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1. Introduction, Definitions and Preliminaries

Let A, be the class of functiong(z) of the form:

(1.2) f(z) = a0+a12+2anz”,

n=2
which are analytic in the open unit disk
U={z:2€C and [z| <1}.
If f(2) € Ay is given by (L.1), together with the following normalization:
ap=0 and a; =1,

then we say thaf(z) € A.
If f(z) € A satisfies the following inequality:

2f'(2)
f(2)

then f(z) is said to be starlike of order in U. We denote byS*(«) the subclass
of A consisting of functiong (z) which are starlike of ordet: in U. Similarly, we
say thatf(z) is in the classC(«) of convex functions of ordex in U if f(z) € A
satisfies the following inequality:

2f"(2)

f'(2)

It is easily observed froml(2) and (L.3) that (see, for details3])
f(z) € K(a) <= zf'(2) € §*(a) 0 a<l).

1.2) D‘i( >>a (zeU; 05 a< 1),

(1.3) S‘i(l+ >>a (zeU; 05 a<l).
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As usual, in our present investigation, we write
S§*:=8%(0) and K :=K(0).

Furthermore, we leB denote the class of functiop$z) of the form:

p(z) =1+ anzna
n=1

which are analytic irU.

Each of the following lemmas will be needed in our present investigation.
Lemma 1. A functionp(z) € B satisfies the following condition

Rlp(z)] >0 (z € U)

if and only if
()45
Z —
P75

Proof. For the sake of completeness, we choose to give a proof of Leimmaen

(:€U; CeC; [¢|=1).

though it is fairly obvious that the following bilinear (or M6bius) transformation:

z—1

z+1

maps the unit circl®U onto the imaginary axi®(w) = 0. Indeed, for all such that
(] =1 (¢ € C), we set

S~
—_

+1

w =

€eC [¢l=1).

Iy
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Then
1+w

=[]t
which shows that
ww) = (S1) =0 ©eCild=1
w) = — | = ; =1).
¢+1
Moreover, by noting that(0) = 1 for p(z) € B, we know that
(D#S (el CeCilc=1)
z z ; ; =1).
p C—l— 1 b )
This evidently completes the proof of Lemrha

Lemma 2. A functionf(z) € Ais in the classS*(«) if and only if

(1.4) L+ Y A" #£0,
n=2
where - .
A, = ntl-2a+m-1)c Q.
2 — 2«
Proof. Upon setting
Fig o
p(z) = ———  (f(2) € S*(a)),

11—«

we find that
p(z) € B and Rp(z)] >0 (z €.
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Using Lemmal, we have

zf'(z)
(1.5) o~

11—«

(-1
¢+1

(€T; CeC; (| =1),

which readily yields
€+ 1)zf'(2) + (1 =2a = ()f(2) #0
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Remarkl. It follows from the normalization conditions:

apo=0 and a; =1

that L9 5 9
—z00 — X — zx
Ag=——ap=0 and A, = a, =
T 220 P22 !
Remark2. The assertioril.4) of Lemma?2 is equivalent to Coefficient Inequalities
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2. Coefficient Conditions for Functions in the ClassS*(«)

Our first result for functiong'(z) to be in the clas$*(«) is contained in Theorem
below.

Theorem 1. If f(z) € A satisfies the following condition
Z ( Z [Z(—l)kg‘ (j+1-2a) <k p ,)aj] (n j k:>|
[Z ()" (G -1) (k 0 ) (n ! k)

—J
(0=a<l1; BeR; yER),

>§2(1—oz)

thenf(z) € S*(a).
Proof. First of all, we note that
(1—2)7#0 and (1+2)7#0 (2€U; BER; yER).

Hence, if the following inequality:

(2.2) (1 + i Anz”_l) (1—2)°1+2)"#0 (z€U; BeR; vyeR)

holds true, then we have

1+ i A2 40,
n=2
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which is the relation1.4) of LemmaZ. It is easily seen tha®(1) is equivalent to

(2.3) (1 + i Anz"1> (i(—l)” bnz"> (i cnz"> #£0,

n=0

where, for convenience,

() ()

Considering the Cauchy product of the first two factors3)(can be rewritten as
follows:

(24) <1 + iBnZTl1> <i ann> 7§ O,
n=2 n=0

where

n

By =Y (=1)"7 Ajb, .

