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1. Introduction and Results

In this paper a meromorphic function will mean meromorphic in the whole complex
plane. We say that two meromorphic functioh@nd g share a finite value IM
(ignoring multiplicities) whenf — a andg — a have the same zeros. ff— a and
g—a have the same zeros with the same multiplicities, then we say #radg share

the valuez CM (counting multiplicities). Itis assumed that the reader is familiar with
the standard symbols and fundamental results of Nevanlinna theory, as fold in [
and [15). For any non-constant meromorphic functibnwe denote by5(r, f) any

quantity satisfying
S(r.f) _

im ,
T—00 T<T7 f)

possibly outside of a set of finite linear measur®inSuppose thai(z) is a mero-
morphic function, we say thai z) is a small function off, if T'(r,a) = S(r, f).

Let [ be a non-negative integer or infinite. For ang C | J{co}, we denote by
Ei(a, f) the set of all a-points of where an a-point of multiplicityn is countedn
times ifm <landl + 1timesifm > [. If Ej(a, f) = Ej(a, g), we say thalf andg
share the value with weight! (see f]).

We say thatf andg share(q, ) if f andg share the value with weight/. It is
easy to see thgt andg share(a, [) implies f andg share(a, p) for 0 < p < [. Also
we note thatf andg share a value IM or CM if and only if f andg share(a, 0) or
(a, 00) respectively (seed]).

L.A. Rubel and C.C. Yangd], E. Mues and N. Steinmet8], G. Gundersend]
and L.-Z. Yang 0], J.-H. Zheng and S.P. Wan@§], and many other authors have

obtained elegant results on the uniqueness problems of entire functions that share

values CM or IM with their first ork-th derivatives. In the aspect of only one CM
value, R. Brick ] posed the following conjecture.

A Conjecture of
R. Briick

Ji-Long Zhang and Lian-Zhong Yang
vol. 8, iss. 1, art. 18, 2007

Title Page
Contents
44 44
< >
Page 3 of 23
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: L443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:jilong_zhang@mail.sdu.edu.cn
mailto:
mailto:lzyang@sdu.edu.cn
http://jipam.vu.edu.au

Conjecturel.1 Let f be a non-constant entire function. Suppose thef) is not a
positive integer or infinite, iff and f’ share one finite value a CM, then

f'—a

f—a
for some non-zero constant wherep, (f) is the first iterated order of which is
defined by

=cC

. log log T'(r,
pu(f) = tim sup ELCETUT)
T—00 ogr
R. Bruck also showed in the same paper that the conjecture is taue-if) or

N (r, %) = S(r, f) (no growth condition in the later case). Furthermore in 1998,
G.G. Gundersen and L.Z. Yand][proved that the conjecture is truefifis of finite
order, and in 1999, L. Z. YandL]] generalized their results to theth derivatives.
In 2004, Z.-X. Chen and K. H. Sho2][proved that the conjecture is true for entire
functions of first iterated order, < 1/2. In 2003, Kit-Wing Yu [16] considered the
case that is a small function, and obtained the following results.

Theorem A. Let f be a non-constant entire function, lebe a positive integer, and
let « be a small meromorphic function ¢gfsuch thata(z) # 0,00. If f —a and
f%® — a share the valu®@ CM ands(0, f) > 2, thenf = f*).

Theorem B. Let f be a non-constant, non-entire meromorphic functionklee a
positive integer, and let be a small meromorphic function ¢fsuch thata(z) #

0, 00. If f anda do not have any common pole, and'if- a and f*) — ¢ share the
value0 CM and44§(0, f) + 2(8 + k)O(oo, f) > 19 + 2k, thenf = f*),

In the same paper, Kit-Wing Yulp] posed the following questions.

Problem 1. Can a CM shared value be replaced by an IM shared value in Theorem
A?

