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Abstract

In this paper, some new discrete Gronwall-Bellman-Ou-Iang-type inequalities
are established. These on the one hand generalize some existing results and
on the other hand provide a handy tool for the study of qualitative as well as
quantitative properties of solutions of difference equations.
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1. Introduction
It is widely recognized that integral inequalities in general provide an effective
tool for the study of qualitative as well as quantitative properties of solutions of
integral and differential equations. While most integral inequalities only give
the ‘global behavior’ of the unknown functions (in the sense that bounds are
only obtained for integrals of certain functions of the unknown functions), the
Gronwall-Bellman type (see, e.g. [3] – [8], [10] – [12], [15] – [18]) is particu-
larly useful as they provide explicit pointwise bounds of the unknown functions.
A specific branch of this type of inequalities is originated by Ou-Iang. In his
paper [13], in order to study the boundedness behavior of the solutions of some
2nd order differential equations, Ou-Iang established the following beautiful
inequality.

Theorem 1.1 (Ou-Iang [13]). If u andf are non-negative functions on[0,∞)
satisfying

u2(x) ≤ c2 + 2

∫ x

0

f(s)u(s)ds, x ∈ [0,∞),

for some constantc ≥ 0, then

u(x) ≤ c+

∫ x

0

f(s)ds, x ∈ [0,∞).

While Ou-Iang’s inequality is interesting in its own right, it also has nu-
merous important applications in the study of differential equations (see, e.g.,
[2, 3, 9, 11, 12]). Over the years, various extensions of Ou-Iang’s inequality
have been established. These include, among others, works of Agarwal [1],
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Ma-Yang [10], Pachpatte [14] – [18], Tsamatos-Ntouyas [19], and Yang [20].
Among such extensions, the discretization is of particular interest because anal-
ogous to the continuous case, discrete versions of integral inequalities should,
in our opinion, play an important role in the study of qualitative as well as quan-
titative properties of solutions of difference equations.

It is the purpose of this paper to establish some new discrete Gronwall-
Bellman-Ou-Iang-type inequalities giving explicit bounds to unknown discrete
functions. These on the one hand generalize some existing results in the litera-
ture and on the other hand give a handy tool to the study of difference equations.
An application to a discrete delay equation is given at the end of the paper.
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2. Discrete Inequalities with Delay
Throughout this paper,R+ = (0,∞) ⊂ R, Z+ = R+ ∩Z, and for anya, b ∈ R,
Ra = [a,∞), Za = Ra∩Z, Z[a,b] = Z∩[a, b]. If X andY are sets, the collection
of functions ofX into Y , the collection of continuous functions ofX into Y ,
and that of continuously differentiable functions ofX into Y are denoted by
F(X,Y ), C(X, Y ), andC1(X, Y ), respectively. As usual, ifu is a real-valued
function onZ[a,b], the difference operator∆ onu is defined as

∆u(n) = u(n+ 1)− u(n) , n ∈ Z[a,b−1].

In the sequel, summations over empty sets are, as usual, defined to be zero.
The basic assumptions and initial conditions used in this paper are the fol-

lowing:

Assumptions
(A1) f, g, h, k, p ∈ F(Z0,R0) with p non-decreasing;
(A2) w ∈ C(R0,R0) is non-decreasing withw(r) > 0 for r > 0;
(A3) σ ∈ F(Z0,Z) with σ(s) ≤ s for all s ∈ Z0 and−∞ < a := inf{σ(s) :

s ∈ Z0} ≤ 0;
(A4) ψ ∈ F(Z[a,0],R0); and
(A5) φ ∈ C1(R0,R0) with φ′ non-decreasing andφ′(r) > 0 for r > 0.

Initial Conditions
(I1) x(s) = ψ(s) for all s ∈ Z[a,0];
(I2) ψ (σ(s)) ≤ φ−1 (p(s)) for all s ∈ Z0 with σ(s) ≤ 0.
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Theorem 2.1. Under Assumptions (A1) – (A5), ifx ∈ F(Za,R0) is a function
satisfying the nonlinear delay inequality

(2.1) φ (x(n))

≤ p(n) +
n−1∑
s=0

φ′ (x (σ(s))) {f(s) + g(s)x (σ(s)) + h(s)w (x (σ(s)))}

for all n ∈ Z0 with initial conditions (I1) – (I2), then

(2.2) x(n) ≤ Φ−1

{
Φ

[(
exp

n−1∑
s=0

g(s)

