15, 45) = C(15, 45). So the quasi-star graph is optimal and the quasi-complete graph is not
optimal for all0 ≤ e ≤ 52 except fore = 45. Both the quasi-star and the quasi-complete graphs
are optimal inG(15, 45).

Figure 2.7 shows thatS(17, e) > C(17, e) for 4 ≤ e < 63, S(17, 64) = C(17, 64),
S(17, e) < C(17, e) for 65 ≤ e < m = 68, andS(17, 68) = C(17, 68).

Finally, Figure 2.8 shows thatS(23, e) > C(23, e) for 4 ≤ e ≤ 119, butS(23, e) = C(23, e)
for 120 ≤ e ≤ m = 126.5.
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69605039
36 45 55 66

Figure 2.6:S(15, e)− C(15, e) > 0 for 4 ≤ e < 45 and for45 < e ≤ m = 52.5

81705845

55 66 78 91

Figure 2.7:S(17, e)− C(17, e) > 0 for 4 ≤ e ≤ 63.

16
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13
6

15
3
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1

Figure 2.8:S(23, e)− C(23, e) > 0 for 4 ≤ e ≤ 119, S(23, e) = C(23, e) for 120 ≤ e < m = 126.5

These four examples exhibit the types of behavior of the functionS(v, e)−C(v, e), for fixed
v. The main thing that determines this behavior is the quadratic function

q0(v) :=
1

4

(
1− 2(2k0 − 3)2 + (2v − 5)2

)
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(the integerk0 = k0(v) depends onv). For example, ifq0(v) > 0, thenS(v, e) − C(v, e) ≥ 0
for all values ofe < m. To describe the behavior ofS(v, e)−C(v, e) for q0(v) < 0, we need to
define

R0 = R0(v) =
8(m− e0)(k0 − 2)

−1− 2(2k0 − 4)2 + (2v − 5)2
,

where

e0 = e0(v) =

(
k0

2

)
= m− b0

Our third main theorem is the following:

Theorem 2.8.Letv be a positive integer

(1) If q0(v) > 0, then

S(v, e) ≥ C(v, e) for all 0 ≤ e ≤ m and

S(v, e) ≤ C(v, e) for all m ≤ e ≤
(

v
2

)
.

S(v, e) = C(v, e) if and only if e, e′ ∈ {0, 1, 2, 3, m}, or e, e′ = e0 and (2v − 3)2 −
2(2k0 − 3)2 = −1, 7.

(2) If q0(v) < 0, then

C(v, e) ≤ S(v, e) for all 0 ≤ e ≤ m−R0;

C(v, e) ≥ S(v, e) for all m−R0 ≤ e ≤ m;

C(v, e) ≤ S(v, e) for all m ≤ e ≤ m + R0;

C(v, e) ≥ S(v, e) for all m + R0 ≤ e ≤
(

v
2

)
.

S(v, e) = C(v, e) if and only ife, e′ ∈ {0, 1, 2, 3, m−R0, m}.
(3) If q0(v) = 0, then

S(v, e) ≥ C(v, e) for all 0 ≤ e ≤ m and

S(v, e) ≤ C(v, e) for all m ≤ e ≤
(

v
2

)
.

S(v, e) = C(v, e) if and only ife, e′ ∈ {0, 1, 2, 3, e0, ...,m}.

The conditions in Theorem 2.8 involving the quantityq0(v) simplify and refine the conditions
in [2] involving k0 andb0. The condition2b0 ≥ k0 in Lemma 8 of [2] can be removed and the
result restated in terms of the sign of the quantity2k0 + 2b0 − (2v − 1) = 1

2
q0(v). While [2]

considers only the two casesq0(v) ≤ 0 andq0(v) > 0, we analyze the caseq0(v) = 0 separately.
It is apparent from Theorem 2.8 thatS(v, e) ≥ C(v, e) for 0 ≤ e ≤ m− αv if α > 0 is large

enough. Indeed, Ahlswede and Katona [2, Theorem 3] show this forα = 1/2, thus establishing
an inequality that holds for all values ofv regardless of the sign ofq0(v). We improve this result
and show that the inequality holds whenα = 1−

√
2/2 ≈ 0.2929.

Corollary 2.9. Let α = 1 −
√

2/2. ThenS(v, e) ≥ C(v, e) for all 0 ≤ e ≤ m − αv and
S(v, e) ≤ C(v, e) for all m + αv ≤ e ≤

(
v
2

)
. Furthermore, the constantα cannot be replaced

by a smaller value.

Theorem 3 in [2] can be improved in another way. The inequalities are actually strict.

Corollary 2.10. S(v, e) > C(v, e) for 4 ≤ e < m− v/2 andS(v, e) < C(v, e) for m + v/2 <
e ≤

(
v
2

)
− 4.

J. Inequal. Pure and Appl. Math., 10(3) (2009), Art. 64, 34 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


SUM OF SQUARES OFDEGREES IN AGRAPH 13

2.6. Asymptotics and Density. We now turn to the questions asked in [2]:
What is the relative density of the positive integersv for which max(v, e) = S(v, e) for

0 ≤ e < m? Of course,max(v, e) = S(v, e) for 0 ≤ e ≤ m if and only if max(v, e) = C(v, e)
for m ≤ e ≤

(
v
2

)
.

Corollary 2.11. Let t be a positive integer and letn(t) denote the number of integersv in the
interval [1, t] such that

max(v, e) = S(v, e),

for all 0 ≤ e ≤ m. Then

lim
t→∞

n(t)

t
= 2−

√
2 ≈ 0.5858.

2.7. Piecewise Linearity ofS(v, e) − C(v, e). The diagonal sequence for a threshold graph
helps explain the behavior of the differenceS(v, e) − C(v, e) for fixed v and0 ≤ e ≤

(
v
2

)
.

From Figures 2.5, 2.6, 2.7, and 2.8, we see thatS(v, e) − C(v, e), regarded as a function ofe,
is piecewise linear and the ends of the intervals on which the function is linear occur ate =

(
j
2

)
ande =

(
v
2

)
−

(
j
2

)
for j = 1, 2, . . . , v. We prove this fact in Lemma 6.7. For now, we present

an example.
Takev = 15, for example. Figure 2.6 shows linear behavior on the intervals[36, 39], [39, 45],

[45, 50], [50, 55], [55, 60], [60, 66], and[66, 69]. There are 14 binomial coefficients
(

j
2

)
for 2 ≤

j ≤ 15:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105.

The complements with respect to
(
15
2

)
= 105 are

104, 102, 99, 95, 90, 84, 77, 69, 60, 50, 39, 27, 14, 0.

The union of these two sets of integers coincides with the end points for the intervals on which
S(15, e) − C(15, e) is linear. In this case, the function is linear on the 27 intervals with end
points:

0, 1, 3, 6, 10, 14, 15, 21, 27, 28, 36, 39, 45, 50, 55, 60,

66, 69, 77, 78, 84, 90, 91, 95, 99, 102, 104, 105.

These special values ofe correspond to special types of quasi-star and quasi-complete graphs.
If e =

(
j
2

)
, then the quasi-complete graphQC(v, e) is the sum of a complete graph onj

vertices andv − j isolated vertices. For example, ifv = 15 andj = 9, ande =
(
9
2

)
= 36, then

the upper-triangular part of the adjacency matrix forQC(15, 21) is shown on the left in Figure
2.9. And if e =

(
v
2

)
−

(
j
2

)
, then the quasi-star graphQS(v, e) hasj dominant vertices and none

of the otherv − j vertices are adjacent to each other. For example, the lower triangular part of
the adjacency matrix for the quasi-star graph withv = 15, j = 12, ande =

(
14
2

)
−

(
12
2

)
= 39, is

shown on the right in Figure 2.9.
As additional dots are added to the adjacency matrices for the quasi-complete graphs with

e = 37, 38, 39, the value ofC(15, e) increases by18, 20, 22. And the value ofS(15, e) increases
by 28, 30, 32. Thus, the differenceincreasesby a constant amount of10. Indeed, the diagonal
lines are a distance of five apart. Hence the graph ofS(15, e) − C(15, e) for 36 ≤ e ≤ 39
is linear with a slope of10. However, fore = 40, the adjacency matrix for the quasi-star
graph has an additional dot on the diagonal corresponding to14, whereas the adjacency matrix
for the quasi-complete graph has an additional dot on the diagonal corresponding to24. So
S(15, 40)−C(15, 40) decreasesby 10. The decrease of10 continues until the adjacency matrix
for the quasi-complete graph contains a complete column ate = 45. Then the next matrix for
e = 46 has an additional dot in the first row and next column and the slope changes again.
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quasi-complete partition
π=(8,7,6,5,4,3,2,1) π=(9,7,6,5,4,3,2,1) π=(9,8,6,5,4,3,2,1) π=(9,8,7,5,4,3,2,1)

quasi-star partition
π=(14,13,9) π=(14,13,10) π=(14,13,11) π=(14,13,12)

e = 36 e = 37 e = 38 e = 39

Figure 2.9: Adjacency matrices for quasi-complete and quasi-star graphs withv = 15 and36 ≤ e ≤ 39

3. PROOF OF L EMMA 2.2

Returning for a moment to the threshold graphTh(π) from Figure 2.1, which corresponds
to the distinct partitionπ = (6, 4, 3), we see the graph complement shown with the white dots.
Counting white dots in the rows from bottom to top and from the left to the diagonal, we have
7,5,2,1. These same numbers appear in columns reading from right to left and then top to the
diagonal. So ifTh(π) is the threshold graph associated withπ, then the set-wise complement of
π (πc) in the set{1, 2, . . . , v− 1} corresponds to the threshold graphTh(π)c—the complement
of Th(π). That is,

Th(πc) = Th(π)c.

