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1. Introduction

Throughout this paper, for any given positive integeand two real numbers, b
such thaw < b, leta; > 0,b; > 0(i = 1,2,...,n)andf,g : [a,b] — (0,400) be
two functions,0" = 0 (r < 0) is assumed.

Let /7, g and(f + ¢)? be integrable functions di, b]. If p > 1, then
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a

respectively.

If p <1(p#0), then the inequalities inl(1), (1.2), (1.3) and (L.4) are reversed.
The inequality {.1) is called the Minkowski inequality,1(2) is the integral form

of inequality (L.1) (see [L] — [5]). For some recent results which generalize, improve,
and extend this classic inequality, ségdnd [7].

To go further into {.1) and (L.2), we define two mappings/ andm by
M:{(G k)| 1<j<k<njkeN} >R,

M(j, /{3) = (Z (lz'p> + (Z b1p> <Z ((IZ’ -+ bz)p> — Z (CLi + bz)p s

m:{(x,y)|a<zx<y<b} - R,

m@ﬂ):[(fvwﬁw);+(1?f@ﬂﬁil(Aaf@%+ﬂﬂfw)é

—/7ﬂ@+mﬁvw,

wherep andq be two non-zero real numbers such that + ¢! = 1.
M andm are generated byL(3) and (L.4), respectively.

The aim of this paper is to study the properties\dfandm, thus obtaining some
new inequalities and refinements af1) and (L.2).
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2. Main Results

The properties of the mappinyg are embodied in the following theorem.

Theorem 2.1.Leta; > 0,6, >0 (i = 1,2,...
real numbers such that™! 4+ ¢~ = 1, and M be defined as in the first section. We

(£ - ()

write

D(j, k) =

where> /")

1. For any three positive integers j and k such thatl < r < j < k < n, we

have

(2.1)

2. Forl,j=1,2,....n

(2.2)

S =

=7

n 7j—1
+ ) (@i b)Y (i + b)Y

i=k+1

M(r k) > M(r,j)+ M(j + 1,k).

=1

X (i: (a; + bz‘)p>

i=1

(a; + b))’ =0(v=1,n+1).
Whenp > 1, we get the following three class results.

— 1, we have

q

M(1,1+1) > M(1,1),

<Z (OJZ' -+ b2>p

9

,n;n > 1), pandq be two non-zero

>;

(1<j<k<n),
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(2.3) M(j,n) > M(j +1,n).

3. For any two real numbers: > 0 and 3 > 0 such thato + G = 1, we get the
following refinements ofi(1)

1 1
n P n P Mappings Related to Minkowski’'s
D b _ Inequalities
(24) Z a; + Z bl - D(l’ n) Xiu-Fen Ma and
=1 =1

Liang-Cheng Wang

>aD(l,n—1)+ pD(2,n) vol. 10, iss. 3, art. 89, 2009
2 .
> aD(1,2) + 8D(n —1,n) Title Page
> aD(1,1) + 6D(n,n) .
1
= n (a; + bi)P> ’ _ 2l >
i=1 < >
Whenp < 1 (p # 0), the inequalities in4.1) — (2.4) are reversed. Page 6 of 16
The properties of the mapping are given in the following theorem. Go Back
Theorem 2.2. Let f7, g* and (f + g)P be integrable functions of, b], p and ¢ be Full Screen

two non-zero real numbers such that! + ¢~! = 1, andm be defined as in the first

section. Then we obtain the following four class resullts. Close
1. If p > 1, foranyz, y, z € [a,b] such thatr < y < z, then journal of inequalities
in pure and applied
(2.5) m(z,z) > m(z,y) +m(y, 2). mathematics
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If p <1 (p#0), then the inequality in4.5) is reversed.

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au

2. The mappingn(z,b) monotonically decreases whgn> 1, and monotonically
increases fop < 1 (p # 0) on[a, b] with respect tar.

3. The mappingn(a, y) monotonically increases when> 1, and monotonically
decreases fop < 1 (p # 0) on [a, b] with respect tay.

4. For anyz € (a,b) and any two real numbers > 0 and 8 > 0 such that
a+ 3 =1, whenp > 1, we get the following refinement df.{)

(2.6) ( / b f”(s)d8>; " ( / bg”(s)dsf
o) (o)) o)
([ weraras)| ([ e+ g(s))pds);
(( [ 005 'y ([ s ;) ([ e+ ooy ds);

([ ueraors)| ([ () + o) i) %
> ( / ") + o) ds); .