)(
φ−1 (p(n)) +

n−1∑
s=0

f(s)

)]

+

(
exp

n−1∑
s=0

g(s)

)
n−1∑
t=0

h(t)

}
for all n ∈ Z[0,α], whereΦ ∈ C(R0,R) is defined by

Φ(r) :=

∫ r

1

ds

w(s)
, r > 0,

andα ≥ 0 is chosen such that the RHS of (2.2) is well-defined, that is,

Φ

[(
exp

n−1∑
s=0

g(s)

)(
φ−1 (p(n)) +

n−1∑
s=0

f(s)

)]

+ exp

(
n−1∑
s=0

g(s)

)
n−1∑
t=0

h(t) ∈ ImΦ

for all n ∈ Z[0,α].
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Proof. Fix ε > 0 andN ∈ Z[0,α]. Defineu : Z[0,N ] → R0 by

(2.3) u(n) := φ−1

{
ε+ p(N)

+
n−1∑
t=0

φ′ (x (σ(t))) [f(t) + g(t)x (σ(t)) + h(t)w (x (σ(t)))]

}
.

By (A5), u is non-decreasing onZ[0,N ]. For anyn ∈ Z[0,N ], by (A5) again,

(2.4) u(n) ≥ φ−1 (ε+ p(N)) > 0 .

As φ (u(n)) > φ (x(n)), we have

(2.5) u(n) > x(n) .

Next, observe that ifσ(n) ≥ 0, then by (A3),σ(n) ∈ Z[0,N ] and so

x (σ(n)) < u (σ(n)) ≤ u(n) .

On the other hand, ifσ(n) ≤ 0, then by (A3) again,σ(n) ∈ Z[a,0] and so by
(I1), (I2), (A1), (A5) and (2.4),

x (σ(n)) = ψ (σ(n)) ≤ φ−1 (p(n)) ≤ φ−1 (p(N)) ≤ φ−1 (p(N) + ε) ≤ u(n) .

Hence we always have

(2.6) x (σ(n)) ≤ u(n) for all n ∈ Z[0,N ] .
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Therefore, for anys ∈ Z[0,N−1], by (2.3) and (2.6),

∆(φ ◦ u)(s) = φ (u(s+ 1))− φ (u(s))

= φ′ (x (σ(s))) {f(s) + g(s)x (σ(s)) + h(s)w (x (σ(s)))}
≤ φ′ (u(s)) {f(s) + g(s)u(s) + h(s)w (u(s))} .

On the other hand, by the Mean Value Theorem, we obtain

∆(φ ◦ u)(s) = φ (u(s+ 1))− φ (u(s))

= φ′(ξ)∆u(s)

for someξ ∈ [u(s), u(s+ 1)]. Observe that by (2.4) and (A5),φ′(ξ) > 0. Thus
by the monotonicity ofφ′, for anys ∈ Z[0,N−1],

∆u(s) ≤ φ′ (u(s))

φ′(ξ)
{f(s) + g(s)u(s) + h(s)w (u(s))}

≤ f(s) + g(s)u(s) + h(s)w (u(s)) .

Summing up, we have

u(n)− u(0) =
n−1∑
s=0

∆u(s)

≤
n−1∑
s=0

f(s) +
n−1∑
s=0

h(s)w (u(s)) +
n−1∑
s=0

g(s)u(s) ,
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or

u(n) ≤

[
φ−1 (ε+ p(N)) +

n−1∑
s=0

f(s) +
n−1∑
s=0

h(s)w (u(s))

]
+

n−1∑
s=0

g(s)u(s)

for all n ∈ Z[0,N ]. Hence by the discrete version of the Gronwall-Bellman
inequality (see, e.g., [16, Corollary 1.2.5]),

u(n) ≤

[
φ−1 (ε+ p(N)) +

n−1∑
s=0

f(s) +
n−1∑
s=0

h(s)w (u(s))

]
exp

n−1∑
s=0

g(s)

≤

[
φ−1 (ε+ p(N)) +

N−1∑
s=0

f(s) +
n−1∑
s=0

h(s)w (u(s))

]
exp

N−1∑
s=0

g(s)(2.7)

for all n ∈ Z[0,N ]. Denote byv(n) the RHS of (2.7). Thenv is non-decreasing
and for alln ∈ Z[0,N ],

(2.8) u(n) ≤ v(n) .

