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P»(G) = 3 d? denote the sum of the squares of the degrées,. ., d,, of the
vertices ofG. Go Back
It is known that the maximum value &% (G) for G € G(v, e) occurs at one or both
of two special graphs ig (v, e)-the quasi-star graph or the quasi-complete graph. | Savasr
For each paifv, e), we determine which of these two graphs has the larger value
of P>(G). We also determine all paif®, e) for which the values of(G) are the Close

same for the quasi-star and the quasi-complete graph. In addition to the quasi-star

and quasi-complete graphs, we find all other graph@(im e) for which the max- . . "

imum value of,(G) is attained. Density questions posed by previous authors are = Journal of inequalities

examined. in pure and applied
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1. Introduction

LetG(v, e) be the set of all simple graphs wittvertices and edges and leb, (G) =
>~ d? denote the sum of the squares of the degrées, ., d,, of the vertices of7.
The purpose of this paper is to finish the solution of an old problem:

1. What is the maximum value d?(G), for a graphG in G(v, e)?
2. For which graph€7 in G(v, e) is the maximum value of;(G) attained?

Throughout, we say that a graghis optimalin G(v, e), if P,(G) is maximum
and we denote this maximum value byx(v, e).
These problems were first investigated by Katkzif 1971 and by R. Ahlswede
and G.O.H. KatonaZ] in 1978. In his review of the paper by Ahlswede and Katona,
P. Erdds [4] commented that “the solution is more difficult than one would expect.”
Ahlswede and Katona were interested in an equivalent form of the problem: they
wanted to find the maximum number of pairs of different edges that have a common
vertex. In other words, they wanted to maximize the number of edges in the line
graphL(G) asG ranges ovefj(v,e). That these two formulations of the problem
are equivalent follows from an examination of the vertex-edge incidence niétrix
for a graphG € G(v, e):
trace((NNT)?) = Py (G) + 2e,
trace((NTN)?) = trace(AL(G)?) + 4e,
where A.(G) is the adjacency matrix of the line graph 6f Thus P(G) =
trace(AL(G)?) + 2e. (trace(Ar(G)?) is twice the number of edges in the line graph
of G.)

Ahlswede and Katona showed that the maximum vailiae (v, e) is always at-
tained at one or both of two special graphgjin, ¢).
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They called the first of the two special graphguasi-completgraph. The quasi-
complete graph igj(v, e) has the largest possible complete subgraph Let £, j
be unique integers such that

kE+1 k
e:< ; )—j:(2)+k—j,where1§j§k.

The quasi-complete graph (v, e), which is denoted by)C(v, e), is obtained
from the complete graph on thieverticesl, 2, ..., k by addingv — k verticesk +
1,k+2,...,v,and the edgefl, k + 1), (2,k+1),...,(k—j,k+1).

The other special graph @(v, e) is thequasi-star which we denote b@S(v, e).

This graph has as many dominant vertices as possilolertanant vertexs one with
maximum degree — 1). Perhaps the easiest way to descfili&v, e) is to say that
it is the graph complement ¢iC(v, ¢'), wheree’ = (3) — e.

Define the functiorC (v, ) to be the sum of the squares of the degree sequence of
the quasi-complete graph §lv, ¢), and defineS(v, €) to be the sum of the squares
of the degree sequence of the quasi-star gragh(ine). The value ofC (v, e) can
be computed as follows:

Lete = (*}') — j, with 1 < j < k. The degree sequence of the quasi-complete
graph inG(v, e) is

dy=-=dyj=k,  dpj=-=dp=k—1,
dpsr =k — 7, Ao = -+ =d, = 0.
Hence
(1.1) Clv,e) =jlk —1)* + (k — j)k* + (k — j)*.
SinceQS(v, e) is the complement odRC(v, ¢’), it is straightforward to show that
(1.2) S(v,e) =C(v,e') 4+ (v —1)(4e — v(v — 1))
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from which it follows that, for fixedv, the functionS(v,e) — C(v,e) is point-
symmetric about the middle of the intervaK e < (g) In other words,

S(v,e) — C(v,e) = — (S(v,€e) — C(v,€)).

It also follows from equationl(2) thatQC(v, ) is optimal inG (v, e) if and only if

QS(v, €') is optimal inG (v, ¢'). This allows us to restrict our attention to values of
e in the interval0, (3) /2] or equivalently the intervdl(3) / 2, (3)]. On occasion, we

will do so but we will always state results for all valuescof

As the midpoint of the range of values foplays a recurring role in what follows,

we denote it by

and definég:, = ko (v) to be the integer such that

(1.3) (’;0) <m< (k°2+ 1).

To state the results o] we need one more notion, that of the distance frdfy to

m. Write "
bo :bo(’U) =m — (20>

We are now ready to summarize the resultspf [

Theorem 1.1 (R, Theorem 2]). max(v, e) is the larger of the two value§'(v, e)
andS(v,e).

Theorem 1.2 (R, Theorem 3]). max(v,e) = S(v,e) if 0 < e < m — % and
max(v,e) = C(v,e)if m+ % <e < (3)
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Lemma 1.3 (R, Lemma 8]). If 2by > kg, or 2v — 2kq — 1 < 2by < ko, then
C(v,e) < S(v,e) forall 0 <e <mand

™

e
3

C(v,e) > S(v,e)forallm < e < (;)

If 200 < ko and 2ky + 2by < 2v — 1, then there exists a®® with by < R <
min {v/2, ky — by} such that

Sum of Squares of Degrees
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Contents
Ahlswede and Katona pose some open guestions at the eBld 8pme strange <« Y
number-theoretic combinatorial questions arise. What is the relative density of the
numbers for which R = 0 [max(v,e) = S(v,e) forall0 < e < m andmax(v,e) = 4 >
C(v,e) forallm < e < (3)]?" Page 6 of 69

This is the point of departure for our paper. Our first main result, Thear&m
strengthens Ahlswede and Katona’s Theorem 2; not only does the maximum value Go Back
of P,(G) occur at either the quasi-star or quasi-complete grapfi(ine), but all
optimal graphs irG (v, e) are related to the quasi-star or quasi-complete graphs via
their so-called diagonal sequence. As a result of their relationship to the quasi-star Close
and quasi-complete graphs, all optimal graphs can be and are described in our second
main result, Theorem.4. Our third main result, Theorem.g, is a refinement of
Lemma 8 in P]. Theorem?.8characterizes the values®wande for which S(v, e) =
C(v, e) and gives an explicit expression for the vallén Lemma 8 of P]. Finally,
the “strange number-theoretic combinatorial” aspects of the problem, mentioned by
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Ahlswede and Katona, turn out to be Pell’s Equatjdn- 22> = +1. Corollary2.11
answers the density question posed by Ahlswede and Katona. We have just recently
learned that Wagner and Wantg] have independently answered this question as
well. Their approach is similar to ours, as they also find an expressioR fior
Lemma 8 of P].

Before stating some new results, we summarize the work on the problem that

followed [2] Sum of Squares of Degrees

A generalization of the problem of maximizing the sum of the squares of the g, PR —
degree sequence was investigated by K8}ar{ 1971 and R. Aharoni]] in 1980. M.G. Neubauer and W. Watkins
Katz's problem was to maximize the sum of the elementdinwhereA runs over vol. 10, iss. 3, art. 64, 2009

all (0, 1)-square matrices of sizewith precisely; ones. He found the maxima and

the matrices for which the maxima are attained for the special cases where there are
k% ones or where there aré — k? ones in thg0, 1)-matrix. Aharoni [L] extended

Katz’'s results for genergland showed that the maximum is achieved at one of four Contents
possible forms forA.

If Ais asymmetriq0, 1)-matrix, with zeros on the diagonal, thehis the ad-
jacency matrixA(G) for a graphG. Now let G be a graph inG(v,e). Then the < >
adjacency matrixd(G) of G is av x v (0, 1)-matrix with 2¢ ones. BuUtA(G) satis-
fies two additional restrictionsd(G) is symmetric, and all diagonal entries are zero.
However, the sum of all entries ii(G)? is precisely) . d;(G)?. Thus our problem is Go Back
essentially the same as Aharoni’s in that both ask for the maximum of the sum of the

Title Page

44 (44
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elements in42. The graph-theory problem simply restricts the sefofl )-matrices Full Screen
to those with2e ones that are symmetric and have zeros on the diagonal. Close
Olpp [14], apparently unaware of the work of Ahlswede and Katona, reproved the
basic result thatax(v, e) = max(S(v,e), C(v,e)), but his results are stated in the journal of inequalities
context of two-colorings of a graph. He investigates a question of GoodB&h | in pure and applied

maximize the number of monochromatic triangles in a two-coloring of the complete mothemcﬁcs
graph with a fixed number of vertices and a fixed number of red edges. Olpp shows =~ S5n iH43=5756
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that Goodman’s problem is equivalent to finding the two-coloring that maximizes
the sum of squares of the red-degrees of the vertices. Of course, a two-coloring of
the complete graph omvertices gives rise to two graphs orvertices: the grapkr
whose edges are colored red, and its compleréénBo Goodman’s problem is to
find the maximum value oP,(G) for G € G(v, e).

Olpp [14] shows that either the quasi-star or the quasi-complete graph is optimal

J
P

in G(v, e), but he does not discuss which of the two valdgés, ¢), C (v, e) is larger. Sum of Squares of Degrees

He leaves this question unanswered and does not attempt to identify all optimal gy Avrego, & Ferminter-verchant,

graphs irg(v, 6). M.G. Neubauer and W. Watkins
In 1999, Peled, Pedreschi, and Sterbird][showed that the only possible graphs vol. 10, iss. 3, art. 64, 2009

for which the maximum value is attained are the so-called threshold graphs. The
main result in L3] is that all optimal graphs are in one of six classes of threshold
graphs. They end with the remark, “Further questions suggested by this work are
the existence and uniqueness of the [grapl(in e)] in each class, and the precise Contents
optimality conditions.”

Also in 1999, Byer 8] approached the problem in yet another equivalent context:
he studied the maximum number of paths of length two over all grapgs:ire). < >
Every path of length two irG represents an edge in the line grapt(), so this
problem is equivalent to studying the graphs that achiexe(v, ¢). For eachv, e),
Byer shows that there are at most six graphg in, e) that achieve the maximum. Go Back
These maximal graphs come from among six general types of graphs for which there

Title Page
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is at most one of each type #(v, ¢). He also extended his results to the problem Full Screen

of finding the maximum number of monochromatic triangles (or any other fixed Close

connected graph with 3 edges) among two-colorings of the complete graph on

vertices, where exactly edges are colored red. However, Byer did not discuss how journal of inequalities

to computemax(v, e), or how to determine when any of the six graphs is optimal. in pure and applied
In Section2, we have unified some of the earlier work on this problem by using mathematics

partitions, threshold graphs, and the idea of a diagonal sequence. issni 1443-575k
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2. Statements of the Main Results

2.1. Threshold graphs

All optimal graphs come from a class of special graphs callezsholdgraphs. The
guasi-star and quasi-complete graphs are just two among the many threshold graphs
in G(v, e). The adjacency matrix of a threshold graph has a special form. The upper- P T———
triangular part of the adjacency matrix of a threshold graph is left justified and the in a Graph
number of zeros in each row of the upper-triangular part of the adjacency matrix does B'Mﬁéeri%bip Zf::;ivezvcﬂ;;::“‘
not decrease. We will show adjacency matrices usigfor the main diagonal, an - '
empty circle 6" for the zero entries, and a black dos,'for the entries equal to one.