A Conjecture of
R. Briick

Ji-Long Zhang and Lian-Zhong Yang
vol. 8, iss. 1, art. 18, 2007

Title Page
Contents
44 44
< >
Page 4 of 23
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: L443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:jilong_zhang@mail.sdu.edu.cn
mailto:
mailto:lzyang@sdu.edu.cn
http://jipam.vu.edu.au

Problem 2. Is the conditions (0, f) > 2 sharp in Theorem\?

Problem 3. Is the conditiontd (0, f)+2(8+k)O (oo, f) > 1942k sharp in Theorem
B?

Problem 4. Can the condition f anda do not have any common pole” be deleted
in TheorenB?

In 2004, Liu and GuT] obtained the following results.

Theorem C. Let k£ > 1 and let f be a non-constant meromorphic function, and
let « be a small meromorphic function ¢fsuch thata(z) # 0,00. If f —a and
f* — q share the valué CM, f**) anda do not have any common poles of the same
multiplicities and

26(0, f) +40(c0, f) > 5,

thenf = .
Theorem D. Letk > 1 and letf be a non-constant entire function, and tebe a

small meromorphic function gf such thatu(z) # 0, co. If f —a and f*) — q share
the valued CM andd(0, f) > 1, thenf = ¥,

Let p be a positive integer and € C|J{co}. We denote byV,, (r, f—ia> the
counting function of the zeros gf — a with the multiplicities less than or equal to
p, and byN,1 (r, ﬁ) the counting function of the zeros ¢f— a with the multi-

plicities larger tharp. And we useV, (r, ﬁ) andN ;1 <r, ﬁ) to denote their
corresponding reduced counting functions (ignoring multiplicities) respectively. We

also useV, (r, ﬁ) to denote the counting function of the zerosfof a where a
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p-folds zero is countedh times if m < p andp times ifm > p. Define

N (r)
(5p(a, f) =1-—lm sup W

It is obvious thav,,(a, f) > d(a, f) and

1 — 1
N1<r’f—a>_N(r’f—a)'

Lahiri [6] improved Theorent with weighted shared values and obtained the

following theorem.

Theorem E. Let f be a non-constant meromorphic functiénye a positive integer,
and leta = a(z) be a small meromorphic function ¢fsuch thata(z) # 0, co. If

(i) a(z) has no zero (pole) which is also a zero (pole)fabr f*) with the same
multiplicity,

(i) f—aandf® — q share(0,2),
(iii) 20544(0, f) + (4 + k)O(c0, f) > 5+ k,
thenf = .

In 2005, Zhang 17] obtained the following result which is an improvement and
complement of Theorem.

Theorem F. Let f be a non-constant meromorphic functign(> 1) and! (> 0)

be integers. Also, let = a(z) be a small meromorphic function g¢f such that
a(z) # 0,00. Suppose thaf — a and f*) — q share(0,1). Thenf = f* if one of
the following conditions is satisfied,
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() I >2and
(34 k)O(00, f) + 205.4(0, f) > k + 4;

(i) I=1and
(4+k)O(c0, f) + 30244(0, ) > k + 6;

(i) 1 =0¢(i.e. f — aand f* — a share the value IM) and
(6 + 2k)O(00, f) + 56244(0, f) > 2k + 10.

It is natural to ask what happensfif*) is replaced by a differential polynomial
L(f) = f(k) + ak_lf(k—l) +aof

in Theorem:= or F, wherea; ( =0,1,...,k — 1) are small meromorphic functions
of f. Corresponding to this question, we obtain the following result which improves
TheoremsA ~ F and answers the four questions mentioned above.

(1.1)

Theorem 1.2. Let f be a non-constant meromorphic functidr{> 1) and (> 0)

be integers. Also, let = a(z) be a small meromorphic function gf such that
a(z) # 0,00. Suppose thaf — a and L(f) — a share(0,1). Thenf = L(f) if one
of the following assumptions holds,

() {>2and

(12) §2+k(07f) +52<O7f> +3@(Oovf) +5(a7 f) > 4;

(i) I=1and

(1.3) 9244(0, f)+62(0, f)+%51+k(07f)+¥@(oo,f)—|—5(a, f) > §+5;
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(i) L=0(.e. f—aandL(f) — a share the valu® IM) and

(1.4) 6244(0, f) 4+ 20114(0, f) + 62(0, f)
+O(0, f) + (6 + 2k)O(o0, f) + d(a, f) > 2k + 10.