Therefore, for anyt ∈ Z[0,N−1],

∆v(t) = v(t+ 1)− v(t)

= h(t)w (u(t)) exp
N−1∑
s=0

g(s)

≤ h(t)w (v(t)) exp
N−1∑
s=0

g(s) .

http://jipam.vu.edu.au/
mailto:
mailto:wscheung@hku.hk
mailto:
mailto:
mailto:tseng@math.tku.edu.tw
http://jipam.vu.edu.au/


Some New Discrete Nonlinear
Delay Inequalities and

Application to Discrete Delay
Equations

Wing-Sum Cheung and
Shiojenn Tseng

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 10 of 36

J. Ineq. Pure and Appl. Math. 7(4) Art. 122, 2006

http://jipam.vu.edu.au

On the other hand, by the Mean Value Theorem, we have

∆(Φ ◦ v)(t) = Φ (v(t+ 1))− Φ (v(t))

= Φ′(η)∆v(t)

=
1

w(η)
∆v(t)

for someη ∈ [v(t), v(t+ 1)]. Observe that by (2.4), (2.8), and (A2),w(η) > 0.
Therefore, asw is non-decreasing,

∆(Φ ◦ v)(t) ≤ 1

w(η)
h(t)w (v(t)) exp

N−1∑
s=0

g(s)

≤ h(t) exp
N−1∑
s=0

g(s)

for all t ∈ Z[0,N−1]. Summing up, we have

n−1∑
t=0

∆(Φ ◦ v)(t) ≤
n−1∑
t=0

h(t) exp
N−1∑
s=0

g(s) .

On the other hand,

n−1∑
t=0

∆(Φ ◦ v)(t) = Φ (v(n))− Φ (v(0))
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= Φ (v(n))− Φ

[(
exp

N−1∑
s=0

g(s)

)(
φ−1 (ε+ p(N)) +

N−1∑
s=0

f(s)

)]
,

therefore,

Φ (v(n)) ≤ Φ

[(
exp

N−1∑
s=0

g(s)

)(
φ−1 (ε+ p(N)) +

N−1∑
s=0

f(s)

)]

+
n−1∑
t=0

h(t) exp
N−1∑
s=0

g(s)

for all n ∈ Z[0,N ]. In particular, takingn = N we have

Φ (v(N)) ≤ Φ

[(
exp

N−1∑
s=0

g(s)

)(
φ−1 (ε+ p(N)) +

N−1∑
s=0

f(s)

)]

+

(
exp

N−1∑
s=0

g(s)

)
N−1∑
t=0

h(t).

SinceN ∈ Z[0,α] is arbitrary,

Φ (v(n)) ≤ Φ

[(
exp

n−1∑
s=0

g(s)

)(
φ−1 (ε+ p(n)) +

n−1∑
s=0

f(s)

)]

+

(
exp

n−1∑
s=0

g(s)

)
n−1∑
t=0

h(t)
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for all n ∈ Z[0,α]. Hence

v(n) ≤ Φ−1

{
Φ

[(
exp

n−1∑
s=0

g(s)

)(
φ−1 (ε+ p(n)) +

n−1∑
s=0

f(s)

)]

+

(
exp

n−1∑
s=0

g(s)

)
n−1∑
t=0

h(t)

}
and so by (2.5) and (2.8),

x(n) < u(n) ≤ v(n)

≤ Φ−1

{
Φ

[(
exp

n−1∑
s=0

g(s)

)(
φ−1 (ε+ p(n)) +

n−1∑
s=0

f(s)

)]

+

(
exp

n−1∑
s=0

g(s)

)
n−1∑
t=0

h(t)

}

for all n ∈ Z[0,α]. Finally, lettingε→ 0+, we conclude that

x(n) ≤ Φ−1

{
Φ

[(
exp

n−1∑
s=0

g(s)

)(
φ−1 (p(n)) +

n−1∑
s=0

f(s)

)]

+

(
exp

n−1∑
s=0

g(s)

)
n−1∑
t=0

h(t)

}
for all n ∈ Z[0,α].
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Remark 1. In many cases the non-decreasing functionw satisfies
∫∞

1
ds

w(s)
=

∞. For example,w = constant> 0, w(s) =
√
s, etc., are such functions. In

such casesΦ(∞) = ∞ and so we may takeα → ∞, that is, (2.2) is valid for
all n ∈ Z0.