Jj=1

Furthermore, by applying the same method for the Cauchy produzt4y yve find

that
1+ Z (Z Bkcn_k) 20 (z€U)
=2 \ k=1

or, equivalently, that

00 n k
1+ ZZ ; (2(—1)’<1Ajbkj> cnk] M40 (2.
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Thus, if f(2) € A satisfies the following inequality:

0 n k
SIS (S0 o =1
n=2 |k=1 \j=1
that is, if
0o n k
1 ) . . Coefficient Inequalities
2(1 _ Oé) Z Z (Z(_l)k ][<] + 1 - 204) + (j o 1)C]ajbk_j> Cn—k Toshio Hayami, Shigeyoshi Owa and
n=2 | k=1 7=1 F{M’S‘ t
o n k .M. Srivastava
1 _i . vol. 8, iss. 4, art. 95, 2007
S s 2 [0 [ 22D G = 2a)asbig | e
(1-a) n=2 \|k=1 Lj=1
n k . Title Page
Hd}jb}+wfu—w%w4%%> —
k=1 Lj=1
<1 (0Z2a<l;CeC (=1, K LY
thenf(z) € S*(a). This completes the proof of Theorem O < >

Settinga = 0 in Theoreml, we deduce the following corollary.
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thenf(z) € S*.
Remark3. If, in the hypothesig2.5) of Corollary 1, we set
B—1=~v=0 or fg=v=1 or —-2=~v=0,

we arrive at the result given by Nezhmetdinov and PonnusdmyMoreover, for
(8 =~ = 0in Theoreml, we obtain Corollary. below.

Corollary 2. If f(z) € A satisfies the following coefficient inequality

(2.6) i(n—a)]aﬂ Sl—-a (0= a<l),

thenf(z) € S*(a).

In particular, by puttingy = 0 in (2.6), we get the following well-known coeffi-
cient condition for the familiar clasS* of starlike functions irflJ.

Corollary 3. If f(z) € A satisfies the following coefficient inequality

o0

(2.7) > njan] £ 1,

n=2
thenf(z) € S*.

We next derive the coefficient condition for functiofig) to be in the clas&(«).
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Theorem 2. If f(z) € A satisfies the following condition

)
" [Z(_l)k_j j(j+1-20) (/ﬁ;) aj] <n i k)
2 [Z(—l)k—f' i(G —1) (k b )aj (n ! k) ') <9(1—a)

—J
(0Sa<1; BeR; yeR),

thenf(z) € K(a).

Proof. Sincezf'(z) belongs to the clas§*(«) if and only if f(z) is in the class
K(«), and since

(2.9) f(z)=z+ i a,z"
n=2
and
(2.10) 2f'(2) =z + i na, 2",
n=2
upon replacing:; in Theoreml by ja;, we readily prove Theorem O

By considering some special values for the parametefsand, we can deduce
the following corollaries.
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Corollary 4. If f(z) € A satisfies the following condition

e B oo (2]()

7=1
+

: [§<_1>k—jj<j_ 02,0 (2

<2 (BeR; yeR),

thenf(z) e K

Corollary 5. If f(z) € A satisfies the following coefficient inequality
(2.12) Znn—a|an|<1—a (0= a<l),
n=2

thenf(z) € K(a).
Corollary 6. If f(z) € A satisfies the following coefficient inequality

(2.13) > n’lan] £ 1,
n=2

thenf(z) € K
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3. Coefficient Conditions for Functions in the ClassSP (), «)

In this section, we consider the subcl&¥8(\, «) of A, which consists of functions
f(z) € Aif and only if the following inequality holds true:

/
(3.1) M| L(Z)—Oz >0 (ZEU;O§CX<1;—Z<>\<E>.
f(z) 2 2 — )
Coefficient Inequalities
For f(z) € SP(\, «), we first derive Lemma& below. Toshio Hayami, Shigeyoshi Owa and
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We need not consider Lemmidor the case when = 0, becaused.3) implies that

(-1 1 =
p(o)%m (CeC |¢]=1).
It also follows from (3.3) that
éﬂﬁﬁﬁ—&ﬂ@%4ﬂ—aﬁ@ﬁmk%(<—1>ﬂ@

(1 —a)cos A ¢+1
(€eU; CeC [(]=1),
which readily yields
(C+1){e?=2f'(2) —af(2)] =il — @) f(2)sin A} # (¢ = 1)(1 — a) f(2) cos A
(€U; CeCs [(]=1)
or, equivalently,
(3.4) (C+1)ezf'(2) — ae™f(2) — Cae™ f(2)
—i(l—a)f(z)sin A —i¢(1 — a)f(z)sin A
#C(1—a)f(z)cosA — (1 —a)f(z)cos A
(2€U; C€C; [¢]=1).
We find from (3.4) that