The diagonal sequence allows us to evaluate the sum of squares of the degree sequence of
a threshold graph. Each black dot contributes a certain amount to the sum of squares. The
amount depends on the location of the black dot in the adjacency matrix. In fact all of the dots
on a particular diagonal line contribute the same amount to the sum of squares. Forv = 8, the
value of a black dot in position(i, j) is given by the entry in the following matrix:



+ 1 3 5 7 9 11 13
1 + 3 5 7 9 11 13
1 3 + 5 7 9 11 13
1 3 5 + 7 9 11 13
1 3 5 7 + 9 11 13
1 3 5 7 9 + 11 13
1 3 5 7 9 11 + 13
1 3 5 7 9 11 13 +


This follows from the fact that a sum of consecutive odd integers is a square. So to get the sum
of squaresP2(Th(π)) of the degrees of the threshold graph associated with the distinct partition
π, sum the values in the numerical matrix above that occur in the positions with black dots.
Of course, an adjacency matrix is symmetric. So if we use only the black dots in the upper
triangular part, then we must replace the(i, j)-entry in the upper-triangular part of the matrix
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above with the sum of the(i, j)- and the(j, i)-entry, which gives the following matrix:

(3.1) E =



+ 2 4 6 8 10 12 14
+ 6 8 10 12 14 16

+ 10 12 14 16 18
+ 14 16 18 20

+ 18 20 22
+ 22 24

+ 26
+


.

Thus,P2(Th(π)) = 2(1, 2, 3, . . .) · δ(π). Lemma 2.2 is proved.

4. PROOFS OF THEOREMS 2.3 AND 2.4

Theorem 2.3 is an immediate consequence of Theorem 2.4 (and Lemmas 2.1 and 2.2). The-
orem 2.4 can be proved using the following central lemma:

Lemma 4.1. Letπ = (v−1, c, c−1, . . . , ĵ, . . . , 2, 1) be an optimal partition inDis(v, e), where
e− (v − 1) = 1 + 2 + · · ·+ c− j ≥ 4 and1 ≤ j ≤ c < v − 2. Thenj = c and2c ≥ v − 1 so
that

π = (v − 1, c− 1, c− 2, . . . , 2, 1).

We defer the proof of Lemma 4.1 until Section 5 and proceed now with the proof of Theorem
2.4. The proof of Theorem 2.4 is an induction onv.

Proof of Theorem 2.4.Letπ be an optimal partition in Dis(v, e), thenπc is optimal in Dis(v, e′).
One of the partitions,π, πc contains the partv − 1. We may assume without loss of generality
thatπ = (v − 1 : µ), whereµ is a partition in Dis(v − 1, e − (v − 1)). The cases whereµ is
a decreasing partition of0, 1, 2, and3 will be considered later. For now we shall assume that
e− (v − 1) ≥ 4. �

Sinceπ is optimal, it follows thatµ is optimal and hence by the induction hypothesis,µ is
one of the following partitions in Dis(v − 1, e− (v − 1)):

1.1a: µ1.1 = (v − 2, . . . , k′ + 1, j′), the quasi-star partition fore− (v − 1),
1.2a: µ1.2 = (v − 2, . . . , ̂2k′ − j′ − 1, . . . , k′ − 1), if k′ + 1 ≤ 2k′ − j′ − 1 ≤ v − 2,
1.3a: µ1.3 = (v − 2, . . . , k′ + 1, 2, 1), if j′ = 3,
2.1a: µ2.1 = (k1, k1 − 1, . . . , ĵ1, . . . , 2, 1), the quasi-complete partition fore− (v − 1),
2.2a: µ2.2 = (2k1 − j1 − 1, k1 − 2, k1 − 3, . . . 2, 1), if k1 + 1 ≤ 2k1 − j1 − 1 ≤ v − 2,
2.3a: µ2.3 = (k1, k1 − 1, . . . , 3), if j1 = 3,

where
e− (v − 1) = 1 + 2 + · · ·+ k1 − j1 ≥ 4, with 1 ≤ j1 ≤ k1.

In symbols,π = (v − 1, µi.j), for one of the partitionsµi.j above. For each partition,µi.j, we
will show that(v− 1, µi.j) = πs.t for one of the six partitions,πs.t, in the statement of Theorem
2.4.

The first three cases are obvious:

(v − 1, µ1.1) = π1.1,

(v − 1, µ1.2) = π1.2,

(v − 1, µ1.3) = π1.3.

Next suppose thatµ = µ2.1, µ2.2, or µ2.3. The partitionsµ2.2 andµ2.3 do not exist unless
certain conditions onk1, j1, andv are met. And whenever those conditions are met, the partition
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µ2.1 is also optimal. Thusπ1 = (v−1, µ2.1) is optimal. Also, sincee−(v−1) ≥ 4, thenk1 ≥ 3.
There are two cases:k1 = v − 2, k1 ≤ v − 3. If k1 = v − 2, thenµ2.2 does not exist and

(v − 1, µ) =

{
π2.1, if µ = µ2.1,

π1.1, if µ = µ2.3.

If k1 ≤ v−3, then by Lemma 4.1,π1 = (v−1, k1−1, . . . , 2, 1), with j1 = k1 and2k1 ≥ v−1.
We will show thatk = k1 + 1 andv − 1 = 2k − j − 1. The above inequalities imply that(

k1 + 1

2

)
= 1 + 2 + · · ·+ k1 ≤ e

=

(
k1 + 1

2

)
− k1 + (v − 1) <

(
k1 + 1

2

)
+ (k1 + 1) =

(
k1 + 2

2

)
.

But k is the unique integer satisfying
(

k
2

)
≤ e <

(
k+1
2

)
. Thusk = k1 + 1.

It follows that

e = (v − 1) + 1 + 2 + · · ·+ (k − 2) =

(
k + 1

2

)
− j,

and so2k − j = v.
We now consider the cases 2.1a, 2.2a, and 2.3a individually. Actually,µ2.2 does not exist

sincek1 = j1. If µ = µ2.3, thenµ = (3) sincek1 = j1 = 3. This contradicts the assumption
thatµ is a partition of an integer greater than 3. Therefore

µ = µ2.1 = (k1, k1 − 1, . . . , ĵ1, . . . , 2, 1) = (k − 2, k − 3, . . . 2, 1),

sincek1 = j1 andk = k1 + 1. Now since2k − j − 1 = v − 1 we have

π = (2k − j − 1, k − 2, k − 3, . . . 2, 1) =

{
π2.1 if e =

(
v
2

)
or e =

(
v
2

)
− (v − 2),

π2.2 otherwise.

Finally, if µ is a decreasing partition of0, 1, 2, or 3, then eitherπ = (v − 1, 2, 1) = π1.3, or
π = (v − 1) = π1.1, or π = (v − 1, j′) = π1.1 for some1 ≤ j′ ≤ 3.

Now, we prove thatπ1.2 andπ1.3 (if they exist) have the same diagonal sequence asπ1.1

(which always exists). This in turn implies (by using the duality argument mentioned in Section
3) thatπ2.2 andπ2.3 also have the same diagonal sequence asπ2.1 (which always exists). We use
the following observation. If we index the rows and columns of the adjacency matrixAdj(π)
starting at zero instead of one, then two positions(i, j) and(i′, j′) are in the same diagonal if and
only if the sum of their entries are equal, that is,i + j = i′ + j′. If π1.2 exists then2k′ − j′ ≤ v.
Applying the previous argument toπ1.1 andπ1.2, we observe that the top row of the following
lists shows the positions where there is a black dot inAdj(π1.1) but not inAdj(π1.2) and the
bottom row shows the positions where there is a black dot inAdj(π1.2) but not inAdj(π1.1).