Theorem 2.2. Under Assumptions (A1) – (A5), ifx ∈ F(Za,R0) is a function
satisfying the nonlinear delay inequality

φ (x(n)) ≤ p(n) +
n−1∑
s=0

φ′ (x (σ(s)))

{
f(s) + g(s)x (σ(s))

+ h(s)
s−1∑
t=0

k(t)w (x (σ(t)))

}
for all n ∈ Z0 with initial conditions (I1) – (I2), then

(2.9) x(n) ≤ Φ−1

{
Φ

[(
exp

n−1∑
s=0

g(s)

)(
φ−1 (p(n)) +

n−1∑
s=0

f(s)

)]

+

(
exp

n−1∑
s=0

g(s)

)
n−1∑
s=0

s−1∑
t=0

h(s)k(t)

}
for all n ∈ Z[0,β], whereΦ ∈ C(R0,R) is as defined in Theorem2.1, andβ ≥ 0
is chosen such that the RHS of (2.9) is well-defined, that is,

Φ

[(
exp

n−1∑
s=0

g(s)

)(
φ−1 (p(n)) +

n−1∑
s=0

f(s)

)]

http://jipam.vu.edu.au/
mailto:
mailto:wscheung@hku.hk
mailto:
mailto:
mailto:tseng@math.tku.edu.tw
http://jipam.vu.edu.au/


Some New Discrete Nonlinear
Delay Inequalities and

Application to Discrete Delay
Equations

Wing-Sum Cheung and
Shiojenn Tseng

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 14 of 36

J. Ineq. Pure and Appl. Math. 7(4) Art. 122, 2006

http://jipam.vu.edu.au

+

(
exp

n−1∑
s=0

g(s)

)
n−1∑
s=0

s−1∑
t=0

h(s)k(t) ∈ ImΦ

for all n ∈ Z[0,β].

Proof. Fix ε > 0 andM ∈ Z[0,β]. Defineu : Z[0,M ] → R0 by

(2.10) u(n) := φ−1

{
ε+ p(M) +

n−1∑
δ=0

φ′ (x (σ(δ))) ·

[
f(δ) + g(δ)x (σ(δ))

+h(δ)
δ−1∑
t=0

k(t)w (x (σ(t)))

]}
.

By (A5), u is non-decreasing onZ[0,M ]. For anyn ∈ Z[0,M ], by (A5) again,

(2.11) u(n) ≥ φ−1 (ε+ p(M)) > 0 .

As φ (u(n)) > φ (x(n)), we have

(2.12) u(n) > x(n) .

Using the same arguments as in the derivation of (2.6) in the proof of Theorem
2.1, we have

(2.13) x (σ(n)) ≤ u(n) for all n ∈ Z[0,M ] .
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Hence for anys ∈ Z[0,M−1], by (2.10) and (2.13),

∆(φ ◦ u)(s) = φ (u(s+ 1))− φ (u(s))

= φ′ (x (σ(s)))

{
f(s) + g(s)x (σ(s)) + h(s)

s−1∑
t=0

k(t)w (x (σ(t)))

}

≤ φ′ (u(s))

{
f(s) + g(s)u(s) + h(s)

s−1∑
t=0

k(t)w (u(t))

}
.

On the other hand, by the Mean Value Theorem,

∆(φ ◦ u)(s) = φ (u(s+ 1))− φ (u(s))

= φ′(ξ)∆u(s)

for someξ ∈ [u(s), u(s+ 1)]. Observe that by (2.12) and (A5),φ′(ξ) > 0.
Thus by the monotonicity ofφ′, for anys ∈ Z[0,M−1],

∆u(s) ≤ φ′ (u(s))

φ′(ξ)

{
f(s) + g(s)u(s) + h(s)

s−1∑
t=0

k(t)w (u(t))

}

≤ f(s) + g(s)u(s) + h(s)
s−1∑
t=0

k(t)w (u(t)) .

Summing up, we have

u(n)− u(0) =
n−1∑
s=0

∆u(s)
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≤
n−1∑
s=0

f(s) +
n−1∑
s=0

h(s)
s−1∑
t=0

k(t)w (u(t)) +
n−1∑
s=0

g(s)u(s) ,

or

u(n) ≤

[
φ−1 (ε+ p(M)) +

n−1∑
s=0

f(s) +
n−1∑
s=0

h(s)
s−1∑
t=0

k(t)w (u(t))

]
+

n−1∑
s=0

g(s)u(s)

for all n ∈ Z[0,M ]. Hence by the discrete version of the Gronwall-Bellman
inequality (see, e.g., [16, Corollary 1.2.5]),

u(n) ≤

[
φ−1 (ε+ p(M)) +

n−1∑
s=0

f(s)