For example, the grapf whose adjacency matrix is shown in Figur@) is a
threshold graph i (8, 13) with degree sequendé, 5, 5, 3,3, 3, 1,0). Title Page

By looking at the upper-triangular part of the adjacency matrix, we can associate
the distinct partitionr = (6,4, 3) of 13 with the graph. In general, thhreshold
graphTh(m) € G(v, ) corresponding to a distinct partition= (ag, a1, . . ., a,) Of e, <« >
all of whose parts are less thanis the graph with an adjacency matrix whose upper-
triangular part is left-justified and contaims ones in rows. Thus the threshold
graphs inG (v, e) are in one-to-one correspondence with the set of distinct partitions, Page 9 of 69
Dis(v, e) of e with all parts less than:

vol. 10, iss. 3, art. 64, 2009

Contents
| >

Go Back
Dis(v, e) = {7r = (ag,ay,...,a,) v >ag>a; >+ >a, > O,Zas :e} Full Screen

We denote the adjacency matrix of the threshold gripbr) corresponding to the Close

distinct partitionm by Adj(~). iournal of inequalities
Peled, Pedreschi, and Sterbib8] showed that all optimal graphs in a graph class :n pure and aqpp”ed
G(v, e) must be threshold graphs. mathematics

issn: 1443-575k

Lemma 2.1 ([13]). If G is an optimal graph irG (v, e), thenG is a threshold graph.
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Thus we can limit the search for optimal graphs to the threshold graphs.

Actually, a much larger class of functions, including the power functidfist
.-+ db for p > 2, on the degrees of a graph are maximized only at threshold
graphs. In fact, every Schur convex function of the degrees is maximized only at
the threshold graphs. The reason is that the degree sequences of threshold graphs
are maximal with respect to the majorization order among all graphical sequences.

J
™,

See [1]] for a discussion of majorization and Schur convex functions aofifpr a Sum of Squares of Degrees
discussion of the degree sequences of threshold graphs. B.M. Abrego, [ e N

M.G. Neubauer and W. Watkins

2.2. The Diagonal Sequence of a Threshold Graph Vilh S (555 S Eli (o et
To state the first main theorem, we must now digress to describe the diagonal se- :
quence of a threshold graph in the graph clags ¢). e [FEgE
Returning to the example in Figur€a) corresponding to the distinct partition S
m = (6,4,3) € Dis(8,13), we superimpose diagonal lines on the adjacency matrix
Adj(r) for the threshold grapfih(x) as shown in Figuré(b). « 4
The number of black dots in the upper triangular part of the adjacency matrix on < >
each of the diagonal lines is called tdmgonal sequencef the partitions (or of
the threshold grapth(r)). The diagonal sequence foiis denoted by () and for Pee 10 el
m = (6,4, 3) shown in Figurel, §(7) = (1,1,2,2,3,3,1). The value ofP(Th(r)) Go Back
is determined by the diagonal sequence of
Full Screen
Lemma 2.2. Letn be a distinct partition irDis(v, e) with diagonal sequencEr) =
(61,...,6;). ThenP,(Th(r)) is the dot product Close
t journal of inequalities
Py(Th(w)) = 26(m) - (1,2,3,..., 1) =2 _id;. in pure and applied
i1 mathematics

issn: 1443-575k
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(a)

Figure 1: The adjacency matriddj(r), for the threshold graph i6 (8, 13) corresponding to the
distinct partitiont = (6, 4, 3) € Dis(8, 13) with diagonal sequencE~) = (1,1,2,2,3,3,1).

For example, ift = (6,4, 3) as in Figurel, then
Py(Th(n)) =2(1,1,2,2,3,3,1) - (1,2,3,4,5,6,7) = 114,

which equals the sum of squares of the degree sequegnéeb, 3, 3,3,1) of the
graphTh(r).

Theorem 2 in 2] guarantees that one (or both) of the graplfv, e), QC(v, e)
must be optimal irG (v, e). However, there may be other optimal graphgiim, ¢),
as the next example shows.

The quasi-complete graghC(10, 30), which corresponds to the distinct partition
(8,7,5,4,3,2,1) is optimal inG(10, 30). The threshold grap&'s, corresponding to
the distinct partition(9, 6, 5,4, 3,2, 1) is also optimal inG (10, 30), but is neither
quasi-star inG(10, 30) nor quasi-complete g (v, 30) for any v. The adjacency
matrices for these two graphs are shown in Figur@hey have the same diagonal
sequenceé = (1,1,2,2,3,3,4,4,4,2,2, 1,1) and both are optimal.
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Figure 2: Adjacency matrices for two optimal graphs ®(10,30), QC(10,30) =
Th(8,7,5,4,3,2,1) and Th(9,6,5,4,3,2,1), having the same diagonal sequengée =
(1,1,2,2,3,3,4,4,4,2,2,1,1)

We know that either the quasi-star or the quasi-complete gragtire) is op-
timal and that any threshold graph with the same diagonal sequence as an optimal
graph is also optimal. In fact, the converse is also true. Indeed, the relationship
between the optimal graphs and the quasi-star and quasi-complete graphs in a graph
classG(v, e) is described in our first main theorem.

Theorem 2.3.LetG be an optimal graph it (v, e). ThenG = Th(~) is a threshold
graph for some partitionr € Dis(v, e) and the diagonal sequendéér) is equal to
the diagonal sequence of either the quasi-star graph or the quasi-complete graph in

G(v,e).

Theorem?.3is stronger than Lemma 8 a2][because it characterizei optimal
graphs inG(v, e). In Section2.3we describe all optimal graphs in detail.
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2.3. Optimal Graphs

Every optimal graph irgj(v, e) is a threshold graph'h(r), corresponding to a par-
tition 7 in Dis(v,e). So we extend the terminology and say that the partitias
optimalin Dis(v, e), if its threshold grapfT'h(r) is optimal inG(v, e). We say that
the partitionr € Dis(v, e) is the quasi-star partition if Th(r) is the quasi-star
graph inG(v, e). Similarly, 7 € Dis(v, e) is thequasi-complete partitionf Th(r)
is the quasi-complete graph (v, e).

We now describe the quasi-star and quasi-complete partitions {n,Bjs

First, the quasi-complete graphs. Ldbe a positive integer andan integer such
that0 < e < (3). There exists unique integetsand; such that

kE+1
e:(;L)—j and 1<j<Ek.

The partition
r(v,e,qe) = (kk—1,...,j+1,7j—1,....0)=(k,k—1,....5,...,2,1)

corresponds to the quasi-complete threshold gfaPkw, e) in G(v, e). The symbol
3means thaj is missing.

To describe the quasi-star partitiafw, ¢, gs) in Dis(v, e), letk’, j' be the unique
integers such that

/
e:(?)-(k;rl)Jrj’ and 1<j' <¥K.

Then the partition

m(v,e,q8) = (v— 1,0 —2,..., kK +1,5)
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corresponds to the quasi-star grap®(v, e) in G(v, e).

In general, there may be many partitions with the same diagonal sequence as
m(v,e,qc) or m(v,e,qs). For example, if(v,e) = (14,28), thenn(14,28,qc) =
(7,6,5,4,3,2,1) and all of the partitions in Figur8 have the same diagonal se-
quenceé (1,1,2,2,3,3,4,3,3,2,2,1, 1). However, none of the threshold graphs

-

(7,6,5,4,3,2,1) (13,5,4,3,2,1) (13,9,3,2,1) (13,9,5,1)
Figure 3: Four partitions with the same diagonal sequened B 28, qc)

corresponding to the partitions in Figuses optimal. Indeed, if the quasi-complete
graph is optimal in Di&v, ), then there are at most three partitions in(Big) with

the same diagonal sequence as the quasi-complete graph. The same is true for the
quasi-star partition. If the quasi-star partition is optimal in(Dig), then there are

at most three partitions in Os, ¢) having the same diagonal sequence as the quasi-
star partition. As a consequence, there are at most six optimal partitions(in &is

and so at most six optimal graphs v, e). Our second main result, Theorem
2.4, entails Theoren?.3; it describes the optimal partitions $1v, e) in detail. The

six partitions described in Theoref correspond to the six graphs determined by
Byer in [3]. However, we give precise conditions to determine when each of these
partitions is optimal.
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Theorem 2.4. Letwv be a positive integer and an integer such that < e < (;’)
Letk, k', 7, 7' be the unique integers satisfying

k+1 .
e:(;r)—j, with 1 <5<k,

!/
e:(?)-(k;—l)—i—j’, with 1<j <k,

Then every optimal partition in Dis(v, e) is one of the following six partitions:

and

11my=(v—-1v— k' +1,7"), the quasi-star partition foe,

1.2 1, = (v—1,0—2,. Qk/fﬁ— 1. K —1),if K +1 <2k —j —1 <ov—1,
13ms=@w—-1Lv—=2,...,kK+1,2,1),if j/ =3 andv > 4,

21 my, = (k,k— ', ..., 2,1), the quasi-complete partition fer,
2.2@2_(21@—]—1 k—2k—3,...21),ifk+1<2k—j—1<v—1,

2.3 m3 = (k,k— ,3),if j =3 andv > 4.

Partitions7; ; andm, ; always exist and at least one of them is optimal. Further-
more, 1 » and m 3 (if they exist) have the same diagonal sequence;as and if
S(v,e) > C(v,e), then they are all optimal. Similarly;, , andm, 3 (if they exist)
have the same diagonal sequenceras, and if S(v,e) < C(v, ), then they are all
optimal.

A few words of explanation are in order regarding the notation for the optimal
partitions in Theorem2.4. If k¥’ = v, thenj’ = v,e =0, andm; = 0. If ¥’ = v — 1,
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thene = j' < v —1, andmy; = (j'); further, if j/ = 3, thenm; 3 = (2,1). In all
other caseg’ < v — 2 and thenry 1, 71 2, andm 3 are properly defined.