(v − k′ − 2, v − 1) . . . (v − k′ − t, v − 1) . . . (v − k′ − (k′ − j′), v − 1)
(v − 1− k′, v − 2) . . . (v − 1− k′, v − t) . . . (v − 1− k′, v − (k′ − j′)).

Each position in the top row is in the same diagonal as the corresponding position in the second
row. Thus the number of positions per diagonal is the same inπ1.1 as inπ1.2. That is,δ (π1.1) =
δ (π1.2).

Similarly, if π1.3 exists thenk′ ≥ j′ = 3. To show thatδ (π1.1) = δ (π1.3) note that the only
position where there is a black dot inAdj(π1.1) but not inAdj(π1.3) is (v−1−k′, v−1−k′+3),
and the only position where there is a black dot inAdj(π1.3) but not inAdj(π1.1) is (v− k′, v−
1− k′ + 2). Since these positions are in the same diagonal thenδ (π1.1) = δ (π1.3).

Theorem 2.4 is proved.
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5. PROOF OF L EMMA 4.1

There is a variation of the formula forP2(Th(π)) in Lemma 2.2 that is useful in the proof
of Lemma 4.1. We have seen that each black dot in the adjacency matrix for a threshold graph
contributes a summand, depending on the location of the black dot in the matrixE in (3.1).
For example, ifπ = (3, 1), then the part of(1/2)E that corresponds to the black dots in the
adjacency matrixAdj(π) for π is

Adj((3, 1)) =


+ • • •

+ • ◦
+ ◦

+

 ,


+ 1 2 3

+ 3
+

+

 .

ThusP2(Th(π)) = 2(1 + 2 + 3 + 3) = 18. Now if we index the rows and columns of the
adjacency matrix starting with zero instead of one, then the integer appearing in the matrix
(1/2)E at entry(i, j) is justi + j. So we can computeP2(Th(π)) by adding all of the positions
(i, j) corresponding to the positions of black dots in the upper-triangular part of the adjacency
matrix of Th(π). What are the positions of the black dots in the adjacency matrix for the
threshold graph corresponding to a partitionπ = (a0, a1, . . . , ap)? The positions corresponding
to a0 are

(0, 1), (0, 2), . . . , (0, a0)

and the positions corresponding toa1 are

(1, 2), (1, 3), . . . , (1, 1 + a1).

In general, the positions corresponding toat in π are

(t, t + 1), (t, t + 2), . . . , (t, t + at).

We use these facts in the proof of Lemma 4.1.
Let µ = (c, c − 1, . . . , ĵ, . . . , 2, 1) be the quasi-complete partition in Dis(v, e − (v − 1)),

where1 ≤ j ≤ c < v− 2 and1+2+ · · ·+ c− j ≥ 4. We deal with the casesj = 1, j = c, and
2 ≤ j ≤ c − 1 separately. Specifically, we show that ifπ = (v − 1 : µ) is optimal, thenj = c
and

(5.1) π = (v − 1, c− 1, . . . , 2, 1),

with 2c ≥ v − 1.
Arguments for the cases are given below.

5.1. j = 1 : µ = (c, c − 1, . . . , 3, 2). Since2 + 3 + · · · + c ≥ 4 thenc ≥ 3. We show that
π = (v−1 : µ) is not optimal. In this case, the adjacency matrix forπ has the following form:

0 1 2 · · · c · · · v − 1
0 + • • · · · • • • · · · •
1 + • · · · • • ◦ · · · ◦
2 +
...

...
c− 1 + • • ◦ · · · ◦

c + ◦ ◦ · · · ◦
c + 1 + ◦ · · · ◦

...
...

...
◦

v − 1 +
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5.1.1. 2c ≤ v − 1. Let

π′ = (v − 1, 2c− 1, c− 2, c− 3, . . . , 3, 2).

The parts ofπ′ are distinct and decreasing since2c ≤ v − 1. Thusπ′ ∈ Dis(v, e).
The adjacency matricesAdj(π) andAdj(π′) each havee black dots, many of which appear in

the same positions. But there are differences. Using the fact thatc− 1 ≥ 2, the first row of the
following list shows the positions in which a black dot appears inAdj(π) but not inAdj(π′).
And the second row shows the positions in which a black dot appears inAdj(π′) but not in
Adj(π):

(2, c + 1) (3, c + 1) · · · (c− 1, c + 1) (c− 1, c)

(1, c + 2) (1, c + 3) · · · (1, 2c− 1) (1, 2c)

For each of the positions in the list, except the last ones, the sum of the coordinates for the
positions is the same in the first row as it is in the second row. But the coordinates of the last
pair in the first row sum to2c−1 whereas the coordinates of the last pair in the second row sum
to 2c + 1. It follows thatP2(π

′) = P2(π) + 4. Thus,π is not optimal.

5.1.2. 2c > v − 1. Let π′ = (v − 2, c, c− 1, . . . , 3, 2, 1). Sincec < v − 2, the partitionπ′ is in
Dis(v, e). The positions of the black dots in the adjacency matricesAdj(π) andAdj(π′) are the
same but with only two exceptions. There is a black dot in position(0, v− 1) in π but not inπ′,
and there is a black dot in position(c, c + 1) in π′ but not inπ. Sincec + (c + 1) > 0 + (v− 1),
π is not optimal.

5.2. j = c : µ = (c− 1, . . . , 2, 1). Since1 + 2 + · · ·+ (c− 1) ≥ 4, thenc ≥ 4. We will show
that if 2c ≥ v − 1, thenπ has the same diagonal sequence as the quasi-complete partition. And
if 2c < v − 1, thenπ is not optimal.

The adjacency matrix forπ is of the following form:

0 1 2 · · · c · · · v − 1

0 + • • · · · • • · · · •
1 + • • ◦ ◦
...

. ..

+ • ◦ · · · ◦
c + ◦ · · · ◦

+ · · · ◦
...

v − 1 +

5.2.1. 2c ≥ v − 1. The quasi-complete partition inG(v, e) is π′ = (c + 1, c, . . . , k̂, . . . , 2, 1),
wherek = 2c− v + 2. To see this, notice that

1 + 2 + · · ·+ c + (c + 1)− k = 1 + 2 + · · ·+ (c− 1) + (v − 1)

for k = 2c− v + 2. Since2c ≥ v − 1 andc < v − 2, then1 ≤ k < c andπ′ ∈ Dis(v, e).
To see thatπ andπ′ have the same diagonal sequence, we again make a list of the positions

in which there is a black dot inAdj(π) but not inAdj(π′) (the top row below), and the positions
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in which there is a black dot inAdj(π′) but not inAdj(π) (the bottom row below):

(0, c + 2) (0, c + 3) · · · (0, c + t + 1) · · · (0, v − 1)

(1, c + 1) (2, c + 1) · · · (t, c + 1) · · · (v − c− 2, c + 1).

Each position in the top row is in the same diagonal as the corresponding position in the bottom
row, that is,0 + (c + t + 1) = t + (c + 1). Thus the diagonal sequencesδ(π) = δ(π′).

5.2.2. 2c < v−1. In this case, letπ′ = (v−1, 2c−2, c−3, . . . , 3, 2). And since2c−2 ≤ v−3,
the parts ofπ′ are distinct and decreasing. That is,π′ ∈ Dis(v, e).

Using the fact thatc − 2 ≥ 2, we again list the positions in which there is a black dot in
Adj(π) but not inAdj(π′) (the top row below), and the positions in which there is a black dot
in Adj(π′) but not inAdj(π):

(2, c) (3, c) · · · (c− 1, c) (c− 2, c− 1)

(1, c + 1) (1, c + 2) · · · (1, 2c− 2) (1, 2c− 1).

All of the positions but the last in the top row are on the same diagonal as the corresponding
position in the bottom row:t + c = 1 + (c− 1 + t). But in the last positions we have(c− 2) +
(c− 1) = 2c− 3 and1 + (2c− 1) = 2c. ThusP2(π

′) = P2(π) + 6 and soπ is not optimal.

