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ABSTRACT. The general problem in this paper is minimizing ttg— norm of suitable affine
mappings fromB(H) to C),, using convex and differential analysis (Gateaux derivative) as well

as input from operator theory. The mappings considered generalize the so-called elementary
operators and in particular the generalized derivations, which are of great interest by themselves.
The main results obtained characterize global minima in terms of (Banach space) orthogonality,
and constitute an interesting combination of infinite-dimensional differential analysis, operator
theory and duality. Note that the results obtained generalize all results in the literature concerning
operator which are orthogonal to the range of a derivation and the technigues used have not been
done by other authors.
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1. INTRODUCTION

Let £ be a complex Banach space. We first define orthogonalify. ikVe say thab € F is
orthogonal ta: € E if for all complex\ there holds

(1.1) la+ Ab[| = [lal| .

This definition has a natural geometric interpretation. Nantely, if and only if the complex
line {a + A\b | A € C} is disjoint with the open ball< (0, ||a]|), i.e., iff this complex line is a
tangent one. Note that if is orthogonal tou, thena need not be orthogonal to If F is a
Hilbert space, then fronj (1.1) follows, b) = 0, i.e., orthogonality in the usual sense. Next we
define the von Neumann-Schatten clasSgsl < p < o). Let B(H ) denote the algebra of all
bounded linear operators on a complex separable and infinite dimensional Hilbertspacde
letT € B(H) be compact, and let,(7') > s5(7") > --- > 0 denote the singular values &t
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2 SALAH MECHERI

i.e., the eigenvalues ¢f'| = (T*T)% arranged in their decreasing order. The operata said
to belong to the Schattgrclasseg”), if

17, = [Z si(T)

i=1

1
P

= [tr|TP) <00, 1<p< oo,

wheretr denotes the trace functional. HenCe is the trace clasg)s is the Hilbert-Schmidt
class, and’,, corresponds to the class of compact operators with
1T = 51(T) = sup [|Tf]]
lFl1=1
denoting the usual operator norm. For the general theory of the Sclpattasses the reader
is referred to[[16]. Recall (see [16]) that the nofirjj of the B—spaceV is said to be Gateaux
differentiable at non-zero elementse V' if there exists a unique support functional (in the dual
spaceV*) such that| D, || = 1 andD,(z) = ||=|, satisfying
ol tyl = e
R3>t—0 t

for all y € V. HereR denotes the set of all reals aRé denotes the real part. The Gateaux
differentiability of the norm at: implies thatz is a smooth point of a sphere of radijs| .

It is well known (seel[6] and the references therein) thatlfer p < oo, C, is a uniformly
convex Banach space. Therefore every non-Zem C,, is a smooth point and in this case the
support functional of” is given by

= Re D, (y),

TPt U X
[
forall X € C,, whereT' = U |T| is the polar decomposition @f. The first result concerning
the orthogonality in a Banach space was given by Anderson [1] showing tHasi& normal
operator on a Hilbert spadé, then AS = SA implies that for any bounded linear operafor

there holds
(1.3) IS +AX — XA| > ||S]|.

This means that the range of the derivattan B(H) — B(H) defined byd4(X) = AX - XA
is orthogonal to its kernel. This result has been generalized in two directions: by extending the
class of elementary mappings

(12) DT(X) =tr

?

Eap:B(H)— B(H);  Eap(X)=) AXB-X
=1
and

Eap:B(H)— B(H);  Eap(X)=Y AXB,
=1

where(A;, Ay, ..., A,) and (By, Bs, ..., B,) aren— tuples of bounded operators @h, and

by extending the inequality (1.3) 10,-classes with. < p < oo see[[3], [6], [9]. The Gateaux
derivative concept was used inl [3,[5,[6,7] 15] and [8], in order to characterize those opera-
tors which are orthogonal to the range of a derivation. The main purpose of this note is to
characterize the global minimum of the map

X =S+ o(X)llg,, ¢isalinear mapinB(H),

in C,, by using the Gateaux derivative. These results are then applied to characterize the opera-
tors S € C, which are orthogonal to the range of elementary operators. It is very interesting to
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point out that our Theorem 2.3 and its Corollary]| 2.6 generalize Theorem 1 in [6] , Lemma 2 in
[3] and Theorem 2.1 in [18].