If / = k' orj/ = k' — 1, then both partitions in 1.1 and 1.2 would be equal to
(v—1,v—2,...;K)and(v — 1,v —2,... .k + 1,k — 1) respectively. So the
conditionk’ + 1 < 2k’ — 7/ — 1 merely ensures that; ; # m;,,. A similar remark
holds for the partitions in 2.1 and 2.2. By definition the partitians and, 3 are
always distinct; the same holds for partitions, andr, 3. In general, the partitions Sum of Squares of Degrees
7;; described in items 1.1-1.3 and 2.1-2.3 (and their corresponding threshold graphs) g Aprego. 8. Ferindez-merchan,
are all different. All the exceptions are illustrated in Figérand are as follows: For M.G. Neubauer and W. Watkins
anyv, if e € {0,1,2} ore’ € {0,1,2} thenmy; = my;. Foranyv > 4,if e = 3 vol. 10, iss. 3, art. 64, 2009
ore = 3, then’ﬂ'lg = T and7T1.1 = T2.3. If (U,@) = (5,5) thenﬂ'l.l = T2
andm; o = mo 1. Finally, if (v,e) = (6,7) or (7,12), thenm , = 7o 3. Similarly, if

N

-~

(v,e) = (6,8) or (7,9), thenm 3 = my,. Forv > 8and4 < e < () — 4, all the Title Page

partitionsr; ; are pairwise distinct (when they exist). Contents
<« »
< >
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Figure 4: Instances of paif®, ¢) where two partitionsr; ; coincide

In the next section, we determine the pdirse) having a prescribed number of
optimal partitions (and hence graphsydtw, e).
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2.4. Pairs (v, e) with a Prescribed Number of Optimal Partitions

In principle, a given paifv, ), could have between one and six optimal partitions.
It is easy to see that there are infinitely many pairse) with only one optimal
partition (either the quasi-star or the quasi-complete). For example thépaj )

only has the quasi-complete partition. Similarly, there are infinitely many pairs with
exactly two optimal partitions and this can be achieved in many different ways. For

Sum of Squares of Degrees

instance, if(v,e) = (v,2v — 5) andv > 9, thenk’ = v -2, =v—4 > 3, and ~ inaGraph
S(v,e) > C(v,e) (c.f. Corollary2.10). Thus only the partitions, ; andr, , are 0 e e

optimal. The interesting question is the existence of pairs with 3,4,5, or 6 optimal
partitions.

Often, both partitionsr; » andm, 3 in Theorem?.4 exist for the same paiw, e);
however it turns out that this almost never happens when they are optimal partitions. Title Page
More precisely,

vol. 10, iss. 3, art. 64, 2009

Contents

Theorem 2.5.1f 7, , andm 3 are optimal partitions theriv, e) = (7,9) or (9, 18).
Similarly, if 75 and 7o 5 are optimal partitions, therfv,e) = (7,12) or (9, 18).
Furthermore, the pai(9, 18) is the only one with six optimal partitions, there are no < 4
pairs with five. If there are more than two optimal partitions for a p@ire), then

S(v,e) = C(v,e), thatis, both the quasi-complete and the quasi-star partitions must
be optimal. Go Back

44 44

Page 17 of 69

In the next two results, we describe two infinite families of partitions i Dis), Full Screen
and hence graph class@sv, ), for which there are exactly three (four) optimal
partitions. The fact that they are infinite is proved in Section
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Theorem 2.6.Letv > 5 andk be positive integers that satisfy the Pell's Equation
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and lete = (£). Then (using the notation of Theoreiny), j = k, k¥ = k + 1,
j' =2k — v + 2, and there are exactly three optimal partitionsDis(v, e), namely

mi=@wW—=1v—-2,....k+22k—v+2)

T2 = (’U—Z,U—B,...,k’)

o1 = (ki—l,k—Q,,Q,l)
The partitionsr 3, w2, andm, 3 do Not exist.
Theorem 2.7.Letv > 9 andk be positive integers that satisfy the Pell’s Equation
(2.2) (20 —1)* = 2(2k + 1)* = —49

ande = m = 1(3). Then (using the notation of Theorem), j = j' = 3, k = ¥/,
and there are exactly four optimal partitions is(v, e), namely

L k+1,3)
L k+1,2,1)

m1=(@w—-1v-2,.

ms=(v—1v—
(k—1,k - 2...,4,2,1)

mos=(k—1,k—2,...,4,3).

o1 =

The partitionsr; ; andm, 5 do not exist.

2.5. Quasi-star versus quasi-complete

In this section, we comparg(v,e) and C(v,e). The main result of the section,

Theoren?.8, is a theorem very much like Lemma 8 @] [with the addition that our
results give conditions for equality of the two functions.

If e =0,1,2,3, thenS(v,e) = C(v,e) for all v. Of course, ife = 0, e = 1 and
v > 2,0re < 3andv = 3, there is only one graph in the graph cl&gs, e). If
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e = 2andv > 4, then there are two graphs in the graph clags 2): the pathP and
the partial matchind/, with degree sequencé 1, 1) and(1, 1,1, 1), respectively.
The path is optimal ag»(P) = 6 and P,(M) = 4. However, the path is both the
quasi-star and the quasi-complete graplgim,2). If ¢ = 3 andv > 4, then the
quasi-star graph has degree sequdBce, 1, 1) and the quasi-complete graph is a
triangle with degree sequen¢® 2, 2). SinceP»(G) = 12 for both of these graphs,
both are optimal. Similarlys (v, e) = C(v,e) fore = (3) — j for j =0,1,2,3.

Now, we consider the cases whelreC e < (}) — 4. Figuress, 6, 7, and8 show
the values of the differenc&(v, e) —C(v, ). When the graph is above the horizontal
axis, S(v, e) is strictly larger tharC'(v, e) and so the quasi-star graph is optimal and
the quasi-complete is not optimal. And when the graph is on the horizontal axis,
S(v,e) = C(v,e) and both the quasi-star and the quasi-complete graph are optimal.
Since the functiorb (v, e) — C(v, e) is central symmetric, we shall consider only the
values ofe from 4 to the midpointyn, of the interval0, (3)].

Figure5 shows thatS(25,e) > (25, ¢) for all values ofe: 4 < e < m = 150.

So, whenv = 25, the quasi-star graph is optimal for< e < m = 150 and the
quasi-complete graph is not optimal. ko= m(25) = 150, the quasi-star and the
guasi-complete graphs are both optimal.

Figure 6 shows thatS(15,¢) > C(15,¢e) for4 < e < 45and45 < e < m =
52.5. But S(15,45) = C(15,45). So the quasi-star graph is optimal and the quasi-
complete graph is not optimal for &l < e < 52 except fore = 45. Both the
quasi-star and the quasi-complete graphs are optin@(lin, 45).

Figure7 shows thatS(17,¢e) > C(17,¢) for4 < e < 63, S(17,64) = C(17,64),
S(17,e) < C(17,¢) for 65 < e < m = 68, andS(17,68) = C (17, 68).

Finally, Figures8 shows that5(23, e) > C'(23,¢) for4 < e < 119, butS(23,¢) =
C'(23,¢) for 120 < e < m = 126.5.

These four examples exhibit the types of behavior of the funcfiome) —
C(v,e), for fixedv. The main thing that determines this behavior is the quadratic
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Figure 6:5(15,¢) — C(15,e) > 0for4 <e < 45 and fords < e < m = 52.5
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function |
qQo(v) == 2 (1 —2(2ko — 3)> + (20 — 5)?)

(the integerk, = ko(v) depends om). For example, ifgo(v) > 0, thenS(v,e) —
C(v,e) > 0 for all values ofe < m. To describe the behavior 6f(v,e) — C(v, e)
for go(v) < 0, we need to define

Sum of S D
O R N
B - 2(2k0 _ 4)2 + (2U _ 5)2 B.M. Abrego, S. Fernandez-Merchant,
M.G. Neubauer and W. Watkins
where L vol. 10, iss. 3, art. 64, 2009
eo = eo(v) = (;) =m — by
Our third main theorem is the following: Title Page
Theorem 2.8. Letv be a positive integer St
1. If go(v) > 0, then b dd
S(v,e) > C(v,e)forall0 <e<m and < >
S(v,e) < C(v,e)forallm <e < (3). Page 22 of 69
S(v,e) = C(v,e) ifand only ife, e’ € {0,1,2,3,m}, ore, e’ = ¢y and (2v — Go Back
2 2 _
3)" = 2(2k —3)" = -1, 7. Full Screen
2. If go(v) < 0, then .
C(v,e) < S(v,e)forall 0 <e <m — Ry; . of i
_ journal of inequalities
C(v,e) > S(v,e)forallm — Ry < e <m; in pure and applied
C(v,e) < S(v,e) forallm < e <m+ Ry; mathematics
C(v,e) > S(v,e) forall m+ Ry < e < (3). Lesnepii st
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S(v,e) = C(v,e) ifand only ife, ¢’ € {0,1,2,3,m — Ry, m}.
3. If go(v) =0, then

S(v,e) > C(v,e)forall0 <e<m and
S(v,e) < C(v,e)forallm <e < (3).

R . S f S f D
S(v,e) = C(v,e) ifand only ife, e’ € {0,1,2,3, e, ..., m}. ume ﬂ”:rgfa‘;h earees
o ) ] ) ) ] ] ) B.M. Abrego, S. Fernandez-Merchant,
The conditions in Theorer#.8 involving the quantityg,(v) simplify and refine M.G. Neubauer and W. Watkins
the conditions in 2] involving k, andb,. The condition2b, > ko in Lemma 8 vol. 10, iss. 3, art. 64, 2009

of [2] can be removed and the result restated in terms of the sign of the quantity
2ko + 2by — (2v — 1) = 3qo(v). While [2] considers only the two casgg(v) < 0
andgo(v) > 0, we analyze the casg(v) = 0 separately.

It is apparent from Theorem.8thatS(v,e) > C(v,e) for0 < e < m — auv if Contents
a > 0 is large enough. Indeed, Ahlswede and Katahalheorem 3] show this for v =
a = 1/2, thus establishing an inequality that holds for all values oégardless of
the sign ofgy(v). We improve this result and show that the inequality holds when < >
a=1-+2/2~0.2929.

Title Page

Page 23 of 69

Corollary 2.9. Leta = 1 —+/2/2. ThenS(v,e) > C(v,e) forall 0 < e < m — av
v Go Back

and S(v,e) < C(v,e) forall m + av < e < (3). Furthermore, the constant
cannot be replaced by a smaller value. Full Screen

Theorem 3 in 2] can be improved in another way. The inequalities are actually Close
strict.
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Corollary 2.10. S(v,e) > C(v,e) ford <e <m —v/2andS(v,e) < C(v,e) for in pure and applied
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2.6. Asymptotics and Density

We now turn to the questions asked #j: [

What is the relative density of the positive integergor which max(v,e) =
S(v,e) for 0 < e < m? Of coursemax(v,e) = S(v,e) for 0 < e < m if and only
if max(v,e) = C(v,e) form <e < (3).
Corollary 2.11. Lett be a positive integer and let(t) denote the number of integers
v in the interval[l, t] such that

max(v,e) = S(v,e),
forall 0 <e < m. Then

t
lim # — 92— /2~ 0.5858.

t—o00

2.7. Piecewise Linearity ofS(v,e) — C(v,e)

The diagonal sequence for a threshold graph helps explain the behavior of the differ-

enceS(v,e) — C(v, e) for fixedv and0 < e < (). From Figures, 6, 7, and8, we
see thatS(v, e)—C(v, e), regarded as a function efis piecewise linear and the ends
of the intervals on which the function is linear occueat (}) ande = (3) — (J) for
j=1,2,...,v. We prove this fact in Lemm@&.7. For now, we present an example.