5.3. 1 < j < c : µ = (c, c − 1, . . . , ĵ, . . . , 2, 1). We will show thatπ = (v − 1, c, c −
1, . . . , ĵ, . . . , 2, 1) is not optimal. The adjacency matrix forπ has the following form:

0 1 2 · · · c
−

1
c c
+

1

c
+

2
· · · v
−

1
0 + • • · · · • • • · · · •
1 + • • • ◦ ◦
...
c− j • • ◦ · · · ◦
c− j + 1

. .. • ◦ ◦ · · · ◦
...
c− 1 + • ◦ ◦ · · · ◦
c + ◦ ◦ · · · ◦
c + 1 + ◦ · · · ◦
... +

...
v − 1 +

There are two cases.

5.3.1. 2c > v−1. Letπ′ = (v−r, c, c−1, . . . , ̂j + 1− r, . . . , 2, 1), wherer = min(v−1−c, j).
Thenr > 1 becausej > 1 andc < v − 2. We show thatπ′ ∈ Dis(v, e) andP2(π

′) > P2(π).
In order forπ′ to be in Dis(v, e), the sum of the parts inπ′ must equal the sum of the parts in

π:
1 + 2 + · · ·+ c + (v − r)− (j + 1− r) = 1 + 2 + · · ·+ c + (v − 1)− j.

And the parts ofπ′ must be distinct and decreasing:

v − r > c > j + 1− r > 1.
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The first inequality holds becausev − 1 − c ≥ r. The last two inequalities hold because
c > j > r > 1. Thusπ′ ∈ Dis(v, e).

The top row below lists the positions where there is a black dot inAdj(π) but not inAdj(π′);
the bottom row lists the positions where there is a black dot inAdj(π′) but not inAdj(π):

(0, v − 1) · · · (0, v − t) · · · (0, v − r + 1)
(c− j + r − 1, c + 1) · · · (c− j + r − t, c + 1) · · · (c− j + 1, c + 1).

Sincer > 1, the lists above are non-empty. Thus, to ensure thatP2(π
′) > P2(π), it is sufficient

to show that for each1 ≤ t ≤ r − 1, position(0, v − t) is in a diagonal to the left of position
(c− j + r − t, c + 1). That is,

0 < [(c− j + r + 1− t) + (c + 1)]− [0 + (v − t)] = 2c + r − v − j,

or equivalently,
v − 2c + j − 1 ≤ r = min(v − 1− c, j).

The inequalityv − 2c + j ≤ v − 1− c holds becausej < c, andv − 2c + j ≤ j holds because
v − 1 < 2c. It follows thatπ is not an optimal partition.

5.3.2. 2c ≤ v− 1. Again we show thatπ = (v− 1, c, c− 1, . . . , ĵ, . . . , 2, 1) is not optimal. Let

π′ = (v − 1, 2c− 2, c− 2, . . . , ĵ − 1, . . . , 2, 1).

The sum of the parts inπ equals the sum of the parts inπ′. And the partitionπ′ is decreasing:

1 ≤ j − 1 ≤ c− 2 < 2c− 2 < v − 1.

The first three inequalities follow from the assumption that1 < j < c. And the fourth inequality
holds because2c ≤ v − 1. Soπ′ ∈ Dis(v, e).

The adjacency matricesAdj(π) andAdj(π′) differ as follows. The top rows of the following
two lists contain the positions where there is a black dot inAdj(π) but not inAdj(π′); the
bottom row lists the positions where there is a black dot inAdj(π′) but not inAdj(π).

List 1 (2, c + 1) · · · (t, c + 1) · · · (c− j, c + 1)
(1, c + 2) · · · (1, c + t) · · · (1, 2c− j)

List 2 (c− j + 1, c) · · · (c− j + t, c) · · · (c− 1, c)
(1, 2c− j + 1) · · · (1, 2c− j + t) · · · (1, 2c− 1).

Each position,(t, c + 1) (t = 2, . . . , c − j), in the top row in List 1 is in the same diagonal as
the corresponding position,(1, c + t), in the bottom row of List 1. Each position,(c− j + t, c)
(t = 1, . . . , j − 1), in the top row of List 2 is in a diagonal to the left of the corresponding
position,(1, 2c − j + t) in the bottom row of List 2. Indeed,(c − j + t) + c = 2c − j + t <
2c − j + t + 1 = 1 + (2c − j + t). And since1 < j, List 2 is not empty. It follows that
P2(π

′) > P2(π) and soπ is not a optimal partition.
The proof of Lemma 4.1 is complete.

6. PROOF OF THEOREM 2.8 AND COROLLARIES 2.9 AND 2.10

The notation in this section changes a little from that used in Section 1. In Section 1, we
write e =

(
k+1
2

)
− j, with 1 ≤ j ≤ k. Here, we lett = k − j so that

(6.1) e =

(
k

2

)
+ t,

with 0 ≤ t ≤ k − 1. Then Equation (1.1) is equivalent to

(6.2) C(v, e) = C(k, t) = (k − t)(k − 1)2 + tk2 + t2 = k(k − 1)2 + t2 + t(2k − 1).

J. Inequal. Pure and Appl. Math., 10(3) (2009), Art. 64, 34 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


SUM OF SQUARES OFDEGREES IN AGRAPH 21

Before proceeding, we should say that the abuse of notation inC(v, e) = C(k, t) should not
cause confusion as it will be clear which set of parameters(v, e) vs. (k, t) are being used. Also
notice that if we were to expand the range oft to 0 ≤ t ≤ k, that is allowt = k, then the
representation ofe in Equation (6.1) is not unique:

e =

(
k

2

)
+ k =

(
k + 1

2

)
+ 0.

But the value ofC(v, e) is the same in either case:

C(k, k) = C(k + 1, 0) = (k + 1)k2.

Thus we may take0 ≤ t ≤ k.
We begin the proofs now. At the beginning of Section 2.5, we showed thatS(v, e) = C(v, e)

for e = 0, 1, 2, 3. Also note that, whenm is an integer,Diff(v, m) = 0. We now compare
S(v, e) with C(v, e) for 4 ≤ e < m. The first task is to show thatS(v, e) > C(v, e) for all but a
few values ofe that are close tom. We start by finding upper and lower bounds onS(v, e) and
C(v, e).

Define

U(e) = e
(√

8e + 1− 1
)

and

U(k, t) =

((
k

2

)
+ t

) (√
(2k − 1)2 + 8t− 1

)
.

The first lemma shows thatU(e) is an upper bound forC(v, e) and leads to an upper bound
for S(v, e). The arguments used here to obtain upper and lower bounds are similar to those in
[12].

Lemma 6.1. For e ≥ 2,

C(v, e) ≤ U(e) and

S(v, e) ≤ U(e′) + (v − 1)(4e− v(v − 1)).

It is clearly enough to prove the first inequality. The second one is trivially obtained from
Equation (1.2) on linking the values ofS(v, e) andC(v, e).

Proof. We prove the inequality in each interval
(

k
2

)
≤ e ≤

(
k+1
2

)
and so fixk ≥ 2 for now.

We make yet another change of variables to remove the square root in the above expression of
U(k, t).

Sett(x) = (x2 − (2k − 1)2)/8, for 2k − 1 ≤ x ≤ 2k + 1. Then

U(k, t(x))− C(k, t(x)) =
1

64
(x− (2k − 1))((2k + 1)− x)

(
x2 + 4(k − 2)(k + x)− 1

)
,

which is easily seen to be positive for allk ≥ 2 and all2k − 1 ≤ x ≤ 2k + 1. �

Now define

L(e) = e
(√

8e + 1− 1.5
)

and

L(k, t) =

((
k

2

)
+ t

) (√
(2k − 1)2 + 8t− 1.5

)
.

The next lemma shows thatL(e) is a lower bound forC(v, e) and leads to a lower bound for
S(v, e).
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Lemma 6.2. For e ≥ 3

C(v, e) ≥ L(e) and

S(v, e) ≥ L(e′) + (v − 1)(4e− v(v − 1)).

Proof. As above, sett(x) = (x2 − (2k − 1)2)/8, 2k − 1 ≤ x ≤ 2k + 1, andx(k, b) = 2k + b,
−1 ≤ b ≤ 1. Then

C(k, t(x(k, b)))− L(k, t(x(k, b)))

=
1

64
b2(b + 4k − 4)2 +

1

32
(4k − 7)

(
b +

2(k + 1)

4k − 7

)2

+
4k(22k − 49) + 13

64(4k − 7)

This expression is easily seen to be positive fork ≥ 3. �

We are now ready to prove thatS(v, e) > C(v, e) for 0 ≤ e ≤ m for all but a few small
values and some values close tom.

