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1. Introduction, Definitions and Preliminaries

LetA0 be the class of functionsf(z) of the form:

(1.1) f(z) = a0 + a1z +
∞∑

n=2

anz
n,

which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1} .

If f(z) ∈ A0 is given by (1.1), together with the following normalization:

a0 = 0 and a1 = 1,

then we say thatf(z) ∈ A.
If f(z) ∈ A satisfies the following inequality:

(1.2) R

(
zf ′(z)

f(z)

)
> α (z ∈ U; 0 5 α < 1),

thenf(z) is said to be starlike of orderα in U. We denote byS∗(α) the subclass
of A consisting of functionsf(z) which are starlike of orderα in U. Similarly, we
say thatf(z) is in the classK(α) of convex functions of orderα in U if f(z) ∈ A
satisfies the following inequality:

(1.3) R

(
1 +

zf ′′(z)

f ′(z)

)
> α (z ∈ U; 0 5 α < 1).

It is easily observed from (1.2) and (1.3) that (see, for details, [3])

f(z) ∈ K(α) ⇐⇒ zf ′(z) ∈ S∗(α) (0 5 α < 1).
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As usual, in our present investigation, we write

S∗ := S∗(0) and K := K(0).

Furthermore, we letB denote the class of functionsp(z) of the form:

p(z) = 1 +
∞∑

n=1

pnz
n,

which are analytic inU.
Each of the following lemmas will be needed in our present investigation.

Lemma 1. A functionp(z) ∈ B satisfies the following condition:

R[p(z)] > 0 (z ∈ U)

if and only if

p(z) 6= ζ − 1

ζ + 1
(z ∈ U; ζ ∈ C; |ζ| = 1).

Proof. For the sake of completeness, we choose to give a proof of Lemma1, even
though it is fairly obvious that the following bilinear (or Möbius) transformation:

w =
z − 1

z + 1

maps the unit circle∂U onto the imaginary axisR(w) = 0. Indeed, for allζ such that
|ζ| = 1 (ζ ∈ C), we set

w =
ζ − 1

ζ + 1
(ζ ∈ C; |ζ| = 1).
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Then

|ζ| =
∣∣∣∣1 + w

1− w

∣∣∣∣ = 1,

which shows that

R(w) = R

(
ζ − 1

ζ + 1

)
= 0 (ζ ∈ C; |ζ| = 1).

Moreover, by noting thatp(0) = 1 for p(z) ∈ B, we know that

p(z) 6= ζ − 1

ζ + 1
(z ∈ U; ζ ∈ C; |ζ| = 1).

This evidently completes the proof of Lemma1.

Lemma 2. A functionf(z) ∈ A is in the classS∗(α) if and only if

(1.4) 1 +
∞∑

n=2

Anz
n−1 6= 0,

where

An =
n + 1− 2α + (n− 1)ζ

2− 2α
an.

Proof. Upon setting

p(z) =

zf ′(z)
f(z)

− α

1− α

(
f(z) ∈ S∗(α)

)
,

we find that
p(z) ∈ B and R[p(z)] > 0 (z ∈ U).
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Using Lemma1, we have

(1.5)
zf ′(z)
f(z)

− α

1− α
6= ζ − 1

ζ + 1
(z ∈ U; ζ ∈ C; |ζ| = 1),

which readily yields

(ζ + 1)zf ′(z) + (1− 2α− ζ)f(z) 6= 0

(
f(z) ∈ S∗(α); z ∈ U; ζ ∈ C; |ζ| = 1

)
.

Thus we find that

(ζ + 1)z + (ζ + 1)

(
∞∑

n=2

nanz
n

)
+ (1− 2α− ζ)

(
z +

∞∑
n=2

anz
n

)
6= 0

(z ∈ U; ζ ∈ C; |ζ| = 1),

that is, that

2(1− α)z

(
1 +

∞∑
n=2

n + 1− 2α + (n− 1)ζ

2(1− α)
anz

n−1

)
6= 0(1.6)

(z ∈ U; ζ ∈ C; |ζ| = 1).

Now, dividing both sides of (1.6) by 2(1− α)z (z 6= 0), we obtain

1 +
∞∑

n=2

n + 1− 2α + (n− 1)ζ

2(1− α)
anz

n−1 6= 0

(z ∈ U; ζ ∈ C; |ζ| = 1),

which completes the proof of Lemma2 (see also Remark2 below).
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Remark1. It follows from the normalization conditions:

a0 = 0 and a1 = 1

that

A0 =
1− 2α− x

2− 2α
a0 = 0 and A1 =

2− 2α

2− 2α
a1 = 1.