+
n−1∑
s=0

h(s)
s−1∑
t=0

k(t)w (u(t))

]
exp

n−1∑
s=0

g(s)

≤

[
φ−1 (ε+ p(M)) +

M−1∑
s=0

f(s)

+
n−1∑
s=0

h(s)
s−1∑
t=0

k(t)w (u(t))

]
exp

M−1∑
s=0

g(s)(2.14)

for all n ∈ Z[0,M ]. Denote byv(n) the RHS of (2.14). Thenv is non-decreasing
and for alln ∈ Z[0,M ],

(2.15) u(n) ≤ v(n) .
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Therefore, for anyδ ∈ Z[0,M−1],

∆v(δ) = v(δ + 1)− v(δ)

= h(δ)

(
δ−1∑
t=0

k(t)w (u(t))

)
exp

M−1∑
s=0

g(s)

≤ h(δ)

(
δ−1∑
t=0

k(t)w (v(t))

)
exp

M−1∑
s=0

g(s)

≤ h(δ)w (v(δ))

(
δ−1∑
t=0

k(t)

)
exp

M−1∑
s=0

g(s) .

On the other hand, by the Mean Value Theorem,

∆(Φ ◦ v)(δ) = Φ (v(δ + 1))− Φ (v(δ))

= Φ′(η)∆v(δ) =
1

w(η)
∆v(δ)

for someη ∈ [v(δ), v(δ + 1)]. Observe that by (2.11), (2.14), and (A2),w(η) >
0. Therefore, asw is non-decreasing,

∆(Φ ◦ v)(δ) ≤ 1

w(η)
h(δ)w (v(δ))

(
δ−1∑
t=0

k(t)

)
exp

M−1∑
s=0

g(s)

≤ h(δ)

(
δ−1∑
t=0

k(t)

)
exp

M−1∑
s=0

g(s)
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for all δ ∈ Z[0,M−1]. Summing up, we have

n−1∑
δ=0

∆(Φ ◦ v)(δ) ≤
n−1∑
δ=0

h(δ)

(
δ−1∑
t=0

k(t)

)
exp

M−1∑
s=0

g(s) ,

or

Φ (v(n)) ≤ Φ (v(0)) +
n−1∑
δ=0

h(δ)

(
δ−1∑
t=0

k(t)

)
exp

M−1∑
s=0

g(s)

= Φ

[(
φ−1 (ε+ p(M)) +

M−1∑
s=0

f(s)

)
exp

M−1∑
s=0

g(s)

]

+
n−1∑
δ=0

h(δ)

(
δ−1∑
t=0

k(t)

)
exp

M−1∑
s=0

g(s)

for all n ∈ Z[0,M ]. In particular, takingn = M this yields

Φ (v(M)) ≤ Φ

[(
φ−1 (ε+ p(M)) +

M−1∑
s=0

f(s)

)
exp

M−1∑
s=0

g(s)

]

+
M−1∑
δ=0

h(δ)

(
δ−1∑
t=0

k(t)

)
exp

M−1∑
s=0

g(s) .
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SinceM ∈ Z[0,β] is arbitrary,

Φ (v(n)) ≤ Φ

[(
φ−1 (ε+ p(n)) +

n−1∑
s=0

f(s)

)
exp

n−1∑
s=0

g(s)

]

+
n−1∑
δ=0

h(δ)

(
δ−1∑
t=0

k(t)

)
exp

n−1∑
s=0

g(s)

for all n ∈ Z[0,β]. Hence

v(n) ≤ Φ−1

{
Φ

[(
φ−1 (ε+ p(n)) +

n−1∑
s=0

f(s)

)
exp

n−1∑
s=0

g(s)

]

+
n−1∑
δ=0

h(δ)

(
δ−1∑
t=0

k(t)

)
exp

n−1∑
s=0

g(s)

}

and so by (2.12) and (2.15),

x(n) < u(n) ≤ v(n)

≤ Φ−1

{
Φ

[(
φ−1 (ε+ p(n)) +

n−1∑
s=0

f(s)

)
exp

n−1∑
s=0

g(s)

]

+
n−1∑
δ=0

h(δ)

(
δ−1∑
t=0

k(t)

)
exp

n−1∑
s=0

g(s)

}
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for all n ∈ Z[0,β]. Finally, lettingε→ 0+, we conclude that

x(n) ≤ Φ−1

{
Φ

[(
exp

n−1∑
s=0

g(s)

)(
φ−1 (p(n)) +

n−1∑
s=0

f(s)

)]

+

(
exp

n−1∑
s=0

g(s)

)
n−1∑
δ=0

δ−1∑
t=0

h(δ)k(t)

}
for all n ∈ Z[0,β].

