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ABSTRACT. The class of univalent harmonic functions on the unit disc satisfying the condition
ey (K™ — ak™)(Jax] +|bk|) < (1 —a)(1—|b1|) is given. Sharp coefficient relations and dis-
tortion theorems are given for these functions. In this paper we find that many results of Ozturk
and Yalcin [5] are incorrect. Some of the results of this paper correct the theorems and examples
of [5]. Further, sharp coefficient relations and distortion theorems are given. Results concern-
ing the convolutions of functions satisfying the above inequalities with univalent, harmonic and
convex functions in the unit disc and harmonic functions having positive real part are obtained.
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1. INTRODUCTION

Let U denote the open unit disc artt); denote the class of all complex valued, harmonic,
orientation-preserving, univalent functiofisn U normalized byf(0) = f.(0) — 1 = 0. Each
f € Sy can be expressed gs= h + g whereh andg belong to the linear spadé(U) of all
analytic functions or/.

Firstly, Clunie and Sheil-Small [3] studiei; together with some geometric subclasses of
Su. They proved that althoughiy is not compact, it is normal with respect to the topology of
uniform convergence on compact subset§/ofMleanwhile, the subclass), of Sy consisting
of the functions having the property that0) = 0 is compact.

In this article we concentrate on a subclass of univalent harmonic mappings defined in Section
@. The technique employed by us is entirely different to that of Ozturk and Yalcin [5].

2. THE CLASS HS(m,n; )

LetU, = {z: |z| <0 <r <1} andU; = U. A harmonic, complex-valued, orientation-
preserving, univalent mappingdefined onJ can be written as:

(2.1) f(z) = h(2) + g(2),
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where
(2.2) h(z) =2+ ap®,  g(z) =) b
k=2 k=1

are analytic inJ.
Denote byH S(m,n, ) the class of all functions of the forrh (2.1) that satisfy the condition:
(2.3) (K™ — ak")(lax] + [br]) < (1 — ) (1 = [ba]),
k=2
wherem € Nyn € Ny, m>n, 0 < a < land0 < |b| < 1.
The classd S(m, n, ) with b, = 0 will be denoted byH S°(m, n, a).
We note that by specializing the parameter we obtain the following subclasses which have
been studied by various authors.
(1) The classe$l/S(1,0,a) = HS(a) andHS(2,1,a) = HC(a) were studied by Ozturk
and Yalcin [5].
(2) The classed15(1,0,0) = HS and HS(2,1,0) = HC were studied by Avci and
Zlotkiewicz [2]. If h, g, H, G, are of the form[(2]2) and if (z) = h(z) + g(z) and

F(z) = H(z) + G(z), then the convolution of andF is defined to be the function:

(f * F)(Z) =z + Z akAka + Z kaka,
k=2 k=1

while the integral convolution is defined by:

The — neighborhood of is the set:

N(;(f) = {F . Zk(]ak - Ak| + |bk — Bk|) + |bl - Bl| S (5}
k=2

(seel[1], [6]). In this case, let us define the generaliz@@ighborhood of to be the set:

N(f) = {F3Z(k—a)(|ak—z4k|+|bk—Bk|)+(1—Oé)|bl—Bl| < (1—04)5}-

k=2

In the present paper we find that many results of Ozturk and Yalcin [5, Theorem 3.6, 3.8] are
incorrect, and we correct them. It should be noted that the examples supporting the sharpness
of [5, Theorem 3.6, 3.8] are not correct and we remedy this problem. Finally, we improve
Theorem 3.15 of Ozturk and Yalcin![5].

3. MAIN RESULTS

First, let us give the interrelation between the clag$é$m, n, «;) andH.S(m, n, as) where
0<a; <ay <1.