Remark2. The assertion(1.4) of Lemma2 is equivalent to

1

z

(
f(z) ∗

z + ζ+2α−1
2−2α

z2

(1− z)2

)
6= 0 (z ∈ U),

which was given earlier by Silvermanet al. [2]. Furthermore, in its special case
whenα = 0, Lemma2 yields a recent result of Nezhmetdinov and Ponnusamy[1]
for the sufficient conditions involving the coefficients off(z) to be in the classS∗.

The object of the present paper is to give some generalizations of the aforemen-
tioned result due to Nezhmetdinov and Ponnusamy [1]. We also briefly discuss
several interesting corollaries and consequences of our main results.
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2. Coefficient Conditions for Functions in the ClassS∗(α)

Our first result for functionsf(z) to be in the classS∗(α) is contained in Theorem1
below.

Theorem 1. If f(z) ∈ A satisfies the following condition:

∞∑
n=2

(∣∣∣∣∣
n∑

k=1

[
k∑

j=1

(−1)k−j (j + 1− 2α)

(
β

k − j

)
aj

](
γ

n− k

)∣∣∣∣∣
+

∣∣∣∣∣
∞∑

k=1

[
k∑

j=1

(−1)k−j (j − 1)

(
β

k − j

)
aj

](
γ

n− k

)∣∣∣∣∣
)

5 2(1− α)(2.1)

(0 5 α < 1; β ∈ R; γ ∈ R),

thenf(z) ∈ S∗(α).

Proof. First of all, we note that

(1− z)β 6= 0 and (1 + z)γ 6= 0 (z ∈ U; β ∈ R; γ ∈ R).

Hence, if the following inequality:

(2.2)

(
1 +

∞∑
n=2

Anz
n−1

)
(1− z)β(1 + z)γ 6= 0 (z ∈ U; β ∈ R; γ ∈ R)

holds true, then we have

1 +
∞∑

n=2

Anz
n−1 6= 0,

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


Coefficient Inequalities

Toshio Hayami, Shigeyoshi Owa and

H.M. Srivastava

vol. 8, iss. 4, art. 95, 2007

Title Page

Contents

JJ II

J I

Page 9 of 21

Go Back

Full Screen

Close

which is the relation (1.4) of Lemma2. It is easily seen that (2.1) is equivalent to

(2.3)

(
1 +

∞∑
n=2

Anz
n−1

)(
∞∑

n=0

(−1)n bnz
n

)(
∞∑

n=0

cnz
n

)
6= 0,

where, for convenience,

bn :=

(
β

n

)
and cn :=

(
γ

n

)
.

Considering the Cauchy product of the first two factors, (2.3) can be rewritten as
follows:

(2.4)

(
1 +

∞∑
n=2

Bnz
n−1

)(
∞∑

n=0

cnz
n

)
6= 0,

where

Bn :=
n∑

j=1

(−1)n−j Ajbn−j.

Furthermore, by applying the same method for the Cauchy product in (2.4), we find
that

1 +
∞∑

n=2

(
n∑

k=1

Bkcn−k

)
zn−1 6= 0 (z ∈ U)

or, equivalently, that

1 +
∞∑

n=2

[
n∑

k=1

(
k∑

j=1

(−1)k−jAjbk−j

)
cn−k

]
zn−1 6= 0 (z ∈ U).
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Thus, iff(z) ∈ A satisfies the following inequality:

∞∑
n=2

∣∣∣∣∣
n∑

k=1

(
k∑

j=1

(−1)k−jAjbk−j

)
cn−k

∣∣∣∣∣ 5 1,

that is, if

1

2(1− α)

∞∑
n=2

∣∣∣∣∣
n∑

k=1

(
k∑

j=1

(−1)k−j[(j + 1− 2α) + (j − 1)ζ]ajbk−j

)
cn−k

∣∣∣∣∣
5

1

2(1− α)

∞∑
n=2

(∣∣∣∣∣
n∑

k=1

[
k∑

j=1

(−1)k−j (j + 1− 2α)ajbk−j

]
cn−k

∣∣∣∣∣
+|ζ|

∣∣∣∣∣
n∑

k=1

[
k∑

j=1

(−1)k−j (j − 1)bk−jaj

]
cn−k

∣∣∣∣∣
)

5 1 (0 5 α < 1; ζ ∈ C; |ζ| = 1),

thenf(z) ∈ S∗(α). This completes the proof of Theorem1.