2. MAIN RESULTS

Let¢ : B(H) — B(H) be a linear map, that ig(aX + 5Y) = ag(X) + Bo(Y), for all
a,feCandallX,Y € B(H),andletS € C, (1 < p < c0). Put

U={XeB(H): ¢(X)eC,}.
Lety : U — C, be defined by
(X)) = 5+ o(X).
Define the functiort, : U/ — R by F,(X) = [[¢(X)| ., . Now we are ready to prove our first

result inC,-classeg1 < p < oo). It gives a necessary and sufficient optimality condition for
minimizing F,.

Let X be a Banach space,a linear mapX — X, andy(z) = ¢(z) + s for some element
s € X. Use the notation

D.(y) = Tim —(lz + tyl] — ).

(%) = [lz]| andDy(—z) = —|||].
Theorem 2.1. The mapF,, = ||¢)(z)|| has a global minimum at € X if and only if

(2.1) Dy)(6(y)) =0, Vy€X.

It is obvious thatD,, is sub-additive and,, (y) <

Proof. Necessity is immediate from(z) + t¢(y) = ¢ (x + ty). Sufficency: assume the stated
condition and choosg. Note thatp(y — ) = 1 (y) — ¥(x). For brevity we letD,), = L.
Then

lo(@)l = ~L(~())
< —L(~v(x)) + L((y) — (x)) byhypothesis
< L(¥(y)) by sub-additivity
< )l

Theorem 2.2([7]). LetX,Y € C,. Then, there holds
Dx(Y) = pRe {tr(|X|""'U*Y)},
whereX = U |X| is the polar decomposition of .

The following corollary establishes a characterization of the Gateaux derivative of the norm
in C,-classeg1 < p < oo). Now we are going to characterize the global minimun¥ipfon
C, (1 < p < x0), wheng is a linear map satisfying the following useful condition:

(2.2) tr(X¢(Y)) = tr(¢*(X)Y), VXY €C,

where¢* is an appropriate conjugate of the linear mapNVe state some examples@ando*
which satisfy the above condition (2.2).

(1) The elementary operat(gTAB : 7 — 7 defined by

Eap(X) =Y AXB,
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whereA;, B, € B(H) (1 < i < n) andZ is a separable ideal of compact operators
in B(H) associated with some unitarily invariant norm. It is easy to show that the
conjugate operatat’; 5 : 7* — I* of E4 p has the form

Eyp(X) =Y BXA,
=1

and that the operatOtiéA,B andZ?AB satisfy the conditi02).
(2) Using the previous example we can check that the conjugate opéiaior 7* — I~
of the elementary operatét, 5 defined byE4 5(X) = > | A,XB;— X, has the form

By 5(X) =) BXA - X,
=1
and that the operatois, s and £’} 5 satisfy the conditior{ (2]2).
Now, we are in position to prove the following theorem.

Theorem 2.3.LetV € C,, and lety)(V) have the polar decomposition(V') = U |¢(V)].
ThenF), has a global minimum o@', at V' if and only if|1)(V')|[U* € ker ¢*.

Proof. Assume that", has a global minimum o', atV'. Then
(2.3) Dy (o(Y)) = 0,
forallY € C,. Thatis,
pRe {tr(jp(V)[P7'U*¢(Y))} >0, VY €C,.
This implies that
(2.4) Re{tr(jp(V)P'U* (Y )} >0, VY € C,.