If p <1 (p#0), then the inequalities in’(6) are reversed.

+ 0
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3. Several Lemmas

In order to prove the above theorems, we need the following two lemmas.

Lemma 3.1. Let¢; > 0,d; > 0 (i = 1,2,...,n;n > 1), p andq be two non-zero
real numbers such that! + ¢! = 1. We write

k
H(j, k;ciyd;) = (Z Cf)
i=j

For any three positive integersj andk suchthatl <r < j <k <n,ifp > 1, we

B =
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obtain

(31) H(ry ka Ci7di) 2 H(T,j,cl,dz)+H(j+1,k, Ci,di). Title Page

The inequality in 8.1) is reversed fop < 1 (p # 0). Contents

Proof of Lemma3. 1. « >

Case 1:p > 1. Clearly,0 < p7t < 1 andz# is a concave function or(+o0) < 4

with respect tar. Using Jensen’s inequality for concave functions (sge-[[4] Page 8 of 16

and B]) andp~! + ¢! = 1, for any three positive integers j and k such that
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J k
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Yadi= 3
i=r i=j+1 < 4
= H(r,j;ci,di) + H(j + 1, k; ¢, di), Page 9 of 16
which is (3.1). Go Back
Case 2:p < 1(p #0). CIearIy,x% Is a convex function on)( +o00). Using Jensen’s Full Screen
inequality for convex functions (seg][-[4] and [8]), we obtain the reverse o8(2), -
. . ose
which is the reverse of3(1).
The proof of Lemma. 1 is completed. O journal of inequalities
in pure and applied
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letu?, v” and (u + v)? be positive integrable functions ¢, b]. We write

B, i, v) = (/y up(s)ds>; (/y vq(s)ds) ;—/:u(s)v(s)ds, (a<z<y<b)

Whenp > 1, for anyz, y, z € [a, b] such thatr < y < z, we obtain
(3-3) h(z, z3u,v) > h(z, y;u,v) + h(y, 24, 0).
Whenp < 1 (p # 0), the inequality in §.3) is reversed.

Proof of Lemma.2. Whenp > 1,i. e.0 < p! < 1, 27 is a concave function on
(0, +00). Using Jensen’s integral inequality for concave functions (8ge [4] and
[8]) andp~! + ¢~ =1, foranyx,y, 2 € [a,b] such thatr < y < z, we obtain

(3.4) h(x,z;u,v)

- [vsas [( [ oas) B ( [ vsas( [ s B [ wsias
o [ ()" [ up<s>ds)]
> | [ nspas (( [ vrtsias) R I up<s>ds> %
o [ et (( [ o) [ up@ds)

B / " w(s)u(s)ds — /y " u(s)o(s)ds

RS

- / " u(s)u(s)ds

[un

3
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~—
QL
VAl

_ /xyu(s)v(s)ds - /yz u(s)v(s

= h(z,y;u,v) + h(y, z;u,v),
which is G.9).

Whenp < 1 (p # 0), 27 is a convex function o) +oc0). Using Jensen’s integral

inequality for convex functions (se][- [4] and [8]), we obtain the reverse of(4),
which is the reverse of3(3).

The proof of Lemmas.2is completed. O
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4. Proof of the Theorems

Proof of Theoren2.1. Fromp=! + ¢! = 1 (i. e. p = q(p — 1)) and definitions of
M andH, we get

@4.1) MG, k)= H (j,k;a;, (a; + b)P ") + H (5, k; by, (a; + )P .
Case 1:p > 1.

1. For any three positive integersj andk such thatl < r < 57 < k < n, from
(4.1) and 3.1), we obtain
(42) M(T, k’) =H (7", l{; a;, (ai + bi)pil) + H (T, k’; bi, ((IZ' + bi)pil)
Z H (Tuj; as, (a’i + bi>p_1) +H (T7j; bia (ai + bi)p_l)
+H(j+17 k7 Qs (ai+bi)p_1) +H(]+17 k; bi7 (ai+bi)p_1)
= M(r.j)+ M@+ 1,k),
whichis 2.1).
2. Forl =1,2,...,n — 1, replacingr, j andk in (2.1) with 1,/ and/ + 1, re-
spectively, thenZ.1) reduces to4{.2) (becauseM (I + 1,1 + 1) = 0). For

j=1,2....n—1,replacingr andk in (2.1) with j andn, respectively, then
(2.1 reduces to4.3) (becausé/(j,7) = 0).