Settingα = 0 in Theorem1, we deduce the following corollary.

Corollary 1. If f(z) ∈ A satisfies the following condition:

∞∑
n=2

(∣∣∣∣∣
n∑

k=1

[
k∑

j=1

(−1)k−j (j + 1)

(
β

k − j

)
aj

](
γ

n− k

)∣∣∣∣∣
+

∣∣∣∣∣
∞∑

k=1

[
k∑

j=1

(−1)k−j (j − 1)

(
β

k − j

)
aj

](
γ

n− k

)∣∣∣∣∣
)

5 2(2.5)

(β ∈ R; γ ∈ R),

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


Coefficient Inequalities

Toshio Hayami, Shigeyoshi Owa and

H.M. Srivastava

vol. 8, iss. 4, art. 95, 2007

Title Page

Contents

JJ II

J I

Page 11 of 21

Go Back

Full Screen

Close

thenf(z) ∈ S∗.

Remark3. If, in the hypothesis(2.5) of Corollary1, we set

β − 1 = γ = 0 or β = γ = 1 or β − 2 = γ = 0,

we arrive at the result given by Nezhmetdinov and Ponnusamy[1]. Moreover, for
β = γ = 0 in Theorem1, we obtain Corollary2 below.

Corollary 2. If f(z) ∈ A satisfies the following coefficient inequality:

(2.6)
∞∑

n=2

(n− α)|an| 5 1− α (0 5 α < 1),

thenf(z) ∈ S∗(α).

In particular, by puttingα = 0 in (2.6), we get the following well-known coeffi-
cient condition for the familiar classS∗ of starlike functions inU.

Corollary 3. If f(z) ∈ A satisfies the following coefficient inequality:

(2.7)
∞∑

n=2

n|an| 5 1,

thenf(z) ∈ S∗.

We next derive the coefficient condition for functionsf(z) to be in the classK(α).
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Theorem 2. If f(z) ∈ A satisfies the following condition:

∞∑
n=2

(∣∣∣∣∣
n∑

k=1

[
k∑

j=1

(−1)k−j j(j + 1− 2α)

(
β

k − j

)
aj

](
γ

n− k

)∣∣∣∣∣
+

∣∣∣∣∣
∞∑

k=1

[
k∑

j=1

(−1)k−j j(j − 1)

(
β

k − j

)
aj

](
γ

n− k

)∣∣∣∣∣
)

5 2(1− α)(2.8)

(0 5 α < 1; β ∈ R; γ ∈ R),

thenf(z) ∈ K(α).

Proof. Sincezf ′(z) belongs to the classS∗(α) if and only if f(z) is in the class
K(α), and since

(2.9) f(z) = z +
∞∑

n=2

anz
n

and

(2.10) zf ′(z) = z +
∞∑

n=2

nanz
n,

upon replacingaj in Theorem1 by jaj, we readily prove Theorem2.

By considering some special values for the parametersα, β andγ, we can deduce
the following corollaries.

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


Coefficient Inequalities

Toshio Hayami, Shigeyoshi Owa and

H.M. Srivastava

vol. 8, iss. 4, art. 95, 2007

Title Page

Contents

JJ II

J I

Page 13 of 21

Go Back

Full Screen

Close

Corollary 4. If f(z) ∈ A satisfies the following condition:

(2.11)
∞∑

n=2

(∣∣∣∣∣
n∑

k=1

[
k∑

j=1

(−1)k−j j(j + 1)(−1)k−j

(
β

k − j

)
aj

](
γ

n− k

)∣∣∣∣∣
+

∣∣∣∣∣
∞∑

k=1

[
k∑

j=1

(−1)k−j j(j − 1)

(
β

k − j

)
aj

](
γ

n− k

)∣∣∣∣∣
)

5 2 (β ∈ R; γ ∈ R),

thenf(z) ∈ K.

Corollary 5. If f(z) ∈ A satisfies the following coefficient inequality:

(2.12)
∞∑

n=2

n(n− α)|an| 5 1− α (0 5 α < 1),

thenf(z) ∈ K(α).

Corollary 6. If f(z) ∈ A satisfies the following coefficient inequality:

(2.13)
∞∑

n=2

n2|an| 5 1,

thenf(z) ∈ K.
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3. Coefficient Conditions for Functions in the ClassSP(λ, α)

In this section, we consider the subclassSP(λ, α) of A, which consists of functions
f(z) ∈ A if and only if the following inequality holds true:

(3.1) R

[
eiλ

(
zf ′(z)

f(z)
− α

)]
> 0

(
z ∈ U; 0 5 α < 1; −π

2
< λ <

π

2

)
.