Let f ® g, be the rank one operator definedby- (z, f) g wheref, g are arbitrary vectors in
the Hilbert spacd?. TakeY = f ® g, since the map satisfies[(2]2) one has

tr(fp (V)P0 ¢(Y) = tr(¢" ([ (V)" UMY).
Then [2.4) is equivalent tBe{tr(¢*(|¢(V)[P~'U*)Y)} > 0, forall Y € C,, or equivalently

Re (¢"([0(V)["~'U)g. f) 20, Vf.g€ H.
If we choosef = ¢ such that| f|| = 1, we get

(2.5) Re (¢"(lv(V)PT'U")f, ) = 0.
Note that the set
{& (WP UL L) 1l =13

is the numerical range of (|v)(V)[P~1U*) onl{ which is a convex set and its closure is a closed
convex set. By[(2]5) it must contain one value of positive real part, under all rotation around the
origin, it must contain the origin, and we geta vector H such thato*(|o(V)|P1U*)f, f) <
e where e is positive. Sincee is arbitrary, we get(¢*(|v(V)|P~'U*)f, f) = 0. Thus
o (|[p(V)|P1U*) = 0, i.e., [W(V)[P1U* € ker ¢*.

Conversely, ify)(V)|P~1U* € ker ¢*, then|y(V)|P~1U* € ker ¢*. Itis easily seen (using the
same arguments above) that

Re {tr([(V)PT'U"$(Y))} 20, VY €,
By this we get[(2.8). O
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We state our first corollary of Theordm P.3. lget= 64,5, Whered, 5 : B(H) — B(H) is
the generalized derivation defined fyz(X) = AX — X B.

Corollary 2.4. LetV e C,, and lety(V') have the polar decompositian(V') = U [ (V).
ThenF,, has a global minimum o6, at V, if and only if|¢)(V)[P~1U* € ker i 4.

Proof. It is a direct consequence of Theorem|2.3. O

This result may be reformulated in the following form where the global minimudoes not
appear. It characterizes the operat®ia C, which are orthogonal to the range of the derivation

da.B-
Theorem 2.5.LetS € C,, and lety(.S) have the polar decompositiaf(S) = U |¢(S)|. Then
10X, = 199, -
forall X € C, if and only if[¢)(S)[P~'U* € ker dp 4.
As a corollary of this theorem we have

Corollary 2.6. LetS € C, Nkerd4 5 have the polar decompositigh= U |S|. Then the two
following assertions are equivalent:

1)
IS+ (AX — XB)¢, > [l . forall X € C,.

(2) |S|P~'U* € ker 0 4.
Remark 2.7. We point out that, thanks to our general results given previously with more

general linear maps, Theoren] 26 and its Corollafy 2.6 are true for the nuclear operator
A4 p(X) = AXB — X and other more general classes of operators than such as the

elementary operator& , z(X) andEZ,B(X).
The above corollary generalizes Theorem 1.in [6]and LemmalZ in [3].
Now by using Theorern 2.5 , Corollafy 2.6, Remprk| 2.7 and the following Lemna 2.8 and

Lemmd 2.1 we obtain some interesting results see also[([3], [13])S kel/ | S| be the polar
decomposition of.

Lemma 2.8.LetA, B € B(H) andT € C, such thatker 64 5(T") C ker & (7).
If A|S|P~'U* = |S|P~" U*B, wherep > 1 andS = U |S| is the polar decomposition o,
thenA |S|U* = |S|U*B.

Proof. If T = |S|"", then

(2.6) ATU* = TU*B.
We prove that
(2.7) AT"U* = T"U*B,

foralln > 1.1f S = U |S], then
ker U = ker|S| = ker |S|P! = ker T

and R

(ker U)* = (ker T)* = R(T).
This shows that the projectidii*U onto (ker T')* satifiesU*UT = T andTU*UT = T?. By
taking the adjoints 06) and singer 6, (1) C ker 0% p(T), we getBUT = UT A and

AT? = ATU*UT = TU*BUT = TU*UTA = T?A.
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SinceA commutes with the positive operatb?, A commutes with its square roots, that is,
(2.8) AT =TA
By (2.6) and[(2.B) we obtair (2.7). Léi(t) be the map defined on(T") C R* by f(t) =

tr—1; 1 < p < oo. Sincef is the uniform limit of a sequenceP;) of polynomials without
constant term (sincg(0) = 0), it follows from (2.8) thatAP,(T')U* = P,(T)U*B. Therefore

AT#1U* = U*T#1B. O
Theorem 2.9. Let A, B be operators inB(H) such thatker§4 5 C kerds- p-. ThenT €
kerd4 g N C,, if and only if

1T+ ba8(X)], = IT1],,
forall X € C,,.
Proof. If 7" € ker A4 5 then by applying Theorem 3.4 in/[9] it follows that

1T+ 04 5(X)I, = [IT],,,
forall X € C,. Conversely, if

1T+ ba.8(X)], = IT1],,
for all X € C,, then from Corollary 2.6

A|T|U*=|S|U*B.