3. From the definitions oD and M, we have

(4.3) D(j. k) = M(j,k>+Z<ai+bi)”

i=1
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Using @.9), froma > 0, 5 > 0, (2.2) and ¢.3), we get
(4.4) aD(1,n) >aD(l,n—1)>--- > aD(1,2) > aD(1,1)

and

(45) ﬁD(lan) > ﬁD(27n) > 2 ﬁD(TL - 17n) > ﬂD(n7n)7

] ] ] . . Mappings Related to Minkowski’'s
respectively. Fromn + 5 = 1, expression4.4) combined with {.5) yields Inequalities

Xiu-Fen Ma and
(2 4) . Liang-Cheng Wang
vol. 10, iss. 3, art. 89, 2009

Case 2:p < 1 (p # 0). The reverse of.1) implies the reverse ofi(2). Further,
the reverse of4.2) implies the reverse of2(1), (2.2) and ¢.3). The reverse of4.2)

and @.3) implies the reverse of4(4) and ¢.5), respectively. The reverse of.{) iR FEER

combined with the reverse of (©) yields the reverse of2(4). Contents
The proof of Theorem.1is completed. O <« >

Proof of Theoren2.2. Fromp™' + ¢! = 1 (i. e. p = q(p — 1)) and the definitions < >

of m andh, we get
Page 13 of 16

46)  mlr,y)=h(zy f,(f+9)") +h(zy9.(f+9) ). Go Back
1. If p > 1, foranyz,y, z € [a,b] such thatr < y < z, from (4.6) and @.3), we Full Screen
get
. ) Close
@7 mlx,z)=hz,z f,(f+9)" ) +h(z, 29, (f+9))
. p—1 . p—1 journal of inequalities
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which is 2.5).

If p < 1(p#0),then the reverse oB(3) implies the reverse ofi(7). Further,
(2.5) is reversed.

. Whenp > 1, for anyz,, z € [a,b], v1 < 29, if 29 < b, takingz = b, x = 24
andy = x, in (2.5 and usingn(z, z5) > 0, we obtain

(4.8) m(x1,b) > m(xq, x2) + m(xe,b) > m(xs,b).
If x5 = b, by the definition ofn we have
(4.9) m(z1,b) > 0 =m(b,b) = m(x2,b).

Then ¢.8) and @.9) imply thatm(x, b) is monotonically decreasing da, b|.
Whenp < 1 (p # 0), then the inequality in4.5) is reversedn(z,y) < 0 and
m(xz,b) < 0. Further, the inequalities int(8) and @.9) are reversed, which
implies thatm(x, b) is monotonically increasing da, b].

. Using the same method as that for the proof of the monotonicity(af, b), we
can prove the monotonicity ofi(a, y) on [a, b] with respect tay.

4. Case 1:p > 1. For anyz € (a,b), from the increasing property of(a,y) on

[a, b] with respect tay, m(a,a) = 0 anda > 0, we get

(410 [m(a’ b)+ / b (f(s) +9(5))" ds} ( / b (f(s) + g(s)) ds>—;

> o {m(a’x)Jr/ab (f(g)—i—g(s))pds} (/b (f(8)+9(8))pd5> E

> o [mia.a)+ [ ") + o) o ([ e o(5)) s )
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From the decreasing propertyaf(z, b) on [a, b] with respect taz, m(b,b) = 0
andg > 0, we get

_1
q

@13 5 [ma+ [ 6+ a7 as] ([ 06+ a7 a)

_1
q

> 5wty + [ 56+ a7 as)| ([ 706+ gt as)

_1
q

> 5 [m0+ [ 6+ a0 as] ([ 06+ )

Froma + 3 = 1, expression4.10) plus (¢.11), with a simple manipulation, we
obtain ¢.6).

Case 2:p < 1 (p # 0). The decreasing property af(a,y) on [a,b] with
respect toy and the increasing property of(x,b) on [a, b] with respect tar
imply the reverse of4.10) and @.11), respectively. The reverse of.(L0) and
(4.17) yields the reverse of(6).

The proof of Theoreni.2is completed. O
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