Forf(z) ∈ SP(λ, α), we first derive Lemma3 below.

Lemma 3. A functionf(z) ∈ A is in the classSP(λ, α) if and only if

(3.2) 1 +
∞∑

n=2

Cnz
n−1 6= 0,

where

Cn :=
n− 1 + 2(1− α)e−iλ cos λ + (n− 1)ζ

2(1− α)e−iλ cos λ
an.

Proof. Letting

p(z) =
eiλ
(

zf ′(z)
f(z)

− α
)
− i(1− α) sin λ

(1− α) cos λ
,

we see that
p(z) ∈ B and R[p(z)] > 0 (z ∈ U).

It follows from Lemma1 that

(3.3)
eiλ

(
zf ′(z)

f(z)
− α

)
− i(1− α) sin λ

(1− α) cos λ
6= ζ − 1

ζ + 1
(z ∈ U; ζ ∈ C; |ζ| = 1).
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We need not consider Lemma1 for the case whenz = 0, because (3.3) implies that

p(0) 6= ζ − 1

ζ + 1
(ζ ∈ C; |ζ| = 1).

It also follows from (3.3) that

eiλ [zf ′(z)− αf(z)]− i(1− α)f(z) sin λ

(1− α) cos λ
6=
(

ζ − 1

ζ + 1

)
f(z)

(z ∈ U; ζ ∈ C; |ζ| = 1) ,

which readily yields

(ζ + 1)
{
eiλ[zf ′(z)− αf(z)]− i(1− α)f(z) sin λ

}
6= (ζ − 1)(1− α)f(z) cos λ

(z ∈ U; ζ ∈ C; |ζ| = 1)

or, equivalently,

(3.4) (ζ + 1)eiλzf ′(z)− αeiλf(z)− ζαeiλf(z)

− i(1− α)f(z) sin λ− iζ(1− α)f(z) sin λ

6= ζ(1− α)f(z) cos λ− (1− α)f(z) cos λ

(z ∈ U; ζ ∈ C; |ζ| = 1) .

We find from (3.4) that

(ζ + 1)eiλzf ′(z)− αeiλf(z)− ζαeiλf(z)− ζ(1− α)eiλf(z) + (1− α)e−iλf(z) 6= 0

(z ∈ U; ζ ∈ C; |ζ| = 1) ,

that is, that

(1 + ζ)eiλzf ′(z) + (e−iλ − 2α cos λ− ζeiλ)f(z) 6= 0

(z ∈ U; ζ ∈ C; |ζ| = 1) ,

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


Coefficient Inequalities

Toshio Hayami, Shigeyoshi Owa and

H.M. Srivastava

vol. 8, iss. 4, art. 95, 2007

Title Page

Contents

JJ II

J I

Page 16 of 21

Go Back

Full Screen

Close

which, in light of (1.1) with a0 = a1 − 1 = 0, assumes the following form:

(ζ + 1)eiλ

(
z +

∞∑
n=2

nanz
n

)
+ (e−iλ − ζeiλ − 2α cos λ)

(
z +

∞∑
n=2

anz
n

)
6= 0

(z ∈ U; ζ ∈ C; |ζ| = 1)

or, equivalently,

2(1−α)z cos λ

(
1+

∞∑
n=2

n+e−2iλ−2αe−iλ cos λ+(n−1)ζ

2(1− α)e−iλ cos λ
anz

n−1

)
6= 0(3.5)

(z ∈ U; ζ ∈ C; |ζ| = 1) .

Finally, upon dividing both sides of (3.5) by

2(1− α)z cos λ 6= 0

and noting that
e−2iλ = −1 + 2e−iλ cos λ,

we obtain

1 +
∞∑

n=2

n− 1 + 2(1− α)e−iλ cos λ + (n− 1)ζ

2(1− α)e−iλ cos λ
an 6= 0(

0 5 α < 1; −π

2
< λ <

π

2
; ζ ∈ C; |ζ| = 1

)
,

which completes the proof of Lemma3 (see also the proof of a known result [1,
Theorem 3.1]).