(C+1ezf'(2) — ae™f(2) = Cae™f(2) = C(1 — a)e™ f(2) + (1 — a)e ™ f(2) # 0

(z€U; CeC; |¢=1),
that is, that

(1+C)e2f'(2) + (67 = 2acos A — Ce™) f(2) # 0
(z€U; C€C; [¢I=1),
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which, in light of (L.1) with ag = a; — 1 = 0, assumes the following form:

(C+1)e’ (z—l—Znan ) ™ — Ce™ —2arcos \) (2+ianz”) £ 0
n=2
(:€U; CeCi ¢ =1)

or, equivalently,

. nte 2 —2ae " cos A+ (n—1)¢
(3.5 2(1—«)zcos )\(1—1—2 — an?" '] #£0
s 2(1 — a)e= cos A

(2€U; C€C; [¢]=1).
Finally, upon dividing both sides o8(5) by
2(1 —a)zcosA #0

and noting that

e 2N = —1 4+ 2e P cos ),

we obtain

“n— 142 1—a) R cos A+ (n—1)¢

1 , n
+Z 2(1 — a)e= cos A an 70

(0§a<1 —§<)\< ,CGC \C|_1>
which completes the proof of Lemnia(see also the proof of a known resutt |
Theorem 3.1]). O]

By applying LemmaB, we now prove Theorers below.
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Theorem 3. If f(z) € A satisfies the following condition

i( i [i(_n’w‘ [ —a+(1—a)e (kﬂ .)aj] (nik)‘

j=1 —J

[e's) k
(3.6) + Z [Z( 1)FI (5 1)(}{?3)@1 (nzk) ) < 2(1 — a) cos A
k=1 Lj=1
0 a<1; —g<)\<g;ﬁ€R;”y€R>,

thenf(z) € SP(\, ).

Proof. Applying the same method as in the proof of Theorsmwe see thaf(z) is

in the classSP (), «) if

00 n k
(3.7) 12 (Z(—l)k—f Oij) Coi| S 1
n=2 | k=1 \j=1

where, as before,

b, = (6) and Cp = (7),
n n

the coefficients”,, being given as in Lemma. It follows from the inequality §.7)

that

1
12(1 — a)e= cos |

n k
> [z:((—l)k‘j(j— 1+2(1—a)e ™ cos \)+C (5 — 1)) ajbk_j] Crk

k=1 [j=1

[e.9]

2

n=2
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38) <1

n k
Z[Z(—l)kj (j—a+(1—a)( 1 42e cosA))bk JaJ] Crk
n k .
[Z(—l)'” (- 1)bkjaj] Ck >
k=1 Lj=1
(0§a<1 —§<)\< ; e G |(]_1)
which implies that, iff (z) satisfies the hypothesis.¢) of Theorem3, thenf(z) €
SP(A, a). This completes the proof of Theoréin N
In its special case when

f—-—1=~v=0 or f=~v=1 or f—2=v=0,
Theorem3 would immediately yield the following corollary.

Corollary 7 (cf. [1]). If f(z) € A satisfies any one of the following conditions

(3.9) Z(Hn —a+ (1= a)e*N(an — an—1) + an_1| + [n— 1)(an — an-1) + an_1]>

< 9(1 — ) cos A (0§a<1; —g<>\<g>

or

(3.10) Z ( n—a+ (1 —a)e *(a, — an_s) + 2an_2|
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+(n — D) (an — an_2) + 2a,_»| )

< 2(1 — ) cos A (0§a<1; —g<>\<g>
or

(311) Z (l[n —l-a+ (]' - a)e_zw\](an —20p-1+ an—Z) +a, — an—?‘
n=2

+|(n —2)(an — 2ap-1 + an—2) + ay, — ay_2| )
<

2(1 — ) cos A <0§a<1; —g<)\<g),

thenf(z) € SP(\, ).

Remarkd4. For A = 0, Theorens implies Theoreni. Furthermore, by setting = 0
in Theorem3, we arrive at the following sufficient condition for functiorigz) € A
to be in the clas§P(\).

Corollary 8. If f(z) € A satisfies the following condition

(3.12) i; ( i [i(—l)’“‘j (j+e™) (k é j) aﬂ'] (n ! k:)‘

S5 e ()] (7))

< 2cos\ <O§a<1;ﬁ€R;7€R;—g<)\<g),

+

then
f(z) € SP(N) :=SP()\0).
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