Theorem 3.1. HS(m,n,ay) € HS(m,n,a;) where0 < a3 < ay < 1. Consequently

HS°(m,n,as) C HS®(m,n,aq). Inparticular HS(m,n,«) C HS(m,n,0) andH S°(m,n, a) C
HS°(m,n,0).
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Proof. Let f € HS(m,n, ay). Thus we have:

(3.) > o) < (1 o).

k=2

Now, using [(3.1L),

k=2 k=2
< (1= 1ba])
Thusf € HS(m,n, o).
This completes the proof of Theor¢m|3.1. O

Theorem 3.2. HS(m,n,a) C HS(«a), Ym € N, Vn € Ny, HS(m,n,a) C HC(«), Vm €
N — {1}, ¥n € Ny,where0 < a < 1.

Proof. Let f € HS(m,n,a). Then

= k™ — ak”
3.2) > (aul + [bel) < (1= [bal).
k=2
Now using [3.2),
k- = k" (k )
;1 (Jax| + [bx]) <Z — Uaxl +[bel)

kn—i—l — ak™
= Z ﬁﬂad + [bx|)

k=2
00

k™ — ak™ )
< - b sincem
<2 Ty—g (el +lnd) - (sincem > n)
< (1= |h)).

Thusf € HS(«) and we haved S(m,n, o) C HS( ).
We have to show that/ S(m, n, o) C HC(«). By (3.2),

> k k — > km -
k=2 k=2
<(1- Ibll)
Thusf € HC(«). So we haved S(m,n, o) C HC(«). -~

Theorem 3.3. The classH S(m, n, «) consists of univalent sense preserving harmonic map-
pings.
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Proof. If z; # z, then:

’f(zl> — [(22) >1— ‘9(21) — 9(2)
h<2’1> — h(ZQ) - h(Zl) — h(ZQ)
L A
21— 20 Yty ax(2f — 25)
>1— ZZigok|bk|
1= 3202, klay]
e |l
>1- e > 0,
I k=2 . 1__?;k |ak|
which proves univalence.
Note thatf is sense preserving i because
W'(2)] > 1= klag||2|*
k=2
2 k™ — ak”
>1=D g lad
k=2
2 k™ — ak”
> -
- Z 11—« D]
k=1
k™ — ak® 1
> Zﬁ%k“d
k=1
> klbell=* " = 19" (2)].
k=1
Theorem 3.4.1f f € HS(m,n, «) then
[f(2)] < |21+ [ba]) + — (1= [oa])]2]?
JI= BT i

and

[F(2)] = (1= [ba]) (|z! - le_;o‘w) .

a2

Equalities are attained by the functions:

) 1 -«
(33) f@(Z) =2z + |b1|6162 + m(l — |b1|)22
and
(3.4) fo(z) =z+1b |ei92+1_—a(1—|b )z
. 0 1 om _ oon 1

for properly chosen redl.
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Proof. We have

(e 9]

@) < L2+ [bal) + 122 Y (lax] + [oel)

k=2
l—a = k™—ak"
< |z|(1 2
< [2|(1 + [ba])]2] 2m—a2nz "o (k| + [bx])
1—a
< [2[(1+ [ba]) + ’Z|2m(1 — |b])

and

[e.e]

[e.e]

@)= (@ = (o)l = > (] + [BeD)]=* = (1= BaD)l=] = 2> Y (lael + b))

k=2

k™M — ak™
> el + ol

|b1])

k=2
l—a &
> (1— — |2?
= (L= bu])]2] = |2| 5 — oon
k=2
1 -«
> (1= bil)]2] = |Z|2m(1 -
1—a)
—(1—=1b — 2(—
(1= ) (121 = 8 50— o

)

It can be easily seen that the functigtr) defined by[(3.8) and (3.4) is extremal for Theorem

3.4

Thus the clas$/.S(m, n, «) is uniformly bounded, and hence it is normal by Montel's Theo-

rem.

Remark 1.