By applying Lemma3, we now prove Theorem3 below.
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Theorem 3. If f(z) ∈ A satisfies the following condition:

∞∑
n=2

(∣∣∣∣∣
n∑

k=1

[
k∑

j=1

(−1)k−j [j − α + (1− α)e−2iλ]

(
β

k − j

)
aj

](
γ

n− k

)∣∣∣∣∣
+

∣∣∣∣∣
∞∑

k=1

[
k∑

j=1

(−1)k−j (j − 1)

(
β

k − j

)
aj

](
γ

n− k

)∣∣∣∣∣
)

5 2(1− α) cos λ(3.6) (
0 5 α < 1; −π

2
< λ <

π

2
; β ∈ R; γ ∈ R

)
,

thenf(z) ∈ SP(λ, α).

Proof. Applying the same method as in the proof of Theorem1, we see thatf(z) is
in the classSP(λ, α) if

(3.7)
∞∑

n=2

∣∣∣∣∣
n∑

k=1

(
k∑

j=1

(−1)k−j Cjbk−j

)
cn−k

∣∣∣∣∣ 5 1

where, as before,

bn :=

(
β

n

)
and cn :=

(
γ

n

)
,

the coefficientsCn being given as in Lemma3. It follows from the inequality (3.7)
that

1

|2(1− α)e−iλ cos λ|

·
∞∑

n=2

∣∣∣∣∣
n∑

k=1

[
k∑

j=1

(
(−1)k−j(j−1+2(1−α)e−iλ cos λ)+ζ(j−1)

)
ajbk−j

]
cn−k

∣∣∣∣∣
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5
1

2(1− α) cos λ

·
∞∑

n=2

(∣∣∣∣∣
n∑

k=1

[
k∑

j=1

(−1)k−j
(
j−α+(1−α)(−1+2e−iλ cos λ)

)
bk−jaj

]
cn−k

∣∣∣∣∣
+ |ζ|

∣∣∣∣∣
n∑

k=1

[
k∑

j=1

(−1)k−j (j − 1)bk−jaj

]
cn−k

∣∣∣∣∣
)

5 1
(
0 5 α < 1; −π

2
< λ <

π

2
; ζ ∈ C; |ζ| = 1

)
,(3.8)

which implies that, iff(z) satisfies the hypothesis (3.6) of Theorem3, thenf(z) ∈
SP(λ, α). This completes the proof of Theorem3.

In its special case when

β − 1 = γ = 0 or β = γ = 1 or β − 2 = γ = 0,

Theorem3 would immediately yield the following corollary.

Corollary 7 (cf. [ 1]). If f(z) ∈ A satisfies any one of the following conditions:

(3.9)
∞∑

n=2

(∣∣[n−α+(1−α)e−2iλ](an−an−1)+an−1

∣∣+ |(n−1)(an−an−1)+an−1|
)

5 2(1− α) cos λ
(
0 5 α < 1; −π

2
< λ <

π

2

)
or

(3.10)
∞∑

n=2

( ∣∣[n− α + (1− α)e−2iλ](an − an−2) + 2an−2

∣∣
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+ |(n− 1)(an − an−2) + 2an−2|
)

5 2(1− α) cos λ
(
0 5 α < 1; −π

2
< λ <

π

2

)
or

(3.11)
∞∑

n=2

(∣∣[n−1−α+(1−α)e−2iλ](an−2an−1 +an−2)+an − an−2

∣∣
+ |(n− 2)(an − 2an−1 + an−2) + an − an−2|

)
5 2(1− α) cos λ

(
0 5 α < 1; −π

2
< λ <

π

2

)
,

thenf(z) ∈ SP(λ, α).

Remark4. Forλ = 0, Theorem3 implies Theorem1. Furthermore, by settingα = 0
in Theorem3, we arrive at the following sufficient condition for functionsf(z) ∈ A
to be in the classSP(λ).

Corollary 8. If f(z) ∈ A satisfies the following condition:

(3.12)
∞∑

n=2

(∣∣∣∣∣
n∑

k=1

[
k∑

j=1

(−1)k−j (j + e−2iλ)

(
β

k − j

)
aj

](
γ

n− k

)∣∣∣∣∣
+

∣∣∣∣∣
∞∑

k=1

[
k∑

j=1

(−1)k−j (j − 1)

(
β

k − j

)
aj

](
γ

n− k

)∣∣∣∣∣
)

5 2 cos λ
(
0 5 α < 1; β ∈ R; γ ∈ R; −π

2
< λ <

π

2

)
,

then
f(z) ∈ SP(λ) := SP(λ, 0).
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