Lemma 6.3. Assumev ≥ 5. For 4 ≤ e < v we haveC(v, e) < S(v, e).

Proof. As we showed above in Lemma 6.1,e
(√

8e + 1− 1
)

is an upper bound onC(v, e) for
all 1 ≤ e ≤

(
v
2

)
. Furthermore, it is easy to see that for1 ≤ e < v we haveS(v, e) = e2 + e. In

fact, the quasi-star graph is optimal for1 ≤ e < v. The rest is then straightforward. For4 ≤ e,
we have

0 < (e− 3)(e− 1) = (e + 2)2 − (8e + 1).

Taking square roots and rearranging some terms proves the result. �

Lemma 6.4. Assumev ≥ 5. For v ≤ e ≤ m− 0.55v we have

S(v, e) > C(v, e).

Proof. Assume that0 ≤ e ≤ m. Let e = m− d with 0 ≤ d ≤ m. By Lemmas 6.1 and 6.2, we
have

S(v, e)− C(v, e) ≥ L(e′) + (v − 1)(4e− v(v − 1))− U(e)

= (m + d)
√

8(m + d) + 1− (m− d)
√

8(m− d) + 1

−
((

4(v − 1) +
5

2

)
d +

m

2

)
.

We focus on the first two terms. Set

h(d) = (m + d)
√

8(d + m) + 1− (m− d)
√

8(m− d) + 1.

By considering a real variabled, it is easy to see thath′(d) > 0, h(2)(0) = 0, andh(3)(d) < 0
on the interval in question. Thush(d) is concave down on0 ≤ d ≤ m. We are comparingh(d)
with the line(4(v − 1) + 5/2)d + m/2 on the interval[0.55v, m − v]. The concavity ofh(d)
allows us to check only the end points. Ford = m− v, we need to check

1

2
v

(
(v − 3)

√
4v2 − 12v + 1− 2

√
8v + 1

)
>

1

4
v

(
4v2 − 21v + 7

)
.

It is messy, but elementary to verify this inequality forv ≥ 9.
Ford = 0.55v we need to check(

v2

4
+ 0.3v

)√
2v2 + 2.4v + 1−

(
v2

4
− 0.8v

)√
2v2 − 6.4v + 1 > v(2.325v − 0.95).

This inequality holds forv ≥ 29. This time the calculations are rather messier, yet still elemen-
tary. For4 < v ≤ 28, we verify the result directly by calculation. �
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In Section 2, we introduced the valuee0 =
(

k0

2

)
.

We now define

e1 =

(
k0 − 1

2

)
,

f1 =

(
v

2

)
−

(
k0 + 1

2

)
,

f2 =

(
v

2

)
−

(
k0 + 2

2

)
.

The next lemma shows that those binomial coefficients and their complements are all we
need to consider.

Lemma 6.5. e1, f2 < m− 0.55v.

As a consequence,S(v, e) > C(v, e) for all 4 ≤ e ≤ max{e1, f2}. We need a small result on
the relationship betweenk0 andv first. The upper bound will be used later in this section.

Lemma 6.6.
√

2
2

(
v − 1

2

)
− 1

2
< k0 <

√
2

2
v + 1

2
.

Proof. Since
(

k0

2

)
≤ m ≤

(
k0+1

2

)
− 1

2
, we have

2k0(k0 − 1) ≤ v2 − v ≤ 2k0(k0 + 1)− 2.

Thus

2(k0 − 1/2)2 ≤ (v − 1/2)2 + 1/4 ≤ 2(k0 + 1/2)2 − 2.

That is,
√

2

2

√(
v − 1

2

)2

+
9

4
− 1

2
≤ k0 ≤

√
2

2

√(
v − 1

2

)2

+
1

4
+

1

2
.

The result follows using(v − 1/2)2 < (v − 1/2)2 + 9/4 and(v − 1/2)2 + 1/4 < v2. �

Proof of Lemma 6.5.Note thate1 = e0 − (k0 − 1) ≤ m− (k0 − 1) andf2 = f1 − (k0 + 1) <
m − (k0 + 1) < m − (k0 − 1). Hence, it is enough to show that0.55v < (k0 − 1). This
follows from the previous lemma forv ≥ 12. For5 ≤ v ≤ 11, we verify the statement by direct
calculation. �

Next, we show that the difference function

Diff(v, e) = S(v, e)− C(v, e)

is piecewise linear on the intervals induced by the binomial coefficients
(

k
2

)
, 2 ≤ k ≤ v, and

their complements
(

v
2

)
−

(
k
2

)
, 2 ≤ k ≤ v. In Section 2.7, we show a specific example.

Lemma 6.7. As a function ofe, the functionDiff(v, e) is linear on the interval

max

{(
k

2

)
,

(
v

2

)
−

(
l + 1

2

)}
≤ e ≤ min

{(
k + 1

2

)
,

(
v

2

)
−

(
l

2

)}
.

The line has the slope

(6.3) −1

4

(
1− (2k − 3)2 − (2l − 3)2 + (2v − 5)2

)
.
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Proof. If e =
(

k+1
2

)
− j with 1 ≤ j ≤ k, then it is easy to see from Equation (1.1) that

C(v, e + 1)− C(v, e) = 2e− 2

(
k

2

)
+ 2k = 2e− k(k − 3).

Using Equations (1.2) and (6.2), we find that, ife′ =
(

l
2

)
+ c, 1 ≤ c ≤ l, then

S(v, e + 1)− S(v, e) = 2e + 4(v − 1)− 2

(
v

2

)
− 2l + 2

(
l

2

)
+ 2.

We now have

(S(v, e + 1)− C(v, e + 1))− (S(v, e)− C(v, e))

= k(k − 3) + l(l − 3)− (v − 1)(v − 4) + 2

= −1

4

(
1− (2k − 3)2 − (2l − 3)2 + (2v − 5)2

)
.

The conclusion follows. �

Since we already know thatDiff(v, e) > 0 for 4 ≤ e ≤ max{e1, f2}, andDiff(v, e) = 0
for e = 0, 1, 2, 3, or m, we can now focus on the intervalI1 = (max{e1, f2}, m). The only
binomial coefficients or complements of binomial coefficients that can fall into this interval are
e0 andf1.

There are two possible arrangements we need to consider
(1) e1, f2 < e0 ≤ f1 < m and
(2) f1 < e0 ≤ m.

The next result deals with the first arrangement.

Lemma 6.8. If e0 ≤ f1 < m, thenq0(v) > 0. Furthermore,S(v, e) ≥ C(v, e) for 0 ≤ e ≤ m
with equality if and only ife = 0, 1, 2, 3, or m; or e = e0 and(2v− 3)2 − 2(2k0 − 1)2 = −1, 7.

Proof. e0 ≤ f1 impliese0 ≤ m− k0/2. By Lemma 6.6, we conclude that forv > 12,

4q0(v) = 1− 2(2k0 − 3)2 + (2v − 5)2

= 16(m− e0)− 16(v − k0) + 8

≥ 24k0 − 16v + 8

≥ 24
(√

2/2(v − 1/2)− 1/2
)
− 16v + 8

=
(
12
√

2− 16
)

v −
(
6
√

2 + 4
)

> 0.

For smaller values, we verify thatq0(v) > 0 by direct calculation.
If e = f1 in Equation (6.2), and sincee0 ≤ f1 < m, thenk = k0 andt = f1 −

(
k0

2

)
. Using

Equation (1.2),Diff(v, f1) = (m−f1)q0(v) > 0. Similarly, sincef2 < e0 ≤ f1, then fore = e′0
in Equation (6.2), we havek = k0 + 1 andt = e′0 −

(
k0+1

2

)
. Again, using Equation (1.2),

Diff(v, e0) = (v2 − 3v − 2k2
0 + 2k0 + 2)(v2 − 3v − 2k2

0 + 2k0)/4(6.4)

= ((2v − 3)2 − 2(2k0 − 1)2 + 1)((2v − 3)2 − 2(2k0 − 1)2 − 7)/64.