Sinced2(0, f) > 0144(0, f) > 624£(0, f) > d(0, f), we have the following
corollary that improves Theoremis~ F.

Corollary 1.3. Let f be a non-constant meromorphic functidri> 1) and{(> 0)
be integers, and let = a(z) be a small meromorphic function gfsuch that(z) #
0,00. Suppose thaf — a and f*) — q share(0,1). Thenf = f® if one of the
following three conditions holds,

() I>2and
28510, f) +30(c0, f) + 8(a, f) > 4
(i) I=1and
262+k<07 f) + %@(OO, f) + 5(@, f) > g + 5;

(i) L=0(.e. f —aandL(f)— a share the valu® IM) and
58241(0, f) + (6 4+ 2k)O (o0, f) + d(a, f) > 2k + 10.
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2. Some Lemmas

Lemma 2.1 ([L2]). Let f be a non-constant meromorphic function. Then

(2.1) N <7’, %) <T(r, f™) =T(r, f) + N <r, %) +S(r, f),
1 1 _
(2.2) N (r, W) <N (7", }) +nN(r, f)+ S(r, f).

Suppose that’ andG are two non-constant meromorphic functions such that
and G share the value 1 IM. Let, be a 1-point ofF" of orderp, a 1-point ofG
of orderq. We denote byVy, (r 1 ) the counting function of those 1-points 6f

' F-1
wherep > ¢, by N (r, 7 ) the counting function of those 1-points &fwhere
p=gq=1 by N (r, 755 ) the counting function of those 1-points &f where

P F—1
O F-1 . : :
p = q > 2; each point in these counting functions is counted only once. In the

same way, we can defin;, (r, z-5 ), N} (1, g-5) and Ny (r, z5) (see L4)). In
particular, if " andG share 1 CM, then
) 0.

1 1
Vi (rgy ) = 8 (r gy

With these notations, if" andG share 1 IM, it is easy to see that

_ 1 n 1 1
() = () o)
1 @ 1
N N  —
+ L<T,G_1) + E (T,G_l)

(2.3)

(2.4)
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Lemma 2.2 ([L3]). Let

Fl/ 2F/ G/l 2Gl
H=|—_— = =
(F7)-(G-a):
whereF andG are two nonconstant meromorphic functionsF'land G sharel IM
and H # 0, then

1
1
NE) <T,F_1

Lemma 2.3. Let f be a transcendental meromorphic functidr(,f) be defined by
(L.1). If L(f) # 0, we have

(2.5)

(2.6)

) < N(r, H) + S(r, F) + S(r, G).

2.7) N <7«, %) <T(rL)—T(r f)+ N (n %) + S f),
(2.8) N (7’, %) <kN(r,f)+ N <r, %) + S(r, f).

Proof. By the first fundamental theorem and the lemma of logarithmic derivatives,
we have

N (r, %) —T(r, L) —m (7’, %) +0(1)

<T(rL)— (m (r, %) —m (r, #)) +O(1)
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<T(r,L)— (T(r, f)=N (r, %)) +5(r, f)

<T(rL)—T(, f)+ N (r, %) + S f).

This proves 2.7). Since
T(r,L) =m(r,L) + N(r, L)

<m(r,f)+m (r, %) + N(r, f) + kN (r, f)

=T(r, f) + kN (r, f) + S(r, f),
from this and £.7), we obtain £.8). LemmaZ2.3is thus provedg

Lemma 2.4. Let f be a non-constant meromorphic functiabyf) be defined by

(1.1), and letp be a positive integer. I£(f) # 0, we have

(2.9) N, (T, %) <T(r,L)=T(r, f) + Npsk (r, %) + S(r, f),

(2.10) N, (r, %) < EN(r, ) + Nyo <r, %) + S0, ).