Takev = 15, for example. Figures shows linear behavior on the intervals
36, 39], [39,45], [45, 50], [50, 55], [55,60], [60,66], and[66,69]. There are 14 bi-
nomial coefficients?) for 2 < j < 15:

1,3,6,10,15,21, 28,36, 45, 55, 66, 78, 91, 105.
The complements with respect (&) = 105 are
104,102, 99,95, 90, 84, 77, 69, 60, 50, 39, 27, 14, 0.
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The union of these two sets of integers coincides with the end points for the intervals
on whichS(15,e) — C(15, ¢) is linear. In this case, the function is linear on the 27
intervals with end points:

0,1,3,6,10,14, 15,21, 27, 28, 36, 39, 45, 50, 55, 60,

66,69, 77,78,84,90,91, 95,99, 102, 104, 105.

These special values etorrespond to special types of quasi-star and quasi-complete Sum of Squares of Degrees
graphs in a Graph

J
P

. . . B.M. Abrego, S. Fernandez-Merchant,
If e = (}), then the quasi-complete gra@it’(v, ¢) is the sum of a complete graph M.G. Neubauer and W. Watkins
on j vertices and — j isolated vertices. For example,«\if= 15 and; = 9, and vol. 10, iss. 3, art. 64, 2009

e= (;’) = 36, then the upper-triangular part of the adjacency matrixJox 15, 21)

is shown on the left in Figuré. And if e = () — (J), then the quasi-star graph
QS(v, e) hasj dominant vertices and none of the other ; vertices are adjacent
to each other. For example, the lower triangular part of the adjacency matrix for the Contents
quasi-star graph with = 15, j = 12, ande = () = (%) = 39, is shown on the v =
right in Figure©.

As additional dots are added to the adjacency matrices for the quasi-complete < 4
graphs withe = 37, 38, 39, the value ofC(15, ¢) increases by8, 20,22. And the
value ofS(15, e) increases bgs, 30, 32. Thus, the differencmcreasedy a constant
amount ofl0. Indeed, the diagonal lines are a distance of five apart. Hence the graph Go Back
of S(15,e) —C(15,¢e) for 36 < e < 39is linear with a slope of0. However, fore =

Title Page

Page 25 of 69

40, the adjacency matrix for the quasi-star graph has an additional dot on the diagonal Ful Screen
corresponding ta4, whereas the adjacency matrix for the quasi-complete graph has Close

an additional dot on the diagonal correspondin@4o So S(15,40) — C(15,40) . _ »
decreasedy 10. The decrease of0 continues until the adjacency matrix for the journal of inequalities

in pure and applied
mathematics
issn: 1443-575k

qguasi-complete graph contains a complete column-at45. Then the next matrix
for e = 46 has an additional dot in the first row and next column and the slope
changes again.
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guasi-complete partition
=(8,7,6,5,4,3,2,1)

7=(9,7,6,5,4,3,2,1)

7=(9,8,6,5,4,3,2,1)

7=(9,8,7,5,4,3,2,1)

guasi-star partition
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J
3. Proof of Lemma2.2 ||\v

Returning for a moment to the threshold graph(7) from Figurel, which corre-
sponds to the distinct partition = (6, 4, 3), we see the graph complement shown
with the white dots. Counting white dots in the rows from bottom to top and from the
left to the diagonal, we have 7,5,2,1. These same numbers appear in columns read-

ing from right to left and then top to the diagonal. S@'ii(x) is the threshold graph Sum of Squares of Degrees
associated withr, then the set-wise complemento{r©) inthe sef{1,2,...,v—1} Sy - [ e N
corresponds to the threshold grdph(r)“—the complement of'h(x). That is, M.G. Neubauer and W. Watkins

vol. 10, iss. 3, art. 64, 2009

Th(7¢) = Th(n)".

The diagonal sequence allows us to evaluate the sum of squares of the degree se-
guence of a threshold graph. Each black dot contributes a certain amount to the sum

of squares. The amount depends on the location of the black dot in the adjacency Contents
matrix. In fact all of the dots on a particular diagonal line contribute the same amount

Title Page

to the sum of squares. For= 8, the value of a black dot in positidp, j) is given « >
by the entry in the following matrix: < >
T+ 1 3 5 7 9 11 137 Page 27 of 69
1 + 3 5 7 9 11 13 R
1 3 + 5 7 9 11 13
1 3 5 4+ 7 9 11 13 Full Screen
1 3 5 7 + 9 11 13 e
1 3 5 7 9 + 11 13
L3 5 7 9 11 + 13 journal of inequalities
L1 3 5 7 9 11 13 + | in pure and applied
mathematics

This follows from the fact that a sum of consecutive odd integers is a square. So to
get the sum of squards,(Th(x)) of the degrees of the threshold graph associated
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with the distinct partitionr, sum the values in the numerical matrix above that occur
in the positions with black dots. Of course, an adjacency matrix is symmetric. So
if we use only the black dots in the upper triangular part, then we must replace the
(1, j)-entry in the upper-triangular part of the matrix above with the sum ofithye-

and the(j, i)-entry, which gives the following matrix:

(3.1)

Thus, P (Th(7)) = 2(1,2,3,...) - 6(7). Lemma2.2is proved.

B =

+ 2 4 6
+ 6 8
+ 10

_.|_

8
10
12
14
_l’_

10
12
14
16
18
_l’_

12
14
16
18
20
22
_|_

14
16
18
20
22
24
26
+

Sum of Squares of Degrees

5 in a Graph
B.M. Abrego, S. Fernandez-Merchant,

M.G. Neubauer and W. Watkins
vol. 10, iss. 3, art. 64, 2009

Title Page
Contents
44 44
< >
Page 28 of 69
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au

4. Proofs of Theorems2.3and 2.4

Theorem?2.3is an immediate consequence of Theoregm (and Lemmag?.1 and
2.2). Theorem?.4 can be proved using the following central lemma:

Lemma 4.1. Letm = (v — 1,¢,¢ — 1,...,3,..
Dis(v,e), wheree — (v — 1) =142+ ---
Thenj = cand2c¢ > v — 1 so that

.,2,1) be an optimal partition in
+c—j>4andl <j<c<wv-—2.

T=@w—-1lc—1c—2,...,2,1).

We defer the proof of Lemméa 1 until Section5 and proceed now with the proof
of Theorem2.4. The proof of Theoren.4is an induction on.

Proof of Theoren?.4. Let 7 be an optimal partition in Di®, e¢), thenz* is optimal
in Dis(v, ¢’). One of the partitionsy, 7¢ contains the part — 1. We may assume
without loss of generality that = (v — 1 : u), wherey is a partition in Digv —
l,e — (v —1)). The cases whereis a decreasing partition of 1,2, and3 will be
considered later. For now we shall assume that(v — 1) > 4. O

Sincer is optimal, it follows thatu is optimal and hence by the induction hy-
pothesisy is one of the following partitions in D{® — 1,e — (v — 1)):
llap,s = (v—2,...,kK +1,j), the quasi-star partition far— (v — 1),
1.2a ., = (v— k’fTL1 K —

LK +1,2,1),0f =3,

1), if K +1<2K —j —1<v-2,

21apsy = (k, ki —1, .. ]1, ...,2,1), the quasi-complete partition fer- (v —1),

(
(
1.3a 3= (v —
(
(2ky —j1— 1, k1 — 2.1 — 3, ...

2.2a o = (2k — 2,1),if ki +1 <2k —j1—1<v-2,
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2.3a,l,62.3: (kl,k?l—l,...,?)),if j1:3,
where

In symbols;m = (v — 1, 1, ;), for one of the partitiong; ; above. For each partition,
wi.;, we will show that(v — 1, y1; ;) = m,, for one of the six partitionsy, in the
statement of Theorem 4.

The first three cases are obvious:

(U — 1, Ml.l) = T1.1,
(’U -1, ,L61.2) = T1.2,
(v—1,p13) = T3

Next suppose that = s 1, 0.2, OF 12.3. The partitiongi, » andyus 3 do not exist
unless certain conditions 0n, j;, andv are met. And whenever those conditions
are met, the partitiop. ; is also optimal. Thug; = (v — 1, us1) is optimal. Also,
sincee — (v — 1) > 4, thenk; > 3. There are two cases; = v — 2,k < v — 3. If
k1 = v — 2, thenu, , does not exist and

( 1 ) { 2.1, If = 21,
v—Lpu)= .
T, 0f = pos.

If kl S UV — 3, then by Lemmml T = (U - 1,k1 - 1,. . .,2, 1), W|th jl == kl
and2k; > v — 1. We will show thatk = k; + 1 andv — 1 = 2k — j — 1. The above
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inequalities imply that

ki+1
(1; ):1+2+~~+k1§e

(kl + 1) 1) (k:1 + 2).
2
But k is the unique integer satisfyir@) <e< (’“;1) Thusk = k; + 1.

It follows that

k+1
e=w—-1)4+14+2+ -+ (k—2)= ( ;L ) -7,
and sk — j = v.
We now consider the cases 2.1a, 2.2a, and 2.3a individually. Actualydoes
not exist sinceés; = j;. If u = po3, thenu = (3) sincek; = j; = 3. This contradicts
the assumption that is a partition of an integer greater than 3. Therefore

p=po1 =i ki—1,.. 5, ..,2,1)=(k—2k—3,...2,1),

sincek; = j; andk = k; + 1. Now since2k — j — 1 = v — 1 we have

m ife= () ore= () — (v—2),
o @k—j-Lk-2k-3,..21—( i e=Gore=G) =2
9 9 Otherwise.

Finally, if 1 is a decreasing partition 6f 1, 2, or 3, then eitherr = (v—1,2,1) =
M3, Ofm=(v—1)=m,0orm = (v—1,j)=m, forsomel < j <3.

