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ABSTRACT. In this paper, by the Minkowski's inequalities we define two mappings, investigate
their properties, obtain some refinements for Minkowski's inequalities and some new inequali-
ties.
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1. INTRODUCTION

Throughout this paper, for any given positive integesnd two real numbers, b such that
a<bleta; >0, >0 =1,2,...,n)andf, g : [a,b] — (0,+00) be two functions()” = 0
(r < 0) is assumed.

Let f7, g?» and(f + ¢)? be integrable functions d, . If p > 1, then

(1.1) (i: az‘p> ” + (Zn: bip> ” > <z": (a; + bi)p> ” :

i=1 =1

wa ([ f”(:c)dx); ([ gp(x)dx); > ([ )+ sty dx)é |
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The inequalities (1]1) and (1.2) are equivalent to the following:

(13) [(Z aip> P + (Z blp> ! B (Z (Cli + bl)p> p] (Z (Cli + bz)P> q

() () o) -
and

(1.4) [( / b fp(S)dSY v bgﬁ(s)ds); -(/ () + g i) ;]
<( () + 9 ds);
_ (( A fp(S)dS); w ([ ) ’1’) ([ e+ g(s))pds)é

- / (f(s) + g(s))" ds

a

>0

— Y

respectively.

If p <1(p+#0), then the inequalities in (1.1), (3.2), (.3) ahd [1.4) are reversed.
The inequality[(1.]1) is called the Minkowski inequalify, (1.2) is the integral form of inequality

(1.7) (seel[1] —[5]). For some recent results which generalize, improve, and extend this classic
inequality, seel[6] and [7].
To go further into[(1.]1) and (1.2), we define two mappiddgsindm by

M:{(j,k)|1<j<k<mjkeN} >R,

M(j, k) = [(Z%p> +<Zbip> } (Z(ai+bi)p> =) (@i + )",

=7 =7

wherep andg be two non-zero real numbers such that + ¢~ = 1.
M andm are generated by (1.3) arjd (1.4), respectively.
The aim of this paper is to study the propertiesiéfandm, thus obtaining some new in-
equalities and refinements of (JL.1) apd [1.2).
2. MAIN RESULTS

The properties of the mapping are embodied in the following theorem.
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Theorem 2.1.Leta; > 0,b; >0 (i =1,2,...,n;n > 1), pandq be two non-zero real numbers
such thatp~! +¢~! = 1, and M be defined as in the first section. We write

D(j. k) = (Z aip> p + (Z bip> p (Z (a; + bz’)p> q

n J
+ Z (CLZ‘ +bz>p+

i=k+1 %

X(i(ai+bi)p>_q> (1<j<k<n),

i=1

-1
(ai + bz)p
=1

where>"""" (a; + b;)" =0 (v =1,n+1).
Whenp > 1, we get the following three class results.
(1) For any three positive integersj andk such thatl <r < j < k < n, we have

(2.1) M(r k) > M(r,5) + M5+ 1, k).
(2) Forl,;=1,2,...,n—1,we have
(2.2) M1,14+1) > M(1,1),

(2.3) M(j,n) > M(j +1,n).

(3) For any two real numbera > 0 and > 0 such thato + 3 = 1, we get the following
refinements of (I]1)

(24) <iaip>p + (ibip>p = D(l,n)

=1

>aD(1l,n—1)+ BD(2,n)
>

>aD(1,2)+ BD(n—1,n)
>aD(1,1)+

I
R
I'M:

B

+

S

s
~
o

Whenp < 1 (p # 0), the inequalities in[(2]1) § (2.4) are reversed.
The properties of the mapping are given in the following theorem.

Theorem 2.2.Let f?, g? and(f + ¢)” be integrable functions oja, b], p andq be two non-zero
real numbers such that ! + ¢~ = 1, andm be defined as in the first section. Then we obtain
the following four class results.

(1) If p> 1, foranyzx,y, z € [a,b] such thatr < y < z, then
(2.5) m(z, z) 2 m(z,y) +m(y,z)

If p <1 (p+#0), then the inequality i{ (25) is reversed.
(2) The mappingn(x,b) monotonically decreases when> 1, and monotonically in-
creases fop < 1 (p # 0) on [a, b] with respect tac.
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(3) The mappingn(a,y) monotonically increases when > 1, and monotonically de-
creases fop < 1 (p # 0) on|a, b] with respect tay.

