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ABSTRACT. LetT be a bounded linear operator on a complex Hilbert spaceH. In this paper, we
show that ifT belongs to classwF (p, r, q) operators, then we have (i)T ∗X = XN∗ whenever
TX = XN for someX ∈ B(H), whereN is normal andX is injective with dense range.
(ii) T satisfies the property(β)ε, i.e., T is subscalar, moreover,T is subdecomposable. (iii)
Quasisimilar classwF (p, r, q) operators have the same spectra and essential spectra.
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1. I NTRODUCTION

Let X denote a Banach space,T ∈ B(X) is said to be generalized scalar ([3]) if there exists
a continuous algebra homomorphism (called a spectral distribution ofT ) Φ : ε(C) → B(X)
with Φ(1) = I andΦ(z) = T , whereε(C) denotes the algebra of all infinitely differentiable
functions on the complex planeC with the topology defined by uniform convergence of such
functions and their derivatives ([2]). An operator similar to the restriction of a generalized
scalar (decomposable) operator to one of its closed invariant subspaces is said to be subscalar
(subdecomposable). Subscalar operators are subdecomposable operators ([3]). LetH, K be
complex Hilbert spaces andB(H), B(K) be the algebra of all bounded linear operators inH
andK respectively,B(H, K) denotes the algebra of all bounded linear operators fromH to K.
A capital letter (such asT ) means an element ofB(H). An operatorT is said to be positive
(denoted byT ≥ 0) if (Tx, x) ≥ 0 for anyx ∈ H. An operatorT is said to bep−hyponormal
if (T ∗T )p ≥ (TT ∗)p, 0 < p ≤ 1.
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2 CHANGSEN YANG AND YULIANG ZHAO

Definition 1.1 ([10]). For p > 0, r ≥ 0, andq ≥ 1, an operatorT belongs to classwF (p, r, q)
if

(|T ∗|r|T |2p|T ∗|r)
1
q ≥ |T ∗|

2(p+r)
q

and
|T |2(p+r)(1− 1

q
) ≥ (|T |p|T ∗|2r|T |p)1− 1

q .

Let T = U |T | be the polar decomposition ofT . We define

T̃p,r = |T |pU |T |r(p + r = 1).

The operator̃Tp,r is known as the generalized Aluthge transform ofT . We define(T̃p,r)
(1) =

T̃p,r, (T̃p,r)
(n) =

˜
[(T̃p,r)(n−1)]p,r, wheren ≥ 2.

The following Fuglede-Putnam’s theorem is famous. We extend this theorem for classwF (p, r, q)
operators.

Theorem 1.1(Fuglede-Putnam’s Theorem [7]). Let A andB be normal operators andX be
an operator on a Hilbert space. Then the following hold and follow from each other:

(i) (Fuglede) IfAX = XA, thenA∗X = XA∗.
(ii) (Putnam) IfAX = XB, thenA∗X = XB∗.

2. PRELIMINARIES

Lemma 2.1([9]). If N is a normal operator onH, then we have⋂
λ∈C

(N − λ)H = {0}.

Lemma 2.2 ([5]). Let T = U |T | be the polar decomposition of ap-hyponormal operator for
p > 0. Then the following assertions hold:

(i) T̃s,t = |T |sU |T |t is p+min(s,t)
s+t

-hyponormal for anys > 0 andt > 0 such thatmax{s, t} ≥
p.

(ii) T̃s,t = |T |sU |T |t is hyponormal for anys > 0 andt > 0 such thatmax{s, t} ≤ p.

Lemma 2.3([8]). LetT ∈ B(H), D ∈ B(H) with 0 ≤ D ≤ M(T − λ)(T − λ)∗ for all λ in C,
whereM is a positive real number. Then for everyx ∈ D

1
2 H there exists a bounded function

f : C → H such that(T − λ)f(λ) ≡ x.

Lemma 2.4 ([10]). If T ∈ wF (p, r, q), then
∣∣∣T̃p,r

∣∣∣2m

≥ |T |2m ≥
∣∣∣(T̃p,r)

∗
∣∣∣ |2m, wherem =

min
{

1
q
, max

{
p

p+r
, 1− 1

q

}}
, i.e.,T̃p,r = |T |pU |T |r is m-hyponormal operator.