Notice thatDiff(v, e0) ≥ 0 since both factors in (6.4) are even and differ by 2. Equality occurs
if and only if (2v − 3)2 − 2(2k0 − 1)2 = −1 or 7. Finally, observe thatDiff(v, e1) > 0
and Diff(v, f2) > 0 by Lemmas 6.4 and 6.5, ande1 and f2 are both less thanf1. Hence
Diff(v, e) ≥ 0 for e ∈ [max{e1, f2}, m] follows from the piecewise linearity ofDiff(v, e). The
rest follows from Lemma 6.4. �

J. Inequal. Pure and Appl. Math., 10(3) (2009), Art. 64, 34 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


SUM OF SQUARES OFDEGREES IN AGRAPH 25

Now we deal with the casef1 < e0. There are three cases depending on the sign ofq0(v).
All these cases require the following fact. Iff1 < e0, then fore0 ≤ e ≤ m in Equation (6.2),
k = k0 andt = e−

(
k0

2

)
. Sincef1 < e ≤ m, for e′ in Equation (6.2),k = k0 andt = e′ −

(
k0

2

)
.

Thus, using Equation (1.2),

(6.5) Diff(v, e) = (m− e)q0(v)

wheneverf1 < e0 ≤ e ≤ m. This automatically gives the sign ofDiff(v, e) nearm. By the
piecewise linearity ofDiff(v, e) given by Lemma 6.7, the only thing remaining is to investigate
the sign ofDiff(v, f1).

Lemma 6.9. Assumef1 < e0 and q0(v) > 0. ThenS(v, e) ≥ C(v, e) for 0 ≤ e ≤ m, with
equality if and only ife = 0, 1, 2, 3, m.

Proof. First, note thate1 ≤ f1 < e0 < m, sincee1 > f1 occurs only ifm = e0 and thus
q0(v) = 2− 4(v− k0) < 0. Fore0 ≤ e < m, by Equation (6.5),Diff(v, e) = (m− e)q0(v) > 0.
Furthermore, ife = f1 in Equation (6.2), thenk = k0 − 1 and t = f1 −

(
k0−1

2

)
. Thus, by

Equation (1.2),

Diff(v, f1) = (−4k4
0 + 16k3

0 + 4v2k2
0 − 12vk2

0 − 8v2k0 + 4k0 − v4 + 6v3 + v2 − 6v)/4,

and
Diff(v, f1)−Diff(v, e0) = (2k2

0 − v2 + v)(−2− 2k2
0 + 8k0 + v2 − 5v)/2.

The first factor is positive becausef1 < e0. The second factor is positive forv ≥ 15. This
follows from the fact thatv <

√
2k0+(

√
2+1)/2 by Lemma 6.6, and−2−2k2

0+2k0+v2−v ≥ 0
becausee1 ≤ f1. Forv ≥ 15,

−2− 2k2
0 + 8k0 + v2 − 5v = (−2− 2k2

0 + 2k0 + v2 − v) + 2(3k0 − 2v)

≥ 2(3k0 − 2v)

> 0.

SinceDiff(v, e0) > 0, thenDiff(v, f1) > 0 for v ≥ 15. The only case left to verify satisfying
the conditions of this lemma isv = 14. In this case,f1 = 36 andDiff(14, 36) = 30 > 0. �

The previous two lemmas provide a proof of part 1 of Theorem 2.8.

Lemma 6.10. Assumef1 < e0 and q0(v) = 0. ThenS(v, e) ≥ C(v, e) for 0 ≤ e ≤ m with
equality if and only ife = 0, 1, 2, 3, e0, e0 + 1, . . . ,m.

Proof. For e0 ≤ e ≤ m, by Equation (6.5),Diff(v, e) = (m− e)q0(v) = 0. As in the previous
lemma, forv ≥ 15

Diff(v, f1)−Diff(v, e0) = (2k2
0 − v2 + v)(−2− 2k2

0 + 8k0 + v2 − 5v)/2 > 0

and thusDiff(v, f1) > 0. The only value ofv < 15 satisfying the conditions of this lemma is
v = 6 with f1 = 5, andDiff(6, 5) = 4 > 0. �

The previous lemma provides a proof for part 3 of Theorem 2.8.

Lemma 6.11.Assumef1 < e0 ≤ m andq0(v) < 0. ThenS(v, e) ≥ C(v, e) for 0 ≤ e ≤ m−R0

andS(v, e) ≤ C(v, e) for m−R0 ≤ e ≤ m with equality if and only ife = 0, 1, 2, 3, m−R0, m.

Proof. Fore0 ≤ e < m, by Equation (6.5),Diff(v, e) = (m−e)q0(v) < 0. This time it is possi-
ble thatf1 < e1. In this case, by Lemmas 6.4 and 6.5, we know thatDiff(v, f1), Diff(v, e1) > 0.
Also, m = e0 andR0 = 0, implying Diff(v, e0) = 0 andDiff(v, e) > 0 for all e1 ≤ e < e0 =
m−R0 = m.
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If e1 ≤ f1, by Lemma 6.7,Diff(v, e) is linear as a function ofe on the interval[f1, e0].
Let −q1(v) be the slope of this line. Sincee1 < f1 < e0 ≤ m, thenk = k0 and l = k0

in Lemma 6.7. Thusq1(v) = (−1 − 2(2k0 − 4)2 + (2v − 5)2)/4 = q0(v) + 2k0 − 4 and
Diff(v, f1) = (m− e0)q0(v) + (e0 − f1)q1(v). The line through the two points(e0, Diff(v, e0))
and(f1, Diff(v, f1)) crosses thex-axis atm−R0. We now show thatf1 < m−R0 < e0, which
in turn proves thatDiff(v, f1) > 0.

We have

m−R0 = e0 + (m− e0)
q0(v)

q1(v)
(6.6)

= m− (m− e0)
2k0 − 4

q1(v)
.(6.7)

Sincee0 ≤ m andv > 4, then

(6.8) k0 ≤
1

2
+

√(
v

2

)
+

1

4
< 2 +

√(
v − 2

2

)
,

which is equivalent toq1(v) > 0. Thusm−R0 < e0 by Equation (6.6). To provef1 < m−R0,
according to Equation (6.7), we need to show

(m− e0)
2k0 − 4

q1(v)
<

(
k0 + 1

2

)
−m.

After multiplying by q1(v), the last inequality becomes(
m−

(
k0 + 1

2

)
+

k0

2

)
(2k0 − 4) <

((
k0 + 1

2

)
−m

) (
(v − 2)(v − 3)− 2(k0 − 2)2

)
,

which is equivalent to

k0

2
(2k0 − 4) <

((
k0 + 1

2

)
−m

)
((v − 2)(v − 3)− 2(k0 − 2)(k0 − 3)) .

Sincef1 < e0 we know thatk0/2 <
(

k0+1
2

)
− m. Also, Inequality (6.8) is equivalent to

2k0 − 4 < (v − 2)(v − 3) − 2(k0 − 2)(k0 − 3). Multiplying these two inequalities yields the
result. �

The previous lemma provides a proof of part 2 of Theorem 2.8.
The expression form−R0 is sometimes an integer. Thosev < 1000 for whichm−R0 is an

integer are 14, 17, 21, 120, 224, 309, 376, 393, 428, 461, 529, 648, 697, and 801.
In the remaining part of this section, we prove Corollaries 2.9 and 2.10.

Lemma 6.12.Assume thatv > 4 andq0(v) < 0. ThenR0 ≤ αv whereα = 1−
√

2/2.

Proof. We show thatR0 ≤ αv for v > 4. Recall that

R0 =
(m− e0)(2k0 − 4)

q1(v, k0)
.

Thus we need to show
αvq1(v, k0)− (m− e0)(2k0 − 4) > 0.

Define the functionh(x) = αvq1(v, x) −
(
m−

(
x
2

))
(2x − 4). The interval forx is limited by

the condition thatq0(v) < 0 which implies that

i1 :=

√
2

2
v − 5

√
2

4
+

3

2
< k0.
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Furthermore, sincee0 ≤ m, we know thati2 := (
√

2/2)v + 1/2 > k0. We show thath(x) is
increasing onI := [i1, i2]. Note that, sincev > 4,

h′′(x) = −6−
(
4− 2

√
2
)

v + 6x > 0

for x ∈ I. Henceh(x) is concave up onI. Furthermore

h′(i1) =
(
3− 2

√
2
)

v2 +

(
−10 +

11

2

√
2

)
v − 15

4

√
2 +

73

8
> 0

for v ≥ 11, and hence

h(x) > h(i1)

=
1

32

((
−72 + 58

√
2
)

v + 23
(
6− 5

√
2
))

> 0

for v ≥ 11. The only values ofv greater than 4 and smaller than 11 for whichq0(v) < 0 are
v = 7, 10. The result is easily verified in those two cases. �

How good is the boundR0 ≤ αv? Suppose there is a parameterβ such thatR0 ≤ βv with
β < α. Assume thatq0(v) = −2. There are infinitely many values ofv for which this is true
(see Section 9). In all of those casesk0(v) = 1/2

√
(9 + (2v − 5)2)/2 + 3/2. We have the

following
(βvq1(v)− (m− e0)(2k0 − 4))/v2 →

√
2β −

√
2 + 1 ≥ 0

asv →∞. Thusβ ≥ α and henceα is the greatest number for which the bound onR0 holds.
SinceS(v, e) ≥ C(v, e) for all 1 ≤ e ≤ m−R0, we have proved Corollary 2.9.
To prove Corollary 2.10, we need to investigate the other non-trivial case of equality in The-

orem 2.8. It occurs whene = e0 and (2v − 3)2 − 2(2k0 − 1)2 = −1, 7. Notice that this
implies

m− e0 =
1

16

(
(2v − 1)2 − 2(2k0 − 1)2 + 1

)
=

v

2
or

v − 1

2
.