Now, we prove thatr, , andm 3 (if they exist) have the same diagonal sequence
asm; (which always exists). This in turn implies (by using the duality argument
mentioned in Sectiof) thatm, » and, 3 also have the same diagonal sequence as
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o1 (Which always exists). We use the following observation. If we index the rows
and columns of the adjacency matebdj(7) starting at zero instead of one, then
two positions(z, j) and(i’, j') are in the same diagonal if and only if the sum of their
entries are equal, that is;+ j = i’ + j'. If w5 exists ther2k’ — ;' < v. Applying

the previous argument to ; andr; 5, we observe that the top row of the following
lists shows the positions where there is a black dotdij(r; 1) but not inAdj(r; »)

and the bottom row shows the positions where there is a black dudjifir; ») but Sum of Squares of Degrees
notin Ad.] (7T1~1 ) : B.M. Abrego, lg.a;zgrfg:dez—Mercham‘
M.G. Neubauer and W. Watkins
(=K —-2v-1) ... (v=K—-t,bv—-1) ... (v=FkK—(K—-j)v-1) vol. 10, iss. 3, art. 64, 2009
v=1-kK,v=2) ... (v=1=-FK.v—t) ... (v—1=K,v— (K —j)).
Each position in the top row is in the same diagonal as the corresponding position in Title Page
the second row. Thus the number of positions per diagonal is the saimg as in
T1.2. That iS,(S (7T1.1) =0 (71'1‘2). Gt
Similarly, if 7 3 exists thenk’ > j* = 3. To show that) (7;;) = ¢ (m.3) note <« D
that the only position where there is a black dotAidj(m 1) but not in Adj(m;.3)
is(v—1—-Fk,v—1—Fk +3), and the only position where there is a black dot in b >
Adj(m 3) but notinAdj(m 1) is (v — kK',v — 1 — k¥’ 4+ 2). Since these positions are Page 32 of 69
in the same diagonal theénm; 1) = J (m.3).
Theorem?.4is proved. GOl
Full Screen
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J
5. Proof of Lemma4.1 ||\v
S

-

There is a variation of the formula fd#,(Th(7)) in LemmaZ2.2that is useful in the

proof of Lemma4. 1. We have seen that each black dot in the adjacency matrix for a
threshold graph contributes a summand, depending on the location of the black dot
in the matrix £ in (3.1). For example, ift = (3,1), then the part of1/2)E that

corresponds to the black dots in the adjacency maktdx ) for 7 is Sum of Squares of Degrees
) inaGraph
+ oo e t1203 B e g
. + e o + 3 :
Adi((3.1)) = ] vol. 10, iss. 3, art. 64, 2009
J(( Y )) + o ) +
+ +
Title Page
ThusP(Th(n)) = 2(1 4+ 2+ 3 + 3) = 18. Now if we index the rows and columns Content
ontents

of the adjacency matrix starting with zero instead of one, then the integer appearing
in the matrix(1/2)E at entry(i, j) is justi + j. So we can computés(Th(r)) <« >
by adding all of the position&, j) corresponding to the positions of black dots in

the upper-triangular part of the adjacency matrixIof{ 7). What are the positions b 4
of the black dots in the adjacency matrix for the threshold graph corresponding to a Page 33 of 69
partitionT = (ao, a1, - . ., a,)? The positions correspondingdg are o Back

0 bacC

(0,1),(0,2),...,(0,a0) Full Screen
and the positions correspondingdpare Close
(1,2),(1,3),..., (1,1 + ay). journal of inequalities
. . . i d lied

In general, the positions corresponding:fan 7 are ﬁ;ﬁfn?;icg PRIS

(t,t+ 1), (t,t+2),...,(tt+ ap). issn: 1443-575k
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We use these facts in the proof of Lemrha.
Lety = (c,e—1,...

(5.1)

with 2¢ > v — 1.

,7,---,2,1) be the quasi-complete partition in Dise —
(v—1)),wherel <j<c<wv-—2andl+2+---4+c—j > 4. We deal with
the caseg = 1, j = ¢, and2 < j < ¢ — 1 separately. Specifically, we show that if
m = (v—1:pu)isoptimal, thery = cand

T=@w-1ec—1,..

Arguments for the cases are given below.

51. j=1:p=(c,c—1,...,3,2)

Since2 + 3 + -+ + ¢ > 4 thenc > 3. We show thatr = (v — 1 :
In this case, the adjacency matrix foihas the following form:

'727]‘)7

012 .- c - v—1
O _|_ e o .-
1 + o ...
2 +
c—1 e o O
C + o o
c+1 + o

e}

v—1 +
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511 2¢<wv-—1
Let
7=w-1,2c—1,c—2,¢—3,...,3,2).

The parts ofr’ are distinct and decreasing sire< v — 1. Thusz’ € Dis(v, e).
The adjacency matrice&dj(w) and Adj(n’) each have: black dots, many of
which appear in the same positions. But there are differences. Using the fact that Sum of Squares of Degrees

¢ — 1 > 2, the first row of the following list shows the positions in which a black S o L,
dot appears il\dj(w) but not inAdj(n’). And the second row shows the positions M.G. Neubauer and W. Watkins
in which a black dot appears dj(7’) but not inAdj(r): vol. 10, iss. 3, art. 64, 2009

(2,c+1) (3,c+1) -+ (c=1,c+1) (c—1,¢)

(1,e+2) (Let3) - (L,2e—1)  (1,2¢) el

Contents
For each of the positions in the list, except the last ones, the sum of the coordinates
for the positions is the same in the first row as it is in the second row. But the 4 44
coordinates of the last pair in the first row sun2to— 1 whereas the coordinates of < >
the last pair in the second row sum2oe—+ 1. It follows that P(7’") = Py(m) + 4.
Thus,r is not optimal. Page 35 of 69
Go Back
51.2. 2¢>v—1
Full Screen

Letn’ = (v—2,¢,c—1,...,3,2,1). Sincec < v — 2, the partitions’ is in Dis(v, e). Close

The positions of the black dots in the adjacency matricég~) andAdj(=’) are the
same bgt v>/|th only two_ exceptions. 'I_'here is a black d_ot |r) pos(tﬁlm_ - 1) in journal of inequalities
but not in7’, and there is a _black dot_ln positign, ¢ + 1) in 7’ but not inw. Since in pure and applied
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52. j=c:ip=(c—1,...,2,1)

Sincel +2+---+ (¢ —1) > 4, thenc > 4. We will show that if2c > v — 1, thenw
has the same diagonal sequence as the quasi-complete partition. 2&nd if — 1,

then is not optimal.

The adjacency matrix for is of the following form:

01 2 --- ¢ - v—1

O |+ o @ --- o o °

+ e ® O o

+ e o o

C + o o

+ - o

v—1 +

521 2¢>v-—1

The quasi-complete partition iéi(v,e) is7' = (¢ + 1,¢,... ,E, .

k = 2c — v + 2. To see this, notice that

,2,1), where

1+2+-4c+(c+l)—k=14+2+---+(c—1)+(v—1)

for k = 2c — v+ 2. Since2c > v —1ande < v — 2, thenl < k£ < ¢ and

7" € Dis(v, e).
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To see thatr and#’ have the same diagonal sequence, we again make a list of
the positions in which there is a black dotAnlj(7) but not inAdj(=’) (the top row
below), and the positions in which there is a black daAiij(7’) but not inAdj(r)

(the bottom row below):

(0,c+2) (0,c+3) -+ (0,c+t+1) --- (0,v—1)

(1,0—}— 1) (27C—|— 1) (t7c—|— 1) (U—C—Q,C—f— 1) Sumofs:;]]u:r;fa?)thegrees

B.M. Abrego, S. Fernandez-Merchant,
Each position in the top row is in the same diagonal as the corresponding position in =~ M6 Neubauerand W. Watkins

the bottom row, that i) + (¢ + ¢t + 1) = t + (c + 1). Thus the diagonal sequences vol. 10, iss. 3, art. 64, 2009
d(m) = o(n").
Title Page
522. 2¢<v—1
Contents
In this case, let’ = (v —1,2¢ —2,¢—3,...,3,2). And since2c — 2 < v — 3, the
parts ofr’ are distinct and decreasing. Thati$,c Dis(v, e). « i
Using the fact that — 2 > 2, we again list the positions in which there is a black < >
dot in Adj(7) but not in Adj(=’) (the top row below), and the positions in which
there is a black dot it\dj(x’) but not inAdj(r): Page 37 of 69
Go Back
(27C> (370) (0_170) (0—2,6—1)
Full Screen
(Le+1) (L,e+2) -+ (1,2¢—2) (1,2c—1). Close

All of the positions but the last in the top row are on the same diagonal as the corre-
sponding position in the bottom row:+ ¢ = 1+ (¢ —1+t). Butin the last positions

we have(c —2) + (c—1) = 2c—3 andl + (2c— 1) = 2c. ThusP,(n') = Pa(m) +6

and sor is not optimal.
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5.3. 1<j<(?:,u:((’,(?—l,...,y,....Q,l)

We will show thatr = (v—1,¢,¢—1,...,7,...,2,1) is not optimal. The adjacency
matrix for 7 has the following form:
— — —
| + + |
0 © © © = Sum of Squares of Degrees
0 + o @ o o ° : in a Graph
B.M. Abrego, S. Fernandez-Merchant,
1 t+ e ¢ © © M.G. Neubauer and W. Watkins
: vol. 10, iss. 3, art. 64, 2009
c—7 e e O -+ ©
c—j+1 e 0 0 --- O Title Page
: Contents
c—1 + o
c+1 + o - © < >
+ Page 38 of 69
) Go Back
v—1 +
Full Screen
There are two cases.
Close
531 2o journal of inequalities
Let7 = (v—r,c,c—1,...,5+1—r,...,2,1), wherer = min(v — 1 — ¢, j). in pure and applied
Thenr > 1 becausej > 1 andc < v — 2. We show thatr’ € Dis(v,e) and mathematics
Py(") > Py(m) issn: 1443-575k
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In order forz’ to be in Digv, e), the sum of the parts in” must equal the sum of
the parts inr:
1424+ 4c+@w—r)—(+1—-r)=14+2+---F+c+(v—1)—]
And the parts ofr” must be distinct and decreasing:
v—r>c>j+1—-—r>1.

The first inequality holds because— 1 — ¢ > r. The last two inequalities hold
because > j > r > 1. Thusz’ € Dis(v, e).

The top row below lists the positions where there is a black datdj{r) but not
in Adj(n’); the bottom row lists the positions where there is a black deétdj(z’)
but not inAdj(r):

(O7U_1)
(c—j+r—1,c+1)

(O,U—t)
(c—j+r—tc+1)

(0,v—r+1)
(c—j+1,c+1).
Sincer > 1, the lists above are non-empty. Thus, to ensure Bhat’) > P»(7), it

is sufficient to show that for each< ¢ < r — 1, position(0, v — ) is in a diagonal
to the left of positionc — j +r —t,c+ 1). Thatis,

O<[(c=j4+r+1—-t)+(c+1)]—-[0+@w—t)]=2c+r—v—7j,

or equivalently,
v—2c+j—1<r=min(v—1-c¢j).

The inequalityy — 2c¢+ 57 < v — 1 — ¢ holds becausg < ¢, andv —2¢+ j < j holds
because — 1 < 2c¢. It follows thatr is not an optimal partition.
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532. 2¢<v—1

Again we show thatr = (v — 1,¢,c—1,... ,3, ...,2,1)is not optimal. Let

P=w—12—2c—2,....5—1,...,2,1).

The sum of the parts in equals the sum of the partsin. And the partitionr’ is
decreasing:
1<j—1<c—-2<2c-2<v—-1

The first three inequalities follow from the assumption that j < ¢. And the
fourth inequality holds becauge < v — 1. Son’ € Dis(v, e).