(i) Form=1,n=0,HS(1,0,a) = HS(«

O

). The above theorem reduces to:

(35) FEI< 0+ 0]) + 51 = aDleP?
39) 712 (= 1o (121 ;=208

This result is different from that of Ozturk and Yalcin [5, Theorem 3.6]. Also, our result
gives a better estimate than that/of [5] because

[F) < (=l + Jou]) + 5

< |Z|(1 + ‘b1|) +

0‘|z|2)
(6%

and

1= (=10l (121 5=

11—«

—2 (1~ [P
(1- )

(1= [ba])]2*

(1-a?)
2

).

> (1 b)) (|z| -

Although, Ozturk and Yalcir [5] state that the result is sharp for the function

fg(z) =z + |b1|€i05 +

(1 — b))
2

(]‘ - 062)227

it can be easily seen that the functigg(z) does not satisfy the coefficient condition

for the classH S(«) defined by them.
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HS(«). Therefore the results of Ozturk and Yalcin are incorrect. The correct results are
mentioned in[(3}5) and (3.6) and these results are sharp for functigns]in (3.3) gdnd (3.4)
withm =1,n = 0.

(i) Form=2,n=1, HS(2,1,a) = HC(«). Theorenj 3.4 reduces to

«
(1= [bal)l2I,

4 — 2«
1= 1= o) (1= eleP).

This result is different from the result of Ozturk and Yalcin [5, Theorem 3.8], and it can
be easily seen that our result gives a better estimate. Also, it can be easily verified that
the sharp result for [5, Theorem 3.8] given by the function

[f(2)] < [2[(1+ Jou]) +

and

3—a—2a%,
—
200

does not belong td/C(«). Hence the results of Ozturk and Yalcid [5] are incorrect.
The correct result is obtained by Theorem 3.4 by putting: 2, n = 1.

fo(z) =2+ |b1|ei92 +

Theorem 3.5.The extreme points @f S°(m, n, o) are functions of the form +a,2* or z+b;z!
with
11—« 11—«

I T . 0<a<l.
= =«

lax| =

Proof. Suppose that

o0

= Z <akzk + bk7>

is such that

k™ — ak™
_— b 0.
Z —(la + i) <1, @>
Then, if A\ > 0is small enough we can replacgby a,— A, a;+ A and we obtain two functions
that satisfy the same condition, for which one obtafiis) = 3[fi(z) + f2(z)]. Hencef is not
a possible extreme point &f S°(m, n, «).

Now let f € HS°(m, n, «) be such that

o

kK™ — ak™
(3.7) Z?(lak\—i—\bk\) =1,  ap#0, b #0.

k=2
If A > 0is small enough and if, 7 with || = |7| = 1 are properly chosen complex numbers,
then leaving all but,, b, coefficients off (z) unchanged and replacing, b, by

1-— 1l -«
p W by — A\mr—
 + ke — akn " : I —an
11—« 1 -«
— A b+ A\—r—r
WA e A
we obtain functiongfy (z), f(z) that satisfy[(3.R) such thgft(z) Hfi(z )+f2( )]
In this casef cannot be an extreme point. Thus fof| = =25, |b| = =25, f(2) =
z + apz® or f(z) = z + b2t are extreme points d.5°(m, n, o). O

Remark 2.
(1) If m = 1, n = 0 the extreme points of the clagsS°(«) are obtained.
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(2) If m =2, n = 1 the extreme points of the clagsC°(«) are obtained.

Let K7 denote the class of harmonic univalent functions of the fgrm] (2.1) With= 0
that mapU onto convex domains. It is known![3, Theorem 5.10] that the sharp inequalities
|Ax| < %, |Bi| < % are true. These results will be used in the next theorem.

Theorem 3.6. Suppose that
Fz) =243 (Akzk + Bkzk)
k=2

belongs toK¢,. If f € HS°(m, n, o) thenf «x FF € HS°(m —1,n — 1; a) if n > 1 and
fOF € HS(m, n; ).