(4) For anyx € (a,b) and any two real numbers > 0 and3 > 0 such thato + 3 = 1,
whenp > 1, we get the following refinement pf (IL.2)

26) (/bfp<s>ds)p+(/fg%s)ds)p |
s ([ o)« ([ o)) ([ 1wt
() fonear)
l(([ e ) ([ ))(/f”““g@”p“)q

([ uorsra)] ([ v ra)
> ([ o+ sty ds)p .

If p <1 (p#0), then the inequalities irj (2.6) are reversed.

3. SEVERAL LEMMAS

In order to prove the above theorems, we need the following two lemmas.

Lemma 3.1.Lete; > 0,d; >0 (i =1,2,...,n;n > 1), pandq be two non-zero real numbers
suchthatp™! + ¢~! = 1. We write

Q=

(qu) —Xk:ci ., (1<j<k<n).

=7

H(j ksci,dy) = (Z )

=]
For any three positive integersj andk such thatl <r < j < k <mn, if p > 1, we obtain
(3.1) H(r k;ci,d;) > H(r,j;¢,di)) + H(G+ 1, k; ¢, d;).

The inequality in[(3]1) is reversed fpr< 1 (p # 0).

Proof of Lemma 3]1.

Case 1:p > 1. Clearly,0 < p~! < 1 andz~ is a concave function o) (+oo) with respect to
x. Using Jensen’s inequality for concave functions (5ee [2] — [4] and [8]pahd- ¢~ ' = 1,
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for any three positive integers; andk such thatl < r < j < k£ <n, we have

(3.2) H(Ta k; Ci7di)

1 1
k P k q Kk
() (Ze) - 2w

((Z) ) ((B)[() ()

(29[ ()] £

i=j+1 i=j+1

-<qu> ; >1<icf>;

[ 5 o) (5 0) S

Vv
-
2

i=j+1

=<§c@-p)(§;df) (Z ) ()

—ZCZd—Z

i=j+1
= H(Tﬂj;civdi) + H(J + 17 k7ci7di)7

which is (3.1).

Case2:p <1 (p #0). Clearly,x% is a convex function on)( +oc). Using Jensen’s inequality
for convex functions (se&|[2] +1[4] and [8]), we obtain the reversé of (3.2), which is the reverse

of @.2).
The proof of Lemma 3]1 is completed. O

Lemma 3.2. Letp andq be two non-zero real numbers such that + ¢! = 1, and letu?, v?
and (u + v)? be positive integrable functions ¢, b]. We write

h(z, y;u,v) = (/y up(s)ds)’l’ (/y vq(s)ds)é - /:u(s)v(s)ds, (a<z<y<b).

Whenp > 1, for anyz, y, z € [a, b] such thatr < y < z, we obtain
(3.3) h(x, z;u,v) > h(z,y;u,v) + h(y, z;u,v).
Whenp < 1 (p # 0), the inequality in[(33) is reversed.

Proof of Lemm@3]2Whenp > 1,i. e. 0 < p~* < 1, v is a concave function ord(+oc).
Using Jensen’s integral inequality for concave functions (see [2] — [4]land [8)pand ¢! =
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1, for anyz, y, z € [a, b] such thatr < y < z, we obtain
(3.4) h(z, z;u,v)

= [ [( [ as)” ( [ ([ erras) [ sy
v s / Z v%s)ds)_l / Z up<s>ds>]
[ [ s (( I zﬂ(s)ds)l | up@)ds);
o [ etons (( [ o) [ up<s>ds>

B / " w(s)u(s)ds — /y Cu(s)o(s)ds

_ ( / ' up<s>ds)’l’ ( / ' vq<s>ds>é i ( yzu%s)ds); ( / z v%s)ds)’l’
B / " w(s)o(s)ds — / Cu(s)o(s)ds
= h(z,y;u,v) + h(y, z;u,v), '
which is [3.3).

Whenp < 1 (p # 0), 27 is a convex function ond( +o00). Using Jensen’s integral inequality
for convex functions (se&|[2] +1[4] and![8]), we obtain the reversé of (3.4), which is the reverse

of 3.3).
The proof of Lemma 3]2 is completed. O

3 =

- /; u(s)v(s)ds

v

Sl
|

4. PROOF OF THE THEOREMS

Proof of Theorerh 2]1Fromp~! + ¢! = 1 (i. e. p = ¢(p — 1)) and definitions of\/ and H,
we get

(4.1) M(j,k)=H (ja k;ai, (a; + bz’)p_l) + H (ja k; by, (a; + bz‘)p_l) .
Case 1:p > 1.