Proof. From (2.8), we have

1 = = 1
be (7} 2:) + -EE:: fV(j (}} z:)
J=p+1

< Ny ( %) LYW ( %) + NG f) + S f),

Jj=p+k+1
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then

J=ptk+1
00 1 o
- > Ny ( —) + kN (r, f) + S(r. f)
j=p+1 L A CcF:njgc.t.uf of
1 o . Briic
< Np+k <T, ?) + l{}N(T, f) + S(T, f) Ji-Long Zhang and Lian-Zhong Yang

vol. 8, iss. 1, art. 18, 2007

Thus ¢.10 holds. By the same arguments as above, we obfai) ffom (2.7). n
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3. Proof of Theorem1.2

Let

(3.1) pt gL

From the conditions of Theorem?, we know thatF" andG share(1, ) except the
zeros and poles af(z). From 3.1), we have

(3.2) T(r,F)=0(T(r, f)) +S(r, f), T(r,G)<T(r, f)+S(r,f),

(3.3) N(r,F) = N(r,G) + S(r, f).

It is obvious thatf is a transcendental meromorphic function. EEbe defined by
(2.5. We discuss the following two cases.

Case 1.H # 0, by Lemma&.2 we know thatZ.6) holds. From £.5) and (3.3), we
have

(3.4) N(r,H) < Ng (r, %) + N <r, é) + N(r,G)

1 1 1 1
+ j\(L <}3 15_::_i{> + pVL (:Ta G — ]:> + ]Vb (}3 iE;{) + fvb (}3 Zi?:)‘

where N, (r, 77) denotes the counting function corresponding to the zeroB’ of

which are not the zeros of and /' — 1, N, (r L ) denotes the counting function

el
corresponding to the zeros 6f which are not the zeros ¢f andG — 1. From the
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second fundamental theorem in Nevanlinna’s Theory, we have
— 1 1 — 1
35) T(r,F)+T(r,G) < N( F) + N(r, F)+N( T ) +N( >
N(r,G)+ N ! — N, !
T, T, G 1 0 F’
),

Noting that ' and G share 1 IM except the zeros and polesuOf
(2.9,

— 1 — 1
N N
(i) ¥ ()
1 1 1
_onb i
= 2Ny (T,F_l)—|—2NL(7“,F_1)+2NL(T,G_1>
1

we get from

1 — 1
_1)+N<T,G_1>
<N L) ! + N(r,G) + 3N L) s !
> INe | T F CARE) G r, L\ F_1 L\ G—1

1

1 1 1
+ N} (T,F_1>+2N§ (T’G—1>+NO< F/>+N0( G)+S(r,f).

We discuss the following three subcases.
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Subcasel.l [ > 2. Itis easy to see that

1 1
(3.7) 3N, (r, i 1) +3Ng (7‘, m)

From (3.6) and (3.7), we have

3.8) N (r, Fl—l) +N (7", ﬁ)

1 1 — 1
< _ _ -
< Ne (T,F) + N (T,G) +N(7‘,G)+N(T,G_1>

+ N <7’, %) + Ny <7’, é) + S(r, f).

Substituting £.9) into (3.5) and by using §.3), we have

3.9 T(r,F)+T(r,QG)

S3N(T,G)+N2 <T,%) +N2 (T,é) +N<T7G1_1> +S(T7f)

Noting that
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we obtain from 2.9), (3.1) and @3.9) that