Lemma 2.5([11]). LetA, B ≥ 0, α0, β0 > 0 and−β0 ≤ δ ≤ α0,−β0 ≤ δ̄ ≤ α0, if 0 ≤ δ ≤ α0

and
(
B

β0
2 Aα0B

β0
2

) β0+δ
α0+β0 ≥ Bβ0+δ, then(

B
β
2 AαB

β
2

) β+δ
α+β ≥ Bβ+δ,

and

Aα−δ̄ ≥
(
A

α
2 BβA

α
2

) α−δ̄
α+β

hold for eachα ≥ α0, β ≥ β0 and0 ≤ δ̄ ≤ α.

Lemma 2.6([6]). LetA ≥ 0, B ≥ 0, if B
1
2 AB

1
2 ≥ B2 andA

1
2 BA

1
2 ≥ A2 thenA = B.

Lemma 2.7. LetA, B ≥ 0, s, t ≥ 0, if BsA2tBs = B2s+2t, AtB2sAt = A2s+2t thenA = B.
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Proof. We choosek > max{s, t. SinceBsA2tBs = B2s+2t, AtB2sAt = A2s+2t it follows from
Lemma 2.5 that:

(BkA2kBk)
2k+2t

4k ≥ B2k+2t,

A2k−2t ≥ (AkB2kAk)
2k−2t

4k ,

and
(AkB2kAk)

2k+2s
4k ≥ A2k+2s,

B2k−2s ≥ (BkA2kBk)
2k−2s

4k .

So
AkB2kAk = A4k, BkA2kBk = B4k,

by Lemma 2.6
A = B.

�

Lemma 2.8([11]). Let T be a classwF (p, r, q) operator, if T̃p,r = |T |pU |T |r is normal, then
T is normal.

The following theorem have been shown by T. Huruya in [3], here we give a simple proof.

Theorem 2.9(Furuta inequality [4]). If A ≥ B ≥ 0, then for eachr > 0,

(i)
(
B

r
2 ApB

r
2

) 1
q ≥

(
B

r
2 BpB

r
2

) 1
q and

(ii)
(
A

r
2 ApA

r
2

) 1
q ≥

(
A

r
2 BpA

r
2

) 1
q

hold forp ≥ 0 andq ≥ 1 with (1 + r)q ≥ p + r.

Theorem 2.10. Let T be a p−hyponormal operator onH and let T = U |T | be the polar
decomposition ofT , if T̃s,t = |T |sU |T |t (s + t = 1) is normal, thenT is normal.

Proof. First, consider the casemax{s, t} ≥ p. LetA = |T |2p andB = |T ∗|2p, p-hyponormality
of T ensuresA ≥ B ≥ 0. Applying Theorem 2.9 toA ≥ B ≥ 0, since(

1 +
t

p

)
s + t

p + min(s, t)
≥ s

p
+

t

p
and

s + t

p + min(s, t)
≥ 1,

we have

(T̃ ∗
s,tT̃s,t)

p+min(s,t)
s+t = (|T |tU∗|T |2sU |T |t)

p+min(s,t)
s+t

= (U∗U |T |tU∗|T |2sU |T |tU∗U)
p+min(s,t)

s+t

= (U∗|T ∗|t|T |2s|T ∗|tU)
p+min(s,t)

s+t

= U∗(|T ∗|t|T |2s|T ∗|t)
p+min(s,t)

s+t U

= U∗(B
t
2p A

s
p B

t
2p )

p+min(s,t)
s+t U

≥ U∗B
p+min(s,t)

p U

= U∗|T ∗|2(p+min(s,t))U

= |T |2(p+min(s,t)).

Similarly, we also have

(T̃s,tT̃
∗
s,t)

p+min(s,t)
s+t ≤ |T |2(p+min(s,t)).

J. Inequal. Pure and Appl. Math., 8(3) (2007), Art. 90, 7 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/
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Therefore, we have

(T̃ ∗
s,tT̃s,t)

p+min(s,t)
s+t ≥ |T |2(p+min(s,t)) ≥ (T̃s,tT̃

∗
s,t)

p+min(s,t)
s+t .