(1) For any three positive integersj andk such thatl < r < j < k < n, from (4.1) and
(3.7), we obtain

(4.2)  M(r,k) = H (r,k;a;, (a; + b)""") + H (r, ks by, (a; + b;)" )
> H (r,j; a;, (a; + bz‘)pfl) + H (r, 5 b, (a; + bi)pfl)
+H G+ 1k an (a+ b)) + H (5 + 1,k by, (@i + b))
= M(r,j) + M5 +1,k),

which is (2.1).
(2) Forl = 1,2,...,n — 1, replacingr, j andk in (2.1) with 1,7 and{ + 1, respectively,

then [2.1) reduces t¢ (2.2) (becausgl + 1,0+ 1) = 0). Forj = 1,2,...,n — 1,
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replacingr andk in (2.1) with j andn, respectively, ther (2. 1) reduces|to {2.3) (because
M(j,7) = 0).
(3) From the definitions oD and M, we have

(4.3) D(j, k) = | M(j,k) + Z (a; + b;)F (Z (a;i + bi)p> :
Using (4.3), froma > 0, 8 > 0, (2.3) and|(2.8), we get

(4.4) aD(1l,n)>aD(l,n—1)>--->aD(1,2) > aD(1,1)
and

respectively. Frona + 3 = 1, expression (4|4) combined with (4.5) yiells {2.4).

Case 2:p < 1 (p # 0). The reverse of (3]1) implies the reverse[of|4.2). Further, the reverse

of (4.2) implies the reverse df (2.1), (2.2) and {2.3). The reverse df (2.2) arld (2.3) implies the
reverse of[(4}4) andl (4.5), respectively. The reversg of (4.4) combined with the reverse of (4.5)

yields the reverse of (2.4).
The proof of Theorerpn 21 is completed. O

Proof of Theoreri 2]2Fromp~ +¢~' = 1 (i. e. p = q(p — 1)) and the definitions ofx andh,
we get

(4.6) m(z,y) = h (e, f.(f+9)") +h(ey9.(F+9) ).
(1) If p > 1, foranyz,y, z € [a,b] such thatr < y < z, from (4.6) and[(3]3), we get
(4.7) m(z,2) = Mz, 2 f,(f +9)"") + h(z, 219, (F + 9" )

> h(z,y; f,(f + 9 )+ h(z, g9, (f + 9" )
+h(y, =z f(F+ 97 ) +h(y 29, (f+9)" )
=m(z,y) + m(y, 2),
which is [2.5).
If p <1 (p # 0), then the reverse of (3.3) implies the reversd of|(4.7). Furthef, (2.5)
IS reversed.

(2) Whenp > 1, for anyxy, 25 € [a,b], v1 < w9, if 25 < b, takingz = b, x = x; and
y = x5 in (2.5) and usingn(z1, z2) > 0, we obtain

(4.8) m(xy,b) > m(xy, ) + m(xe,b) > m(xs,b).
If zo = b, by the definition ofn we have
(4.9) m(z1,b) > 0= m(b,b) = m(z2,b).

Then [4.8) and (4]9) imply that(z, b) is monotonically decreasing da, b].

Whenp < 1 (p # 0), then the inequality in[ (2|5) is reversea(z,y) < 0 and
m(z,b) < 0. Further, the inequalities if (4.8) arjd (4.9) are reversed, which implies that
m(z,b) is monotonically increasing ofa, b].

(3) Using the same method as that for the proof of the monotonicity: @f, ), we can
prove the monotonicity of(a, y) on [a, b] with respect tay.
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(4) Case 1:p > 1. For anyx € (a,b), from the increasing property of(a,y) on [a, b]
with respect ta;, m(a,a) = 0 anda > 0, we get

_1
q

> o [mien) + [ )+ s as (| () + o(s)) )

1

> afmiea+ [ 560+ g0 as] ([ 06+ a07a)

From the decreasing property of(x,b) on [a, b] with respect tar, m(b,b) = 0 and
6 >0, we get

_1
q

q

> 5wty + [ (56 + 7 as| ([0 + gt as)

_1
q

> 5 [m)+ [ ") + o) o ([ () + 9 )

Froma + 8 = 1, expression (4.10) plug (4]11), with a simple manipulation, we obtain
28).

Case 2:p < 1 (p # 0). The decreasing property of(a,y) on [a, b] with respect ta,
and the increasing property of(x,b) on [a, b] with respect tar imply the reverse of

(4.10) and[(4.1]1), respectively. The reverse[of (4.10) and](4.11) yields the reverse of
2.9

The proof of Theorer 2|2 is completed. O
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