Remark 2. Similar to the previous remark, in caseΦ(∞) = ∞, (2.9) holds for
all n ∈ Z0.

Theorem 2.3. Under Assumptions (A1), (A3) and (A4), ifx ∈ F(Za,R0) is a
function satisfying the nonlinear delay inequality

xr(n) ≤ cr +
n−1∑
s=0

xr (σ(s)) {f(s) + g(s)xr (σ(s))} , n ∈ Z0,

with initial conditions (I1) and

(I3) ψ (σ(s)) ≤ c for all s ∈ Z0 with σ(s) ≤ 0 ,

wherer, c > 0 are constants, then

(2.16) x(n) ≤

[
c−r

n−1∏
s=0

(1− f(s))−
n∑

s=1

g(s)
n−1∏
t=s

(1− f(t))

]− 1
r

for all n ∈ Z[0,γ], whereγ ≥ 0 is chosen such that the RHS of (2.16) is well-
defined.
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Proof. Defineu ∈ F(Z0,R0) by

(2.17) ur(n) := cr +
n−1∑
s=0

xr (σ(s)) {f(s) + g(s)xr (σ(s))} , n ∈ Z0 .

Clearly,u ≥ 0 is non-decreasing and

(2.18) x(n) ≤ u(n) for all n ∈ Z0 .

Similar to the derivation of (2.6) in the proof of Theorem2.1, we easily establish

x (σ(n)) ≤ u(n) for all n ∈ Z0 .

By (2.17), for anyn ∈ Z0,

∆ur(n) = ur(n+ 1)− ur(n)

= xr (σ(n)) {f(n) + g(n)xr (σ(n))}
≤ ur(n) {f(n) + g(n)ur(n)}
≤ ur(n+ 1) {f(n) + g(n)ur(n)} .

As u(0) = c, by elementary analysis, we infer from (2.17) that

(2.19) u(n) ≤ y(n) for all n ∈ Z[0,ρ]

whereZ[0,ρ] is the maximal lattice on which the unique solutiony(n) to the
discrete Bernoulli equation

(2.20)


∆yr(n) = yr(n+ 1) {f(n) + g(n)yr(n)} , n ∈ Z0

y(0) = c
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is defined. Now the unique solution for (2.20) is (see, e.g., [1])

(2.21) y(n) =

[
c−r

n−1∏
s=0

(1− f(s))−
n∑

s=1

g(s)
n−1∏
t=s

(1− f(t))

]− 1
r

for all n ∈ Z[0,γ]. The assertion now follows from (2.18), (2.19) and (2.21).
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3. Immediate Consequences
Direct application of the results in Section2 yields the following consequences
immediately.

Corollary 3.1. Under Assumptions (A1) – (A4), ifx ∈ F(Za,R0) is a function
satisfying the nonlinear delay inequality

(3.1) xα(n)

≤ p(n) +
n−1∑
s=0

xα−1 (σ(s)) {f(s) + g(s)x (σ(s)) + h(s)w (x (σ(s)))}

for all n ∈ Z0 with initial conditions (I1) and

(I4) ψ (σ(s)) ≤ p
1
α (s) for all s ∈ Z0 with σ(s) ≤ 0 ,

whereα ≥ 1 is a constant, then

(3.2) x(n) ≤ Φ−1

{
Φ

[(
exp

1

α

n−1∑
s=0

g(α)

)(
p

1
α (n) +

1

α

n−1∑
s=0

f(s)

)]

+

(
exp

1

α

n−1∑
s=0

g(α)

)
1

α

n−1∑
t=0

h(t)

}

for all n ∈ Z[0,µ], whereµ ≥ 0 is chosen such that the RHS of (3.2) is well-
defined for alln ∈ Z[0,µ], andΦ is defined as in Theorem2.1.
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Proof. Let φ : R0 → R0 be defined byφ(r) = rα, r ∈ R0. Thenφ satisfies
Assumption (A5). By (3.1) we have

φ (x(n)) ≤ p(n)+
n−1∑
s=0

φ′ (x (σ(s)))

{
f(s)

α
+
g(s)

α
x (σ(s)) +

h(s)

α
w (x (σ(s)))

}
.