(3.10) T(r, f) < 3N(r, f)+Noyk (r, 1) + N, (r, 1) —m (r, e 1_ 1) +5(r, f),

f f

which contradicts the assumption f) of Theoreml.2.
Subcasel.2 [ = 1. Noting that

1 1 1 1
IN N N NY
L(T,F_1)+3 L<T’G—1)+ E<T’G—1)+ EA\" T
<

o) ()
< %N (r,%) + S(r, f)
< % (N <r, %) + N(r, F)) + S(r, f)
< % (Nl ( %) + N(r, f)) + S(r, f)
<3 <N1+k (r, f) (k4 NG f)> 50 f),

and by the same reasoning as in Subcasewe get

k?+7— 1 1
T(T’f) < TN(TJf)+N2+k (ﬁ}) + Ny <T,?)
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—I—%NHk (r, %) —m <r, G1—1> + S(r, f),

which contradicts the assumption §) of Theoreml.2.
Subcasel.3 [ = 0. Noting that

1 1 (2 1 1) 1
N _ 2N 2N N
L(’”’F—l)+ L(“G—l)* E(“G—l)* E(“F—l)
+

1 1 1 1
2NL <T,m) +NL (T, m) S 2N (7’, F) +N<T,a>,

and by the same reasoning as in the Subé#seve get a contradiction.

Case 2. H = 0. By integration, we get fron?(5) that

1 A
G-1 F-1

whereA (# 0) and B are constants. From3(11) we have

(3.12) N(r,F)=N(r,G)=N(r,f) =S, f), ©O(c0,f)=1,

(3.11)

+ B,

and

(B+1)F +(A—B—1)
BF + (A— B)

(B—A)G+(A—B—1)

@313 ¢= BG_(B+1)

. F=

We discuss the following three subcases.
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Subcase?.1 Suppose thaB # 0, —1. From (3.13 we haveN (r,1/ (G — 1)) =
N(r, F). From this and the second fundamental theorem, we have

T(r,f) <T(r,G)+ S(r, f)
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(3.14) G = %), F=AG—(A—1). - -

If A # 1, from (3.14 we can obtainV (r,1/ (G — 431)) = N(r,1/F). From this
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which contradicts the assumptions of Theorém ThusA = 1. From 3.14) we
havel' = G, thenf = L.

Subcase?.3 Suppose thaB = —1, from (3.13 we have

B A _(A+1DG-A
(3-15) G — m’ F —_— G .
If A # —1, we obtain from §.19) that N (r,1/ (G — 447)) = N(r,1/F). By the

same reasoning discussed in Subca®ewe obtain a contradiction. Hende= —1.
From (3.15, we getF' - G = 1, that is

(3.16) f-L=d
From (3.16), we have
(3.17) N ('r, %) LN ) = S f).

and sal’ (r, ﬂ) = S(r, f). From (3.17), we obtain

f
2T <7“, i) =T (r, f_j)
a a

“o( ) o

—T (r, ?) +0(1) = S(r, f),

and sol'(r, f) = S(r, f), this is impossible. This completes the proof of Theorem

1.2
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4. Remarks

Let f and g be non-constant meromorphic functiong;) be a small function of

f andg, andk be a positive integer oso. We denote bw_\f?(r, a) the counting
function of common zeros of — a andg — a with the same multiplicitiep < k,
by Nék+1(r, a) the counting function of common zeros pf- a andg — a with the
multiplicitiesp > k + 1, and denote by (r, a) the counting function of common

zeros off —a andg — a; each point in these counting functions is counted only once.

Definition4.1 Let f and g be non-constant meromorphic functiomasbe a small
function of f andg, andk be a positive integer oso. We say thatf and g share
“(a, k)" if k=0, and

¥ ( . ) ~ No(r.a) = S(. f),

—Qa
__ 1 _
¥ (not) - M) = 8000
ork # 0, and
— 1 k)
k) <7ﬂ7 f—a) —NE(T,CL) = S(T’,f),
— 1 —k
Ny ( - ) —W(r,a) = S(r,9),
— 1 —(k+1
N ( - ) ~ W) = S0, 1),
__ 1 .
N (1222 ) = T na) = 5(00)
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By the above definition and a similar argument to that used in the proof of Theo-
rem1.2, we conclude that Theorefn2 and Corollaryl.3 still hold if the condition

thatf — a andL(f) — a (or f*) — a) share(0,1) is replaced by the assumption that
f—aandL(f) —a (or f*) — a) share“(0,1)".
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