There are infinitely many values ofv such that(2v − 3)2 − 2(2k0 − 1)2 = −1, and infinitely
many values ofv such that(2v − 3)2 − 2(2k0 − 1)2 = 7 (see Section 9). Thus the most we can
say is thatS(v, e) > C(v, e) for all 4 ≤ e < m− v/2, and Corollary 2.10 is proved.

7. PROOF OF COROLLARY 2.11

Recall that for eachv, k0(v) = k0 is a unique positive integer such that(
k0

2

)
≤ 1

2

(
v

2

)
<

(
k0 + 1

2

)
.

It follows that

(7.1) −1 ≤ (2v − 1)2 − 2(2k0 − 1)2, and (2v − 1)2 − 2(2k0 + 1)2 ≤ −17.

Let us restrict our attention to the parts of the hyperbolas

Hlow : (2v − 1)2 − 2(2k − 1)2 = −1, Hhigh : (2v − 1)2 − 2(2k + 1)2 = −17

that occupy the first quadrant as shown in Figure 7.1. Then each lattice point,(v, k0) is in the
closed region bounded byHlow below andHhigh above. Furthermore, the sign of the quadratic
form (2v − 5)2 − 2(2k − 3)2 + 1 determines whether the quasi-star graph is optimal inG(v, e)
for all 0 ≤ e ≤ m. By Theorem 2.8, if(2v − 5)2 − 2(2k − 3)2 + 1 ≥ 0, thenS(v, e) ≥ C(v, e)
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Figure 7.1: Hyperbolas(2v−1)2−2(2k−1)2 = −1, (2v−1)2−2(2k+1)2 = −17, (2v−5)2−2(2k−3)2 = −1

(and the quasi-star graph is optimal) for0 ≤ e ≤ m. Thus, if the lattice point(v, k) is between
Hhigh and the hyperbola

H : (2v − 5)2 − 2(2k − 3)2 = −1,

then the quasi-star graph is optimal inG(v, e) for all 0 ≤ e ≤ m. But if the lattice point(v, k0)
is betweenH andHlow, then there exists a value ofe in the interval4 ≤ e ≤ m such that
the quasi-complete graph is optimal and the quasi-star graph is not optimal. Of course, if the
lattice point(v, k0) is on H, then the quasi-star graph is optimal for all0 ≤ e ≤ m but the
quasi-complete graph is also optimal for

(
k0

2

)
≤ e ≤ m. Apparently, the density limit

lim
v→∞

n(v)

v

from Corollary 2.11 depends on the density of lattice points(v, k) in the region betweenHhigh

andH.
We can give a heuristic argument to suggest that the limit is2−

√
2. The asymptotes for the

three hyperbolas are

A : v − 5

2
=
√

2

(
k − 3

2

)
,

Alow : v − 1

2
=
√

2

(
k − 1

2

)
,

Ahigh : v − 1

2
=
√

2

(
k +

1

2

)
,
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and intersect thek-axis at

k =
6− 5

√
2

4
,

klow =
2−

√
2

4
,

khigh =
−2−

√
2

4
.

The horizontal distance betweenAhigh andAlow is

klow − khigh = 1

and the horizontal distance betweenAhigh andA is

k − khigh = 2−
√

2.

To make the plausibility argument rigorous, we need a theorem of Weyl [15, Satz 13, page
334], [9, page 92]:

For any real numberr, let 〈r〉 denote the fractional part ofr. That is,〈r〉 is the unique number
in the half-open interval[0, 1) such thatr − 〈r〉 is an integer. Now letβ be an irrational real
number. Then the sequence〈nβ〉, n = 1, 2, 3, . . ., is uniformly distributed on the interval[0, 1).

In our problem, the point(v, k0) is between the hyperbolasHlow andHhigh and, with few
exceptions,(v, k0) is also between the asymptotesAlow andAhigh. To be precise, suppose that
(v, k0) satisfies Inequalities (7.1). We need an easy fact from number theory here. Namely that
y2 − 2x2 ≡ −1 (mod 8) for all odd integersx, y. Thus

2(2k0 − 1)2 < (2v − 1)2 < 2(2k0 + 1)2,

unless(2v − 1)2 − 2(2k0 − 1)2 = −1 (these are the exceptions). But for all other points(v, k0)
we have

√
2

(
k0 −

1

2

)
< v − 1

2
<
√

2

(
k0 +

1

2

)
.

Thus

0 <

√
2

2

(
v − 1

2

)
+

1

2
− k0 < 1

and so √
2

2

(
v − 1

2

)
+

1

2
− k0 =

〈√
2

2

(
v − 1

2

)
+

1

2

〉
.

Next, consider the conditionq0(v, k0) ≥ 0, which is equivalent to

(2v − 5)2 − 2(2k0 − 3)2 ≥ −1.

Unless(2v − 5)2 − 2(2k0 − 3)2 = −1, q0(v, k0) ≥ 0 is equivalent to〈√
2

2

(
v − 1

2

)
+

1

2

〉
>
√

2− 1.

To summarize, if(v, k0) does not satisfy either of these Pell’s Equations

(2v − 1)2 − 2(2k0 − 1)2 = −1, (2v − 5)2 − 2(2k0 − 3)2 = −1,

thenq0(v, k0) ≥ 0 if and only if

√
2− 1 <

〈√
2

2

(
v − 1

2

)
+

1

2

〉
< 1.
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From Weyl’s Theorem, we know that the fractional part in the above inequality is uniformly
distributed in the interval[0, 1). Since the density of the values ofv for which (v, k0) is a
solution to one of the Pell’s Equations above is zero, thenlimv→∞ n(v)/v = 1 − (

√
2 − 1) =

2−
√

2. The proof of Corollary 2.11 is complete.

8. PROOFS OF THEOREMS 2.5, 2.6,AND 2.7

We first prove Theorem 2.5. Ifπ1.2 andπ1.3 are optimal partitions, then according to Theorem
2.4, j′ = 3, k′ ≥ j′ + 2 = 5, and sov ≥ 2k′ − j′ ≥ 7. In addition, the quasi-star partition
is optimal, that is,S(v, e) ≥ C(v, e). Thus by Corollary 2.10, eithere ≥

(
v
2

)
− 3 or e ≤

m + v/2 =
(

v
2

)
/2 + v/2. If e ≥

(
v
2

)
− 3 and sincej′ = 3, thenk′ ≤ 3, contradictingk′ ≥ 5.

Thuse ≤ 1
2

(
v
2

)
+ v

2
. Since2k′ − 3 ≤ v ande =

(
v
2

)
−

(
k′+1

2

)
+ 3, then

3 +
1

2

(
v

2

)
≤

(
k′ + 1

2

)
+

v

2
≤

(
(v + 3) /2 + 1

2

)
+

v

2
.

Therefore7 ≤ v ≤ 13. In this range ofv, the only pairs(v, e) that satisfy all the required
inequalities are(v, e) = (7, 9) or (9, 18).

Using the relation between a graph and its complement described below, Equation (1.2), we
conclude that ifπ2.2 andπ2.3 are optimal partitions, then(v, e) = (7, 12) or (9, 18).