Furthermore, it is easy to see that

φ (x(s)) ≤ p
1
α (s) = φ−1 (p(s)) for all s ∈ Z0 with σ(s) ≤ 0 .

Thus Theorem2.1applies and the assertion follows.

Remark 3.

(i) In Corollary 3.1, if we setα = 2, p(n) ≡ c2, g(n) ≡ 0, we have

x2(n) ≤ c2 +
n−1∑
s=0

x (σ(s)) {f(s) + h(s)w (x (σ(s)))} , n ∈ Z0

implies

x(n) ≤ Φ−1

{
Φ

[
c+

1

2

n−1∑
s=0

f(s)

]
+

1

2

n−1∑
s=0

h(s)

}
, n ∈ Z[0,µ] .

This is the discrete analogue of a result of Pachpatte in [14]. Furthermore,
if σ = id, this reduces to a result of Pachpatte in [18].

(ii) In caseΦ(∞) = ∞, (3.2) holds for alln ∈ Z0.
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Corollary 3.2. Under Assumptions (A1) – (A4) withp ∈ F(Z0,R+), if x ∈
F(Za,R1) satisfies the nonlinear delay inequality

(3.3) xα(n)

≤ p(n) +
n−1∑
s=0

xα (σ(s)) {f(s) + g(s) ln x (σ(s)) + h(s)w (lnx (σ(s)))}

for all n ∈ Z0 with initial conditions (I1) and

(I5) ψ (σ(s)) ≤ 1

α
ln (p(s)) for all s ∈ Z0 with σ(s) ≤ 0 ,

whereα > 0 is a constant, then

(3.4) x(n) ≤ exp

{
Φ−1

[
Φ

((
exp

1

α

n−1∑
s=0

g(s)

)

×

(
1

α
ln p(n) +

1

α

n−1∑
s=0

f(s)

))

+

(
exp

1

α

n−1∑
s=0

g(s)

)
1

α

n−1∑
t=0

h(t)

]}

for all n ∈ Z[0,ν], whereν ≥ 0 is chosen such that the RHS of (3.4) is well-
defined for alln ∈ Z[0,ν], andΦ is defined as in Theorem2.1.
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Proof. Lettingy(n) = lnx(n), (3.3) becomes

(3.5) exp (αy(n))

≤ p(n) +
n−1∑
s=0

exp (αy (σ(s))) {f(s) + g(s)y (σ(s)) + h(s)w (y (σ(s)))} .

Let φ : R0 → R0 be defined byφ(r) = exp(αr), r ∈ R0. Thenφ satisfies
Assumption (A5). Hence from (3.5), we have

φ (y(n)) ≤ p(n)+
n−1∑
s=0

φ′ (y (σ(s)))

{
f(s)

α
+
g(s)

α
y (σ(s)) +

h(s)

α
w (y (σ(s)))

}
.

Furthermore, it is easy to see that

ψ (σ(s)) ≤ 1

α
ln (p(s)) = φ−1 (p(s)) for all s ∈ Z0 with σ(s) ≤ 0 .

Thus Theorem2.1applies and we have

y(n) ≤ Φ−1

{
Φ

[(
exp

1

α

n−1∑
s=0

g(s)

)(
1

α
ln p(n) +

1

α

n−1∑
s=0

f(s)

)]

+

(
exp

1

α

n−1∑
s=0

g(s)

)
1

α

n−1∑
t=0

h(t)

}

for all n ∈ Z[0,ν], and from this the assertion follows.
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Remark 4. In caseΦ(∞) = ∞, (3.4) holds for alln ∈ Z0.

Corollary 3.3. Under Assumptions (A1) – (A4), ifx ∈ F(Za,R0) satisfies the
nonlinear delay inequality

(3.6) xα(n) ≤ p(n) +
n−1∑
s=0

xα−1 (σ(s))

{
f(s) + g(s)x (σ(s))

+ h(s)
s−1∑
t=0

k(t)w (x (σ(t)))

}

for all n ∈ Z0 with initial conditions (I1) and (I4), whereα ≥ 1 is a constant,
then

(3.7) x(n) ≤ Φ−1

{
Φ

[(
exp

1

α

n−1∑
s=0

g(s)

)(
p

1
α (n) +

1

α

n−1∑
s=0

f(s)

)]

+

(
exp

1

α

n−1∑
s=0

g(s)

)(
1

α

n−1∑
s=0

h(s)
s−1∑
t=0

k(t)

)}

for all n ∈ Z[0,η], whereη ≥ 0 is chosen such that the RHS of (3.7) is well-
defined for alln ∈ Z[0,η], andΦ is defined as in Theorem2.1.