The adjacency matricesdj(w) and Adj(n’) differ as follows. The top rows of
the following two lists contain the positions where there is a black datd(r)
but not in Adj(n’); the bottom row lists the positions where there is a black dot in
Adj(7") but not inAdj(r).

Listl (2,c+1) (t,c+1) (c—j,c+1)
(1,C+2) (1,C—|—t) (1720_])

List2 (¢c—j+1,¢) (c—7+tc) (c—1,¢)
(1,2c—j +1) (1,2¢c—j +1) (1,2¢ — 1).

Each position(t,c+ 1) (t = 2,...,c — 7), in the top row in List 1 is in the same
diagonal as the corresponding positioh,c + ¢), in the bottom row of List 1. Each
position,(c — j + t,c) (t = 1,...,5 — 1), in the top row of List 2 is in a diagonal
to the left of the corresponding positiofi, 2c — j + t) in the bottom row of List 2.
Indeed,(c—j+t)+c=2c—j+t<2c—j+t+1=1+(2¢—j+1t). Andsince
1 < j, List 2 is not empty. It follows thab,(7') > P»(7) and sor is not a optimal
partition.
The proof of Lemmal.1is complete.
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6. Proof of Theorem2.8and Corollaries 2.9and 2.10

The notation in this section changes a little from that used in Seétidon Section
1, we writee = (*}') — j, with 1 < j < k. Here, we let = k — j so that

(6.1) e= (];) +1t,

with 0 <t < k — 1. Then Equation.1) is equivalent to
(6.2) C(v,e) = C(k,t) = (k—t)(k—1)> +th* +t* = k(k— 1) +t> +t(2k — 1).

Before proceeding, we should say that the abuse of notatior(ine) = C(k,t)
should not cause confusion as it will be clear which set of parametersvs. (k, t)
are being used. Also notice that if we were to expand the rangeéodd < ¢ < £,
that is allowt = k, then the representation efn Equation €.1) is not unique:

k k+1
= k= 0.
=)=
But the value ofC(v, e) is the same in either case:

C(k,k) = C(k+1,0) = (k+ 1)k>.

Thus we may také <t < k.

We begin the proofs now. At the beginning of Sectiors, we showed that

S(v,e) = C(v,e)fore =0,1,2,3. Also note that, whem is an integerDiff (v, m) =

0. We now compare (v, e) with C(v, e) for 4 < e < m. The first task is to show

thatS(v,e) > C(v,e) for all but a few values of that are close tan. We start by
finding upper and lower bounds ¢i{v, e) andC(v, e).
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Define

Ule) = e (m_ 1) and

Uk, t) = <(§> +t) ( (2k—1)2+8t—1>.

The first lemma shows thaf(e) is an upper bound fof’'(v, ¢) and leads to an Sum of Squares of Degrees
upper bound foS (v, ¢). The arguments used here to obtain upper and lower bounds gy, Abrego, & Forminter-verchant,
are similar to those |n]{2] M.G. Neubauer and W. Watkins

vol. 10, iss. 3, art. 64, 2009
Lemma6.1l. Fore > 2,

C(v,e) <U(e) and Title Page
S(v,e) <U() + (v —1)(4e — v(v —1)). Contents
It is clearly enough to prove the first inequality. The second one is trivially ob- <« »
tained from Equationl(.2) on linking the values of (v, ¢) andC/(v, e).
< >

Proof. We prove the inequality in each intervfl]) < e < (*}') and so fixk > 2
for now. We make yet another change of variables to remove the square root in the e 2 ol dk
above expression @f (k, t).

Go Back
Sett(x) = (2% — (2k — 1)?)/8, for2k — 1 < 2 < 2k + 1. Then
Full Screen
1
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Now define

L(e) = e (m_ 1.5) and

Lk, 1) = ((’;) +t> ( (2k —1)2 + 8t — 1.5).

The next lemma shows thate) is a lower bound fo€” (v, ¢) and leads to a lower
bound forS(v, e).

Lemma6.2. Fore > 3

C(v,e) > L(e) and
S(v,e) > L(e') + (v —1)(4e — v(v — 1)).

Proof. As above, set(z) = (2% — (2k — 1)?)/8, 2k — 1 < z < 2k + 1, and
x(k,b) =2k+b,—1 <b< 1. Then

C(k,t(z(k,b))) — L(k,t(x(k,b)))

1 1
= b+ 4k — 4>+ —(4k —7) (b+

2k +1)\>  4k(22k — 49) + 13
64 32

4k — 7 64(4k —7)
This expression is easily seen to be positiveifor 3. O

We are now ready to prove th&fv, e) > C(v,e) for 0 < e < m for all but a few
small values and some values closerto

Lemma 6.3. Assume > 5. For4 < e < v we haveC(v,e) < S(v, e).

Proof. As we showed above in Lemntal, e (/8¢ + 1 — 1) is an upper bound on
C(v,e) forall 1 < e < (3). Furthermore, it is easy to see that fo< e < v we
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haveS(v,e) = e + e. In fact, the quasi-star graph is optimal for< e < v. The
rest is then straightforward. Far< e, we have

0<(e—3)e—1)=(e+2)*— (8e+1).
Taking square roots and rearranging some terms proves the result. O
Lemma 6.4. Assume > 5. Forv < e < m — 0.55v we have
S(v,e) > C(v,e).

Proof. Assume thad < e < m. Lete = m —dwith 0 < d < m. By Lemmas5.1
and6.2, we have

S(v,e) = Clv,e) = () (v—1)(4e —v(v—1)) = Ule)
m+d)\/8(m+d)+1—(m—d)\/8m—d)+1

((emneg)es),

We focus on the first two terms. Set
h(d) = (m+d)\/8(d+m)+1— (m—d)\/8(m —d)+ 1.

By considering a real variablé, it is easy to see that'(d) > 0, h?(0) = 0, and
h®)(d) < 0 on the interval in question. Thugd) is concave down oA < d < m.
We are comparingi(d) with the line (4(v — 1) + 5/2)d + m/2 on the interval
[0.550, m — v]. The concavity ofi(d) allows us to check only the end points. For
d = m — v, we need to check

v ((v ) VI — 120+ 1—2V80 + ) v (40? = 210 + 7).
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It is messy, but elementary to verify this inequality for 9.
Ford = 0.55v we need to check
2

2
(UZ + 0.31}) V202 4+ 240 + 1— (UZ — 0.81}) V202 — 6.4v + 1 > v(2.3250—0.95).

This inequality holds fow > 29. This time the calculations are rather messier, yet

still elementary. Fod < v < 28, we verify the result directly by calculation. [ Sum of Si‘j]“:fgfa‘;thegmes
. . B.M. Abrego, S. Fernandez-Merchant,
In Section2, we introduced the valug, = (%?). M.G. Neubaer and W. Watkins
We now define vol. 10, iss. 3, art. 64, 2009
ko — 1
€1 = ) .
2 Title Page

(% k’o +1
—_ Contents
i) (7)
£, = v ko + 2 o o
R 2 ) < >
The next lemma shows that those binomial coefficients and their complements Page 45 of 69
are all we need to consider.
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later in this section. journal of inequalities

in pure and applied
mathematics
issn: 1443-575k

Lemma 6.6. 2 (v —3) — 3 < ko < Lo+ L.

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au

Proof. Since(*) < m < (") — 4, we have

2ko(ko — 1) < v* — v < 2ko(ko + 1) — 2.

Thus
2k —1/2* < (v —1/2)* +1/4 < 2(ko +1/2)* —

PU-3) b (-0 i

The result follows usingv—1/2)* < (v—1/2)?+9/4and(v—1/2)?+1/4 < v?. [

Proof of Lemmé5.5. Note thate; = eg — (kg — 1) < m — (ko — 1) and f, =
fi—(ko+1) <m—(ko+1) < m— (ko —1). Hence, it is enough to show
that 0.55v < (ko — 1). This follows from the previous lemma far > 12. For
5 <wv < 11, we verify the statement by direct calculation. O

That is,

Next, we show that the difference function
Diff(v,e) = S(v,e) — C(v,e)

is piecewise linear on the intervals induced by the binomial coefficiéjjtsZ <

k < v, and their complement§) — (%), 2 < k < v. In Section2.7, we show a
specific example.

Lemma 6.7. As a function ot, the functionDiff (v, ) is linear on the interval

o (o) (2) - () o=t (15 G) - G
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The line has the slope

(6.3) —i (1—(2k—3)"— (21— 3)+ (2v —5)%).

Proof. If e = (*}) — j with 1 < j < k, then it is easy to see from Equatioh )
that "
Cv,e+1)—C(v,e) = 26—2(2) + 2k = 2e — k(k — 3).

Using Equations(.2) and €.2), we find that, ife’ = (}) + ¢, 1 < ¢ <, then

S(v,e+1) —S(v,e) =2e+4(v—1) —2(12]) —2[+2<é> +2.
We now have

(S(v,e+1)—C(v,e+1)) = (S(v,e) — C(v,€e))
=k(k—=3)+1(l-3)—(v—1)(v—4)+2

_ _}1 (1— (2k —3)2— (21 — 3)2 + (20 — 5)?)..

The conclusion follows. O]

Since we already know thddiff(v,e) > 0 for 4 < e < max{ey, fo}, and
Diff(v,e) = 0 for e = 0,1,2,3, or m, we can now focus on the intervd] =
(max{es, fo}, m). The only binomial coefficients or complements of binomial coef-
ficients that can fall into this interval arg and f;.

There are two possible arrangements we need to consider

1. 61,f2<60§f1<mand
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2. f1 < eg < m.
The next result deals with the first arrangement.

Lemma 6.8.If ¢ < f; < m, thengy(v) > 0. Furthermore,S(v,e) > C(v,e)
for 0 < e < m with equality if and only ife = 0,1,2,3, or m; or e = ¢, and
(20 —3)? — 2(2ky — 1) = —1, 7.

Proof. ey < f; implieseq < m—ky/2. By Lemmab.6, we conclude that for > 12,
4qo(v) = 1 — 2(2ko — 3)* + (2v — 5)?
= 16(m —eg) — 16(v — ko) + 8
> 24ko — 16v + 8
> 24 (V2/2(v = 1/2) = 1/2) — 160+ 8

_ (12\/5— 16) v— (6\/§+4)
> 0.

For smaller values, we verify thag(v) > 0 by direct calculation.

If e = f1in Equation §6.2), and since, < f; < m, thenk = kg andt = fl—(’zo
Using Equation 1.2), Diff(v, f1) = (m — f1)qo(v) > 0. Similarly, sincefs < ¢
fi, then fore = ¢} in Equation 6.2), we havek = ko + 1 andt = e — ("
Again, using Equationi(2),

(6.4)  Diff(v, ep)
= (v? — 3v — 2k} + 2ko + 2)(v* — 3v — 2k + 2ko) /4
= ((2v — 3)* — 2(2ko — 1)* + 1)((2v — 3)* — 2(2ko — 1)* — 7)/64.