As a consequence, we see that the pair(9, 18) is the only candidate to have six different
optimal partitions. This in fact is the case. The six graphs and partitions are depicted in Figure
8.1. We note here that Byer [3] also observed that the pair(v, e) = (9, 18) yields six different
optimal graphs. Another consequence is that the pairs(7, 9) and(7, 12) are the only candidates
to have five different optimal partitions. For the pair(7, 9), the partitionsπ1.1, π1.2, π1.3, π2.1 and
π2.2 all exist and are optimal. However,π1.3 = π2.2. Thus the pair(7, 9) only has four distinct
optimal partitions. Similarly, for the pair(7, 12) the partitionsπ1.1, π1.2, π2.1, π2.2 andπ2.3 all
exist and are optimal, butπ1.2 = π2.3. So there are no pairs with five optimal partitions, and thus
all other pairs have at most four optimal partitions. Moreover,S(v, e) = C(v, e) is a necessary
condition to have more than two optimal partitions, since any pair other than(7, 9) or (7, 12)
must satisfy that bothπ1.1 andπ2.1 are optimal. The proof of Theorem 2.5 is complete.

In Theorem 2.6,e =
(

k
2

)
=

(
k+1
2

)
− k and thusj = k. Note that, ifv > 5 andk satisfy

Equation (2.1), thenk + 2 < v < 2k − 1, and sok ≥ 4. Thuse =
(

v
2

)
−

(
k+2
2

)
+ (2k + 2− v)

with 4 ≤ 2k + 2 − v ≤ k + 1, that is,k′ = k + 1 and j′ = 2k + 2 − v. Hence,π1.1 =
(v− 1, v− 2, . . . , k + 2, 2k + 2− v) andπ2.1 = (k− 1, ..., 1) (which always exist) are different
because2k + 2 − v ≥ 4 > 1. The partitionπ1.2 = (v − 2, ..., k) exists becausek ≤ v − 3,
and it is different toπ2.1 becausek ≥ 4 > 1 (π1.2 6= π1.1 by definition). Finally, the partitions
π1.3, π2.2, andπ2.3 do not exist becausej′ = 2k + 2− v ≥ 4, k + 1 > k − 1 = 2k − j − 1, and
j = k ≥ 4, respectively. Theorem 2.6 is proved.

Now, if v andk satisfy Equation (2.2), then1
2

(
v
2

)
=

(
k+1
2

)
− 3. Moreover, sincev > 9, then

k > (v+3)/2. Hence, in Theorem 2.7,e = m = 1
2

(
v
2

)
=

(
k+1
2

)
−3 =

(
v
2

)
−

(
k+1
2

)
+3, with k ≥ 3

becausev > 1. That is,k = k′ andj = j′ = 3. Thusπ1.1 = (v − 1, v − 2, ..., k + 1, 3), π1.3 =
(v − 1, v − 2, ..., k + 1, 2, 1), π2.1 = (k− 1, k− 2, ..., 4, 3), andπ2.3 = (k− 1, k− 2, ..., 4, 2, 1)
all exist and are different becausek = v does not yield a solution to (2.2). Alsoπ1.2 andπ2.2 do
not exist because2k − j − 1 = 2k′ − j′ − 1 = 2k − 4 > v − 1. Theorem 2.7 is proved.

9. PELL ’ S EQUATION

Pell’s Equation

(9.1) V 2 − 2J2 = P,
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Figure 8.1: (v, e) = (9, 18) is the only pair with six different optimal graphs. For all graphs,P2(Th(πi.j)) =
max(v, e) = C(v, e) = S(v, e) = 192

whereP ≡ −1 (mod 8), appears several times in this paper. For example, a condition for the
equality ofS(v, e) andC(v, e) in Theorem 2.8 involves the Pell’s Equation(2v−5)2−2(2k0−
3)2 = −1. And in Theorem 2.7, we have(2v − 1)2 − 2(2k + 1)2 = −49. There are infinitely
many solutions to each of these equations. In each instance,V andJ in Equation (9.1) are
positive odd integers andP ≡ −1 (mod 8) . The following lemma describes the solutions to
the fundamental Pell’s Equation.

Lemma 9.1([7]). All positive integral solutions of

(9.2) V 2 − 2J2 = −1

are given by
V + J

√
2 = (1 +

√
2)(3 + 2

√
2)n,

wheren is a nonnegative integer.

It follows from the lemma that if(V, J) is a solution to Equation (9.2), then bothV andJ are
odd. We list the first several solutions to Equation (9.2):

V 1 7 41 239 1393
J 1 5 29 169 985

.

Now let us consider the equation(2v − 3)2 − 2(2k − 1)2 = −1 from Theorem 2.6. Since all
of the positive solutions(V, J) consist of odd integers, the pair(v, k) defined by

v =
V + 3

2
, k =

J + 1

2
are integers and satisfy Equation (2.1). Thus there is an infinite family of values forv > 5 such
that there are exactly 3 optimal partitions in Dis(v, e), wheree =

(
k
2

)
. The following is a list of

the first three values ofv, k, e in this family:

v 22 121 698
k 15 85 493
e 105 3570 121278
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Next, consider Equation (2.2) from Theorem 2.7 and the corresponding Pell’s Equation:

V 2 − 2J2 = −49.

A simple argument using the norm function,N(V + J
√

2) = V 2 − 2J2 shows that all positive
integral solutions are given by

V + J
√

2 = (1 + 5
√

2)(3 + 2
√

2)n, (7 + 7
√

2)(3 + 2
√

2)n, or

(17 + 13
√

2)(3 + 2
√

2)n,

wheren is a nonnegative integer. The first several solutions are

V 1 7 17 23 49 103 137
J 5 7 13 17 35 73 97

.

Thus the pairs(v, k), defined by

v =
V + 1

2
, k =

J − 1

2

satisfy Equation (2.2). The first three members,(v, k, e) of this infinite family of partitions
Dis(v, e) with v > 9, e =

(
v
2

)
/2, and exactly 4 optimal partitions are:

v 12 25 52 69
k 8 17 36 48
e 33 150 663 1173

The Pell’s Equation

(9.3) 4q0(v) = (2v − 5)2 − 2(2k0 − 3)2 + 1 = 0

appears in Theorem 2.8. Here again there are infinitely many solutions to the equation(2v −
5)2 − 2(2k − 3)2 = −1 starting with:

v 2 2 3 3 6 23 122
k 1 2 1 2 4 16 86

.

The proof of Corollary 2.9 requires infinitely many solutions to the equationq0(v) = −2,
which is equivalent to the Pell’s Equation

(9.4) (2v − 5)2 − 2(2k − 3)2 = −9.

All its positive integral solutions are given by

v =
V + 5

2
, k =

J + 3

2
, V + J

√
2 = (3 + 3

√
2)(3 + 2

√
2)n,

wheren is a nonnegative integer. The first several solutions are

v 3 12 63 360 2091
k 2 8 44 254 1478

The proof of Corollary 2.10 requires infinitely many solutions to the Pell’s Equation

(9.5) (2v − 3)2 − 2(2k − 1)2 = 7,

and infinitely many solutions to the Pell’s Equation

(9.6) (2v − 3)2 − 2(2k − 1)2 = −1.

All positive integral solutions to (9.5) are given by

v =
V + 3

2
, k =

J + 1

2
, V +J

√
2 = (3+

√
2)(3+2

√
2)n, (5+3

√
2)(3+2

√
2)n,
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wheren is a nonnegative integer. The first several solutions are

v 3 4 8 15 39 80
k 1 2 5 10 27 56

We have shown that Equation (9.6) has infinitely many solutions, as it is the same equation
that appears in Theorem 2.6. However, in Corollary 2.10,k must bek0, the unique integer
that satisfies Inequality (1.3). This condition is also necessary for Equations (9.3), (9.4), and
(9.5). In other words, we must show that forv large enough, every solution(v, k) to one of the
Equations (9.3), (9.4), or (9.5), satisfies Inequality (1.3). We do this only for Equation (9.3) as
all other cases are similar.

Lemma 9.2. Let (v, k) be a positive integral solution to Equation (9.3) withv > 3. Then(v, k)
satisfies Inequality (1.3). That is,k = k0.

Proof. Suppose that(v, k) is a solution to Equation (9.3) withv > 3. Thenk < v < 2k.
Inequality (1.3) consists of two parts, the first of which is(

k

2

)
≤ 1

2

(
v

2

)
.

To prove this part, we compute

1

2

(
v

2

)
−

(
k

2

)
=

1

2

(
v

2

)
−

(
k

2

)
−

(
(2v − 5)2 − 2(2k − 3)2 + 1

)
/16

= (v − k)− 1

2
> 0.

The second part of Inequality (1.3) is

1

2

(
v

2

)
≤

(
k + 1

2

)
.

This time, we have(
k + 1

2

)
− 1

2

(
v

2

)
=

(
k + 1

2

)
− 1

2

(
v

2

)
+

(
(2v − 5)2 − 2(2k − 3)2 + 1

)
/16

= 2k − v +
1

2
> 0.

�
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