Sinceker 64 p C ker d4- g+, B*|T|P~' U* = |T|P~! U* A*. By taking adjoints we getU |T'|"~"
= U|T|""" B. From Lemm it follows thatlU |T'| = U |T'| B.i.e.,T € ker d g. O

Note that the above theorem still holds if we consider s instead ob 4 5.

Let A = (Ay, As,..., A,), B= (B, Bs,...,B,) ben—tuples of operators if3(H). In the
following Theoren{ 2.12 we will characterizé € C, for 1 < p < oo, which are orthogonal
to R(Exp | C,) (the range ofE,4 5 | C,) for a general pair of operatord, 5. For this let
S = U |S| be the polar decomposition 6f We start by the following lemma or the case where

Ec =3 C;XC; — X which will be used in the proof of Theorgm 2]12.
Let.S = U |S| be the polar decomposition 6f

Lemma 2.10. Let C = (Cy,Cy,...,C,) be ann—tuple of operators inB(H) such that
S CCr <1, CrCy < 1andker B¢ C ker Ege. If

dGUIsSPTiC =UlsPT,
=1
wherep > 1, then
Y CUIS|Ci=UlS].

=1

Proof. If T = |S|P~", then

(2.9) Zn: C.UTC; = UT.
We prove that -

(2.10) zn: C.UT"C, = UT",

=1
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It is known that if) " | C,CF < 1,>""  CrC; < 1 andker E,. C ker E* that the eigenspaces
corresponding to distinct non-zero eigenvalues of the compact positive oprﬁ‘ﬁtmeduces
eachC; (seel[4], Theorem 8),[([18], Lemma 2.3)). In particulgf, commutes withC; for all

1 < i < n. This implies also thatS|"~' = T commutes with eacht; for all 1 < i < n. Hence

SinceC; commutes with the positive operatdt, thenC; commutes with its square roots,
that is,
(2.11) CT =TC;.

By the same arguments used in the proof of Lemima 2.8 the proof of this lemma can be com-
pleted.

Theorem 2.11.Let C' = (C4,Cy,...,C,) be ann—tuple of operators inB(H) such that
S CiCr < 1,53 CrC; < 1andker Ec C ker Ec- thenS € ker Ec N C, (1 < p < 00),
if and only if,

15+ Ec(X)ll, = (151, ,
forall X € C,,.
Proof. If S € ker E¢ then from ([18], Theorem 2.4) it follows that

15+ Ec(X)[l, = (151, ,
forall X € C,. Conversely, if

15+ Ec(X)[, = 151, ,

forall X € C,. then from Corollar applied for the elementary oper#tok ), we get
Y cispPTtutc = |spPTtuT,
=1

Sinceker Ec C ker Ec-,

docrisptuees = |sptu.
=1
Taking the adjoint we get, C;U |S|P " C; = U |S|”~" and from Lemma 2.0 it follows that

S Gulsici=Uls],
=1

i.e.,S € ker Ec. O

Theorem 2.12.Let A = (Ay, Ao, ..., A,), B = (B4, B, ..., B,) ben—tuples of operators
in B(H) such thaty " | A;AY < 1,30 AfA, <1, BB <1, BB, <1and
ker Eq g C ker E g« p.

ThenS € ker E4 g N C,, if and only if,

15 + Eas(X), = [I5]],
forall X € C,,.
Proof. It suffices to take the Hilbert spadé & H, and operators

A, 0 JoT [0 X
Ci_[o Bll’ S—{o 0]’ X‘{oo]

and apply Theorei 2.1.2. O
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