Proof. Sincef € HS°(m, n; «), then

(3.8) (E™ — ak™)(|ag| + |bk]) <1 —a.
k=2
Using (3.8), we have

() Ak

= k) (Jaul [

By,

(k™' — k" ) (JarAg| + |bxBi|) = - )

k=2 k

+ |by

Mg

2

(km —ak™)(|ax] + [bk]) <1 —

INA
wMg

It follows thatf x e HS°(m —

1
k=2 (

,n—1; a) Next again using (3]8),

akAk kak
k
= By
<> o) (jad 5|+ il | )
k=2
<> (k™ = ak™)(Jax] + [bx])
k=2
<1-oq.
Thus we havef OF € HS°(m, n; «). O

Let S denote the class of analytic univalent functions of the fétta) = = + > 7=, A2 It
is well known that the sharp inequaliti;| < k is true. It is needed in next theorem.

Theorem 3.7.1f f € HS°(m,n;a)andF € Sthenfor| € | < 1, fx (F+ € F) €
HS°(m—1,n—1; «a)ifn>1.

Proof. Sincef € HS°(m, n; a), we have

(3.9 (k™ = ak) (] + [bel) < 1 -
k=2
Now, using [(3:D)
S — 0k (Jaedy] + beBel) < 3 (6™ — ak™) (o] + [bel)
' k=2

IN
—
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It follows thatf + (F+ € F) € HS°(m —1,n—1; a) if n > 1. O

Let P§, denote the class of function’s complex and harmonic iV, f = h + g such that
Re f(z) >0, z € U and

z) = 1+2Ak2k, G(z) :ZBkzk.
k=1 k=2

Itis known [4, Theorem 3] that the sharp inequalitids| < k£ + 1, |Bx| < k — 1 are true.

Theorem 3.8. Suppose that
Fz)=1+ Z (Akzk + Bkzk>
k=1
belong toPf. Thenf € HS°(m, n; ) and forj < [A)| <2, 4-f«F € HS’(m—1,n—
L,a)ifn>1 andAilfQF € HS°(m, n; a)

Proof. Sincef € HS°(m,n;«a), then we have

o0

(3.10) > (k™ = ak™)(|ag| + [br]) < 1 — 0.

k=2

Now, using [(3.1D),
Z(kmfl _ Oéknil) (

k=2

kak

i)

lag| k+1  |b] k — 1)
k™ — ak™ +
( )(w PRV

ap Ay
Ay

IN

e 10+

< D (K™ —ak")(Jax| + |be])
k=2
<1-—oa.
Thus 4-f « FF € HS°(m —1,n — 1, o) if n > 1. Similarly, we can show thay-f $F €
HS°(m, n; a). O

Theorem 3.9. Let
f(z) = z—l—bl_z+z (akzk +b;€?>
k=2

be a member of/S(m,n, ). If 6 < (£2)(1 — |bi|), thenN(f) € HS(«), provided that
n>1.

Proof. Let f € HS(m, n; «) and

F() =2+ Bzt Y (A + B

k=2

J. Inequal. Pure and Appl. Mathl0(1) (2009), Art. 27, 9 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

HARMONIC UNIVALENT FUNCTIONS 9

belong toN(f). We have
1—a\Bll+Z — @) (|Ak] + [By)

=< (1 —a)!Bl —bi[+ (1 = a)[b]

+Z (1A = ax| + By = bel) + > (k — a)(lax| + [be])
k=2
1 o0
n+1 n
s<1—a>6+<1—a>|b1|+2—nk§_;<k — ak™)(la| + |bk])

< (1= )i+ (1~ @)lin] + (1 — a)(1 ~ [in]
— (1 —Oé),
if § < (%5) (1= |bu]). ThusF(z) € HS(w). O

2”L

Remark 3. For f € HS(2, 1, «) = HC(«), our result is different from the result given by
Ozturk and Yalcin[[5, Theorem 3.15]. It can be easily seen that our result improves it.
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