Notice thatDiff(v,ey) > 0 since both factors inG(4) are even and differ by 2.
Equality occurs if and only if2v — 3)2 — 2(2k, — 1)*> = —1 or 7. Finally, observe

;
]
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that Diff (v, e;) > 0 andDiff(v, f) > 0 by Lemmas5.4and6.5 ande; and f, are
both less tharf,. HenceDiff(v,e) > 0 for e € [max{ey, fo}, m| follows from the
piecewise linearity oDiff (v, e). The rest follows from Lemmé.4. O

Now we deal with the cas@ < ¢y. There are three cases depending on the sign
of go(v). All these cases require the following fact.fif < e, then foreyg < e < m
in Equation 6.9, k = ko andt = e — (%). Sincef; < e < m, for ¢’ in Equation
(6.2), k = ko andt = ¢’ — (*). Thus, using Equatiori.(2),

(6.5) Diff(v,e) = (m — €)qo(v)

wheneverf; < eg < e < m. This automatically gives the sign @fiff (v, ) near
m. By the piecewise linearity oDiff(v,e) given by Lemmat.7, the only thing
remaining is to investigate the signbiff (v, f).

Lemma 6.9. Assumef; < epandgo(v) > 0. ThenS(v,e) > C(v,e)for0 < e < m,
with equality if and only it = 0, 1, 2, 3, m.

Proof. First, note that; < f; < ey < m, Sincee; > f; occurs only ifm = ¢, and
thusqo(v) = 2 — 4(v — ko) < 0. Forey < e < m, by Equation §.5), Diff (v, e) =
(m — e)go(v) > 0. Furthermore, it = f; in Equation 6.2), thenk = &k, — 1 and
t=fi— (*,"). Thus, by Equationl(2),

2
Diff (v, f1) = (—4kg + 16k3 + 40>k — 120k — 8v ko + 4ko — v* + 6v° + 0% — 60) /4,
and
Diff (v, f1) — Diff(v, eg) = (2k3 — v* + v)(—2 — 2k3 + 8ko + v — 5v) /2.

The first factor is positive becauge < e,. The second factor is positive for >
15. This follows from the fact that < v/2ko + (v/2 + 1)/2 by Lemma6.6, and
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—2 — 2k2 + 2kg + v* — v > 0 because; < f;. Forv > 15,

—2 — 2k + 8kg + v* — bv = (=2 — 2k; + 2k + v* — v) + 2(3kg — 2v)
> 2(3ko — 2v)
> 0.
SinceDiff(v,e9) > 0, thenDiff(v, f;) > 0 for v > 15. The only case left to

verify satisfying the conditions of this lemmaiis= 14. In this casef; = 36 and
Diff (14, 36) = 30 > 0. O

The previous two lemmas provide a proof of part 1 of Theoren

Lemma 6.10. Assumef; < eqg andgg(v) = 0. ThenS(v,e) > C(v,e) for0 < e <
m with equality ifand only it = 0,1,2,3,¢e9,e9 + 1,...,m.

Proof. Forey < e < m, by Equation §.5), Diff(v,e) = (m — e)gy(v) = 0. Asiin
the previous lemma, far > 15

Diff(v, f1) — Diff (v, eg) = (2k§ — v* + v)(—=2 — 2k + 8ko +v* — 5v)/2 > 0

and thusDiff (v, f;) > 0. The only value oy < 15 satisfying the conditions of this
lemma isv = 6 with f; = 5, andDiff(6,5) = 4 > 0. O

The previous lemma provides a proof for part 3 of Theofefn

Lemma 6.11. Assumef; < ¢y < m andgy(v) < 0. ThenS(v,e) > C(v,e) for
0<e<m-—RyandS(v,e) < C(v,e) form — Ry < e < m with equality if and
onlyife=0,1,2,3,m — Ry, m.

Proof. Foreq < e < m, by Equation §.5), Diff(v,e) = (m — e)go(v) < 0. This
time it is possible thaf; < e;. In this case, by Lemmé&s4 and6.5 we know that

Sum of Squares of Degrees

5 in a Graph
B.M. Abrego, S. Fernandez-Merchant,

M.G. Neubauer and W. Watkins
vol. 10, iss. 3, art. 64, 2009

Title Page
Contents
44 44
< >
Page 50 of 69
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au

Diff (v, f1), Diff (v, e1) > 0. Also,m = ey andR, = 0, implying Diff (v, ¢g) = 0 and
Diff(v,e) > 0foralle; <e<ey=m—Ry=m

If e; < f1, by Lemma6.7, Diff(v, e) is linear as a function of on the interval
[f1,e0]. Let —qi(v) be the slope of this line. Sineg < f; < ey < m, thenk = ky
andl = ko in Lemma6.7. Thusq,(v) = (=1 — 2(2ky — 4)*> + (2v — 5)?)/4 =
qo(v) + 2ko — 4 andDiff (v, f1) = (m — eg)qo(v) + (€0 — f1)q1(v). The line through
the two pointg ey, Diff (v, eg)) and( f1, Diff (v, f1)) crosses the-axis atm — Ry. We
now show thatf; < m — Ry < eq, Which in turn proves thabiff (v, f) > 0.

We have

(6.6) m — Ry =ey+ (m — e@j?iii
(6.7) =m—(m— 60)2];)(;)4.

Sinceey < m andv > 4, then

(6.8) g% ,/ + <2+,/ ”_2

which is equivalent t@, (v) > 0. Thusm — Ry < eq by Equation §¢.6). To prove
f1 < m — Ry, according to Equatior(7), we need to show

After multiplying by ¢; (v), the last inequality becomes

(=) ) eom o< ((037) ) tem2te =2t 20,
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which is equivalent to

];O(%O 4) < ((k(’; 1> — m) (v—2)(v —3) — 2(ko — 2)(ko — 3)).

Sincef; < eq we know thatk, /2 < (’“0;1) —m. Also, Inequality §.9) is equivalent
to2ky — 4 < (v —2)(v —3) — 2(ko — 2) (ko — 3). Multiplying these two inequalities

. Sum of Squares of Degrees
yields the result. O ’ Ay
. . B.M. Abrego, S. Fernandez-Merchant,
The previous lemma provides a proof of part 2 of Theofefn M.G. Neubauer and W. Watkins
The expression fom — R, is sometimes an integer. Those< 1000 for which vol. 10, iss. 3, art. 64, 2009

m — Ry IS an integer are 14, 17, 21, 120, 224, 309, 376, 393, 428, 461, 529, 648,
697, and 801.

In the remaining part of this section, we prove Corollafi€sand?2.10 Tite Page
Lemma 6.12. Assume that > 4 and go(v) < 0. ThenR, < av wherea = Contents
1—+/2/2. « »
Proof. We show that?, < awv for v > 4. Recall that < 4

(m — eg)(2ko — 4) Page 52 of 69
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q1(v, ko) Go Back
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Furthermore, since, < m, we know thati, := (v/2/2)v +1/2 > k. We show that
h(z) is increasing o := [iy, is]. Note that, since > 4,

B(z) = —6 — (4—2\/§>v+6x>0
for z € I. Henceh(z) is concave up oi. Furthermore
11 15 73
W) = (3-2v2) o + (<104 V2 ) v = 2V2+ 2 >0
2 4 8
for v > 11, and hence
h(zx) > h(iy)
1
= = ((-72+58v2) v+ 23 (6-5v2)) >0

for v > 11. The only values oty greater than 4 and smaller than 11 for which
qo(v) < 0 arev = 7,10. The result is easily verified in those two cases. N

How good is the bound?, < av? Suppose there is a parametesuch that
Ry < fv with § < «. Assume thaty(v) = —2. There are infinitely many
values ofv for which this is true (see Sectio#). In all of those cases,(v) =
1/24/(9 + (2v — 5)2)/2 + 3/2. We have the following

(Bugr(v) = (m — e)(2ko — 4))/v> = V28— V2+1 >0

asv — oo. Thusf > a and hencev is the greatest number for which the bound on
R, holds.
SinceS(v,e) > C(v,e) forall 1 < e <m — Ry, we have proved Corollary.O.
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To prove Corollary. 10, we need to investigate the other non-trivial case of equal-
ity in Theorem2.8. It occurs where = ¢; and (2v — 3)? — 2(2ky — 1)? = —1, 7.
Notice that this implies

1
m—eO:E((Qv—1)2—2(2k0—1)2+1)
v v—1
== or .
2 2

There are infinitely many values ofsuch that2v — 3)* — 2(2k, — 1)*> = —1, and
infinitely many values of such that2v — 3)? — 2(2ky, — 1)? = 7 (see Section).
Thus the most we can say is thetv, e) > C(v,e) forall4 < e < m —v/2, and
Corollary2.10is proved.
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7. Proof of Corollary 2.11

Recall that for each, kq(v) = ko is a unique positive integer such that

(2)=20) < (")

It follows that Sum of Squares of Degrees
in a Graph
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that occupy the first quadrant as shown in Figlse Then each lattice pointy, ko) e [FEgE

is in the closed region bounded ¥, below andHg, above. Furthermore, the COrETE

sign of the quadratic fornfRv — 5)? — 2(2k — 3)% + 1 determines whether the quasi-

star graph is optimal ig (v, e) for all 0 < e < m. By Theorem?.8, if (2v — 5)% — K L

2(2k — 3)? +1 > 0, thenS(v,e) > C(v,e) (and the quasi-star graph is optimal) for < >

0 < e < m. Thus, if the lattice pointv, k) is betweenHg, and the hyperbola

Page 55 of 69
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Go Back
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is not optimal. Of course, if the lattice poifit, ko) is on H, then the quasi-star
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Figure 10: Hyperbola@v — 1)% — 2(2k — 1)2 = -1, (20 — 1)2 = 2(2k + 1)%2 = —17, (2v — 5)? —
2(2k — 3)%2 = —1

from Corollary 2.11 depends on the density of lattice poirits k) in the region

betweethigh andH.
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We can give a heuristic argument to suggest that the linditis,/2. The asymp-
totes for the three hyperbolas are

5 3
Atv—=—=V2(k—=
v 5 \/_<k' 2),
1 1
AIOW3U_§_\/§(k_§)a
1
2

1
Ahigh3v__:\/§(k+§>a

and intersect thé-axis at

k_6—5\/§

= YRR

2 -2

kIOW: )
4

_2_\/5

khigh:T~

The horizontal distance betwegljg, and Ay is

Fiow — knigh = 1

and the horizontal distance betweégq, and A is
k — Epigh = 2 — V2.

To make the plausibility argument rigorous, we need a theorem of \iByHatz
13, page 334],9, page 92]:
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For any real number, let (r) denote the fractional part of That is,(r) is the
unique number in the half-open interyal 1) such that- — (r) is an integer. Now let
£ be anirrational real number. Then the sequengg, n = 1,2, 3,. . ., is uniformly

distributed on the interval, 1).

In our problem, the pointv, k) is between the hyperbolds, and Hyg, and,
with few exceptions(v, k) is also between the asymptotdg,, and Anign. To be
precise, suppose thét, k) satisfies Inequalities’(1). We need an easy fact from
number theory here. Namely thgt — 222 = —1 (mod 8) for all odd integers:, y.