If
T̃s,t = |T |sU |T |t (s + t = 1)

is normal, then

(T̃ ∗
s,tT̃s,t)

p+min(s,t)
s+t = |T |2(p+min(s,t)) = (T̃s,tT̃

∗
s,t)

p+min(s,t)
s+t ,

which implies

|T ∗|t|T |2s|T ∗|t = |T ∗|2(s+t) and |T |s|T ∗|2t|T |s = |T |2(s+t),

then|T ∗| = |T | by Lemma 2.7. Next, consider the casemax{s, t} ≤ p. Firstly,p−hyponormality
of T ensures|T |2s ≥ |T ∗|2s and|T |2t ≥ |T ∗|2t for max{s, t} ≤ p by the Löwner-Heinz theo-
rem. Then we have

T̃ ∗
s,tT̃s,t = |T |tU∗|T |2sU |T |t ≥ |T |tU∗|T ∗|2sU |T |t

= |T |2(s+t)

T̃s,tT̃
∗
s,t = |T |sU |T |2tU∗|T |s

≤ |T |2(s+t).

If T̃s,t = |T |sU |T |t (s + t = 1) is normal, then

T̃ ∗
s,tT̃s,t = |T |2((s+t) = T̃s,tT̃

∗
s,t,

which implies

|T ∗|t|T |2s|T ∗|t = |T ∗|2(s+t) and |T |s|T ∗|2t|T |s = |T |2(s+t),

then|T ∗| = |T | by Lemma 2.7. �

3. M AIN THEOREM

Theorem 3.1. Assume thatT is a classwF (p, r, q) operator withKer(T ) ⊂ Ker(T ∗), andN
is a normal operator onH andK respectively. IfX ∈ B(K, H) is injective with dense range
which satisfiesTX = XN , thenT ∗X = XN∗.

Proof. Ker(T ) ⊂ Ker(T ∗) impliesKer(T ) reducesT . Also Ker(N) reducesN sinceN is nor-
mal. Using the orthogonal decompositionsH = Ran(|T |)

⊕
Ker(T ) andH = Ran(N)

⊕
Ker(N),

we can representT andN as follows.

T =

(
T1 0
0 0

)
,

N =

(
N1 0
0 0

)
,

whereT1 is an injective classwF (p, r, q) operator onRan(|T |) andN1 is injective normal on
Ran(N). The assumptionTX = XN asserts thatX mapsRan(N) to Ran(T ) ⊂ Ran(|T |)
andKer(N) to Ker(T ), henceX is of the form:

X =

(
X1 0
0 X2

)
,

whereX1 ∈ B(Ran(N), Ran(|T |)), X2 ∈ B(Ker(N), Ker(T )). SinceTX = XN , we have
that T1X1 = X1N1. SinceX is injective with dense range,X1 is also injective with dense
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range. PutW1 = |T1|pX1, thenW1 is also injective with dense range and satisfies̃(T1)p,rW1 =

W1N . PutWn =
∣∣∣(T̃1)

(n)
p,r

∣∣∣p W(n−1), thenWn is also injective with dense range and satisfies

(T̃1)
(n)
p,r Wn = WnN . From Lemma 2.2 and Lemma 2.4, if there is an integerα0 such that

(T̃1)
(α0)
p,r is a hyponormal operator, then(T̃1)

(n)
p,r is a hyponormal operator forn ≥ α0. It follows

from Lemma 2.3 that there exists a bounded functionf : C → H such that(((
T̃1

)(n)

p,r

)∗

− λ

)
f(λ) ≡ x, for every

x ∈
(((

T̃1

)(n)

p,r

)∗ (
T̃1

)(n)

p,r
−

(
T̃1

)(n)

p,r

((
T̃1

)(n)

p,r

)∗) 1
2

H.

Hence

W ∗
nx = W ∗

n

(((
T̃1

)(n)

p,r

)∗

− λ

)
f(λ)

= (N∗
1 − λ)W ∗

nf(λ) ∈ Ran(N∗
1 − λ) for all λ ∈ C

By Lemma 2.1, we haveW ∗
nx = 0, and hencex = 0 becauseW ∗

n is injective. This implies that
(T̃1)

(n)
p,r is normal. By Lemma 2.8 and Theorem 2.10,T1 is nomal and thereforeT = T1

⊕
0 is

also normal. The assertion is immediate from Fuglede-Putnam’s theorem. �

Let X be aBanach space,U be an open subset ofC. ε(U,X) denotes theFréchetspace of
all X−valuedC∞−functions, i.e., infinitely differentiable functions onU ([3]). T ∈ B(X) is
said to satisfy property(β)ε if for each open subsetU of C, the map

Tz : ε(U,X) → ε(U,X), f 7→ (T − z)f

is a topological monomorphism, i.e.,Tzfn → 0 (n →∞) in ε(U,X) impliesfn → 0 (n →∞)
in ε(U,X) ([3]).

Lemma 3.2([1]). LetT ∈ B(X). T is subscalar if and only ifT satisfies property(β)ε.

Lemma 3.3. LetT ∈ B(X). T satisfies property(β)ε if and only ifT̃p,r satisfies property(β)ε.

Proof. First, we suppose thatT satisfies property(β)ε, U is an open subset ofC, fn ∈ ε(U,X)
and

(3.1) (T̃p,r − z)fn → 0 (n →∞),

in ε(U,X), then

(T − z)U |T |rfn = U |T |r(T̃p,r − z)fn → 0 (n →∞).

SinceT satisfies property(β)ε, we haveU |T |rfn → 0 (n →∞). and therefore

(3.2) T̃p,rfn → 0 (n →∞).

(3.1) and (3.2) imply that

(3.3) zfn = T̃p,rfn − (T̃p,r − z)fn → 0 (n →∞)

in ε(U,X). Notice thatT = 0 is a subscalar operator and hence satisfies property(β)ε by
Lemma 3.2. Now we have

(3.4) fn → 0 (n →∞).
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(3.1) and (3.4) imply that̃Tp,r satisfies property(β)ε. Next we suppose that̃Tp,r satisfies prop-
erty (β)ε, U is an open subset ofC, fn ∈ ε(U,X) and

(3.5) (T − z)fn → 0 (n →∞),

in ε(U,X). Then

(T̃p,r − z)|T |pfn = |T |p(T − z)fn → 0 (n →∞).

SinceT̃p,r satisfies property(β)ε, we have|T |pfn → 0 (n →∞), and therefore

(3.6) Tfn → 0 (n →∞).

(3.5) and (3.6) imply
zfn = Tfn − (T − z)fn → 0 (n →∞).

Sofn → 0 (n →∞). HenceT satisfies property(β)ε. �

Lemma 3.4([1]). Suppose thatT is ap−hyponormal operator, thenT is subscalar.

Theorem 3.5.LetT ∈ wF (p, r, q) andp + r = 1, thenT is subdecomposable.

Proof. If T ∈ wF (p, r, q), thenT̃p,r is am-hyponormal operator by Lemma 2.4, and it follows
from Lemma 3.4 that̃Tp,r is subscalar. So we haveT is subscalar by Lemma 3.2 and Lemma
3.3. It is well known that subscalar operators are subdecomposable operators ([3]). HenceT is
subdecomposable. �

Recall that an operatorX ∈ B(H) is called a quasiaffinity ifX is injective and has dense
range. ForT1, T2 ∈ B(H), if there exist quasiaffinitiesX ∈ B(H2, H1) andY ∈ B(H1, H2)
such thatT1X = XT2 andY T1 = T2Y then we say thatT1 andT2 are quasisimilar.

Lemma 3.6 ([2]). Let S ∈ B(H) be subdecomposable,T ∈ B(H). If X ∈ B(K, H) is
injective with dense range which satisfiesXT = SX, thenσ(S) ⊂ σ(T ); if T and S are
quasisimilar, thenσe(S) ⊆ σe(T ).

Theorem 3.7. LetT1, T2 ∈ wF (p, r, q). If T1 andT2 are quasisimilar thenσ(T1) = σ(T2) and
σe(T1) = σe(T2).

Proof. Obvious from Theorem 3.5 and Lemma 3.6. �
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