Thus
2(2ko — 1)% < (2v — 1)% < 2(2ko + 1),

unless(2v — 1) — 2(2ky — 1)* = —1 (these are the exceptions). But for all other

points(v, kg) we have

ﬁ(ko—l) <v—1<¢§(k0+1).

2 2 2
Thus Y
2 1 1
—~fv—=)+=- 1
0 5 <U 2> + 5 ]{70 <
and so

D)t (R0-13)

Next, consider the conditiop (v, k) > 0, which is equivalent to

(2v — 5)% — 2(2ko — 3)? > —1.
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Unless(2v — 5)? — 2(2ko — 3)* = —1, qo(v, ko) > 0 is equivalent to

V2 1\ 1
—(v—3)+3 2 1.
< 5 (v 2) +3)> V2
To summarize, ifv, ko) does not satisfy either of these Pell’s Equations
(20— 1) = 2(2ko — 1)* = =1, (20 —5)% —2(2ky — 3)* = —1,

thengo (v, ko) > 0 if and only if

\/5—1<<\/7§(u—%)+%><1.

From Weyl's Theorem, we know that the fractional part in the above inequality is
uniformly distributed in the interval0, 1). Since the density of the values of
for which (v, ko) is a solution to one of the Pell's Equations above is zero, then
lim, oo n(v) /v = 1= (v/2—1) = 2—+/2. The proof of Corollary.11is complete.
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8. Proofs of Theorems2.5, 2.6, and 2.7 M

N

-

We first prove Theorerf.5. If 71 5 andm 3 are optimal partitions, then according to
Theorem2.4, j/ = 3, k' > j/+2 = 5, and sov > 2k — 7/ > 7. In addition, the
quasi-star partition is optimal, that iS(v,e) > C(v,e). Thus by Corollary?.10,
eithere > (J) —3ore <m+wv/2=(})/2+v/2. If e > (}) — 3 and since’ = 3,

thenk’ < 3, contradictingk’ > 5. Thuse < 1() + £. Since2k’ — 3 < v and Sum of Squares of Degrees
v k'+1 : in a Graph
e = (2) — ( 9 ) + 3, then B.M. Abrego, S. Fernandez-Merchant,
M.G. Neubauer and W. Watkins
1 (v K +1 v (v+3)/2+1 v vol. 10, iss. 3, art. 64, 2009
3+ = < - < =.
+2<2)—<2)+2—( 2 3
Therefore7 < v < 13. In this range ofv, the only pairs(v, e) that satisfy all the Title Page
required inequalities ar@, ) = (7,9) or (9, 18). _ _ Contents
Using the relation between a graph and its complement described below, Equation
(1.2), we conclude that ifr, , andm, 3 are optimal partitions, thefv, e) = (7,12) or « 44
(9,18). o | | . >
As a consequence, we see that the paii8) is the only candidate to have six
different optimal partitions. This in fact is the case. The six graphs and partitions Page 60 of 69
are depicted in Figureél. We note here that Bye@] also observed that the pair Go Back
(v,e) = (9,18) yields six different optimal graphs. Another consequence is that
the pairs(7,9) and (7,12) are the only candidates to have five different optimal Full Screen

partitions. For the paif7,9), the partitionsr; 1, 7 2, 1.3, 2.1 andm, 5 all exist and

Close
are optimal. Howevety, 3 = mo,. Thus the pai(7,9) only has four distinct optimal
partitions. Similarly, for the paif7, 12) the partitionsr; 1, 71 2, To.1, 2.0 @ndms 3 journal of inequalities
all exist and are optimal, but; » = m 5. So there are no pairs with five optimal in pure and applied

partitions, and thus all other pairs have at most four optimal partitions. Moreover, mathematics
S(v,e) = C(v,e) is a necessary condition to have more than two optimal partitions, issn: 1443-575k
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since any pair other thafv,9) or (7,12) must satisfy that bothr; ; and; are
optimal. The proof of Theorer.5is complete.

S
*
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Figure 11: (v,e) = (9,18) is the only pair with six different optimal graphs. For all graphs,

P,(Th(m; ;) = max(v,e) = C(v,e) = S(v,e) = 192 Go Back
Full S
In Theorem2.6, ¢ = (£) = (*}') — k and thusj = k. Note that, ifv > 5 o Sereen
and k satisfy Equation{.1), thenk + 2 < v < 2k — 1, and sok > 4. Thus Close
e= () - (") + (2k+2—v)Wlth4<2k+2—v<k+1thatlsk’—k;+1 | _ -
andj’ = 2k +2 —v. Hence,my; = (v — 1,v — k+2,2k+2—v) and journal of inequalities

in pure and applied
mathematics
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me1 = (k—1,...,1) (which always exist) are dlfferent becaUEe+ 2—v>4>1.
The partitionr; , = (v —2, ..., k) exists becausk < v — 3, and it is different tar,
becausé > 4 > 1 (m o # w1 by definition). Finally, the partitions; 3, 752, and
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o3 do not exist becausg =2k +2—v >4, k+1>k—-1=2k—j—1,and
j =k > 4, respectively. Theorem.6Gis proved.

Now, if v andk satisfy Equation.2), theni (%) = (*}') — 3. Moreover, since
v > 9, thenk > (v + 3)/2. Hence, in Theoreri.7,e = m = 1(2) = (*') -3 =
(2) = (*3") + 3, with k > 3 becausey > 1. Thatis,k = ¥ andj = j' = 3.
Thusm ;= (v—1v—2,.., k+1,3),ms=(v—10v—2,..,k+1,21), 71 =

(k—1,k—2,..,4,3),andm 3 = (k — 1,k —2,...,4,2, 1) all exist and are different sum °f3i‘j1“:fgfa‘;fh'399fees
because: = v does not yield a solution td2(9). Also m;, andms 5 do not exist B.M. Abrego, S. Fernandez-Merchart,
becausek —j—1= 2k’ — j’ —1=92k—4>v—1. Theorem2.7is prOVGd. M.G. Neubauer and W. Watkins
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9. Pell's Equation

Pell's Equation
(9.1) V:_2J? =P

whereP = —1 (mod 8), appears several times in this paper. For example, a con-
dition for the equality ofS(v,e) and C(v,e) in Theorem?2.8 involves the Pell's
Equation(2v — 5)? — 2(2ky — 3)> = —1. And in Theoren?.7, we have(2v — 1) —

2(2k + 1)* = —49. There are infinitely many solutions to each of these equations.
In each instancédy and.J in Equation 9.1) are positive odd integers arfdl = —1
(mod 8) . The following lemma describes the solutions to the fundamental Pell's
Equation.

Lemma 9.1 ([7]). All positive integral solutions of
(9.2) V2_2J%=—-1
are given by
V4 JV2=(14+V2)(3+2V2)",
wheren is a nonnegative integer.

It follows from the lemma that ifV, .J) is a solution to Equatiord(2), then both
V and.J are odd. We list the first several solutions to Equatiof)(

V \ 1 7 41 239 1393
J ‘ 1 5 29 169 985 °
Now let us consider the equatiddv — 3)* — 2(2k — 1)? = —1 from Theorem

2.6. Since all of the positive solutiond/, .J) consist of odd integers, the pair, k)

defined by
T
2

41

2
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are integers and satisfy Equatidh ). Thus there is an infinite family of values for
v > 5 such that there are exactly 3 optimal partitions in(big), wheree = (’2“)
The following is a list of the first three values ofk, e in this family:

v| 22 121 698
k| 15 85 493
e | 105 3570 121278

Next, consider Equation?(2) from Theorem2.7 and the corresponding Pell’s
Equation:

VZ—2J% = —49.
A simple argument using the norm functiab(V + J+/2) = V2 — 2.J? shows that
all positive integral solutions are given by
V4+JV2=(1+5V2)(3+2V2)", (T+7V2)(3+2V2)", or
(17 +13v2)(3 + 2v2)",
wheren is a nonnegative integer. The first several solutions are

V|1 7 17 23 49 103 137
JI5 7 13 17 35 73 97

Thus the pairsv, k), defined by
V41 i J—1

V= —— = —
2 2
satisfy Equation.2). The first three membersy, k, e) of this infinite family of
partitions Digv, ¢) with v > 9, e = (1) /2, and exactly 4 optimal partitions are:

v |12 25 52 69
E| 8 17 36 48
e |33 150 663 1173
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The Pell's Equation

(9.3) 4q0(v) = (20— 5)* —2(2ky — 3)* +1=0

appears in Theorem.8. Here again there are infinitely many solutions to the equa-
tion (2v — 5)% — 2(2k — 3)* = —1 starting with:

3 3 6 23 122

v‘22
1 2 1 2 4 16 &6

k|

The proof of Corollary2.9 requires infinitely many solutions to the equation
qo(v) = —2, which is equivalent to the Pell’s Equation

(9.4) (2v —5)% — 2(2k — 3)* = —9.

All its positive integral solutions are given by
V+5 J+3
v = =

-t k=2

2 2 7
wheren is a nonnegative integer. The first several solutions are

V4 JV2=(3+3V2)(3+2v2)",

63 360 2091
8 44 254 1478

v|3 12
k2

The proof of Corollary?.10requires infinitely many solutions to the Pell’s Equation

(9.5) (2v—3)? =22k - 1) =71,
and infinitely many solutions to the Pell’s Equation

(9.6) (2v —3)? —2(2k —1)* = —1.
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All positive integral solutions to9.5) are given by

V+3 J+1
v=—p— k=S VHEIV2Z=(E3HV2)B42v2)7 (+3vV2)(3+2v2)",
wheren is a nonnegative integer. The first several solutions are
v|3 4 8 15 39 80

K1 2 5 10 27 56

We have shown that Equatiof.() has infinitely many solutions, as it is the same
equation that appears in Theorent. However, in Corollary2.10, k£ must bek,
the unique integer that satisfies Inequality3. This condition is also necessary
for Equations 9.3), (9.4), and ©.5). In other words, we must show that fodarge
enough, every solutiotw, k) to one of the Equation®(3), (9.4), or (9.5), satisfies
Inequality (L.3). We do this only for EquationS(3) as all other cases are similar.

Lemma 9.2. Let (v, k) be a positive integral solution to Equatiof.f) with v > 3.
Then(v, k) satisfies Inequalityl(.3). That is,k = k.

Proof. Suppose thafy, k) is a solution to Equatiorg(3) with v > 3. Thenk < v <
2k. Inequality (L.3) consists of two parts, the first of which is

k 1/v
< = :
To prove this part, we compute

%(;)_(§>:%(g)—(§>—(@u—5ﬂ—2@k—3ﬁ+q)ﬂ6

1
—(—k)—= >0
(v—k) 2>0
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The second part of Inequality () is

1 v < kE+1 .
2\2/) — 2
This time, we have

() 730) = (157) 5(a) ooy aearen

1
:2k—U+§>0.
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