Proof. Let φ : R0 → R0 be defined byφ(r) = rα, r ∈ R0. Thenφ satisfies
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Assumption (A5). By (3.6),

φ (x(n)) ≤ p(n) +
n−1∑
s=0

φ′ (x (σ(s)))

{
f(s)

α
+
g(s)

α
x (σ(s))

+
h(s)

α

s−1∑
t=0

k(t)w (x (σ(t)))

}
for all n ∈ Z0. Furthermore, it is easy to see that

ψ (σ(s)) ≤ p
1
α (s) = φ−1 (p(s)) for all s ∈ Z0 with σ(s) ≤ 0 .

Thus Theorem2.2applies and we have

x(n) ≤ Φ−1

{
Φ

[(
exp

1

α

n−1∑
s=0

g(s)

)(
p

1
α (n) +

1

α

n−1∑
s=0

f(s)

)]

+

(
exp

1

α

n−1∑
s=0

g(s)

)
· 1

α

n−1∑
s=0

s−1∑
t=0

h(s)k(t)

}
for all n ∈ Z[0,η].

Remark 5.

(i) In Corollary 3.3, if we putα = 2, p(n) ≡ c2, g(n) ≡ 0, we have

x2(n) ≤ c2+
n−1∑
s=0

x (σ(s))

{
f(s) + h(s)

s−1∑
t=0

k(t)w (x (σ(t)))

}
, n ∈ Z0

http://jipam.vu.edu.au/
mailto:
mailto:wscheung@hku.hk
mailto:
mailto:
mailto:tseng@math.tku.edu.tw
http://jipam.vu.edu.au/


Some New Discrete Nonlinear
Delay Inequalities and

Application to Discrete Delay
Equations

Wing-Sum Cheung and
Shiojenn Tseng

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 29 of 36

J. Ineq. Pure and Appl. Math. 7(4) Art. 122, 2006

http://jipam.vu.edu.au

implies

x(n) ≤ Φ−1

{
Φ

[
c+

1

2

n−1∑
s=0

f(s)

]
+

1

2

n−1∑
s=0

h(s)
s−1∑
t=0

k(t)

}
, n ∈ Z[0,η] .

This is the discrete analogue of a result of Pachpatte in [14]. Furthermore,
if σ = id andw = id, this reduces to a result of Pachpatte in [18].

(ii) In caseΦ(∞) = ∞, (3.7) holds for alln ∈ Z0.

Corollary 3.4. Under Assumptions (A1) – (A4) withp ∈ F(Z0,R+), if x ∈
F(Za,R1) satisfies the nonlinear delay inequality

(3.8) xα(n) ≤ p(n) +
n−1∑
s=0

xα (σ(s))

{
f(s) + g(s) ln x (σ(s))

+ h(s)
s−1∑
t=0

k(t)w (lnx (σ(t)))

}
for all n ∈ Z0 with initial conditions (I1) and

(I6) ψ (σ(s)) ≤ 1

α
ln (p(s)) for all s ∈ Z0 with σ(s) ≤ 0 ,

whereα > 0 is any constant, then

(3.9) x(n) ≤ exp

{
Φ−1

[
Φ

((
exp

1

α

n−1∑
s=0

g(s)

)
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×

(
1

α
ln p(n) +

1

α

n−1∑
s=0

f(s)

))

+

(
exp

1

α

n−1∑
s=0

g(s)

)
· 1

α

n−1∑
s=0

h(s)
s−1∑
t=0

k(t)

]}

for all n ∈ Z[0,λ], whereλ ≥ 0 is chosen such that the RHS of (3.9) is well-
defined for alln ∈ Z[0,λ], andΦ is defined as in Theorem2.1.

Proof. Lettingy(n) = lnx(n), (3.8) becomes

(3.10) exp (αy(n)) ≤ p(n) +
n−1∑
s=0

exp (αy (σ(s)))

{
f(s) + g(s)y (σ(s))

+ h(s)
s−1∑
t=0

k(t)w (y (σ(t)))

}

for all n ∈ Z0. Let φ : R0 → R0 be defined byφ(r) = exp(αr), r ∈ R0. Then
φ satisfies Assumption (A5). Hence from (3.10), we have

φ (y(n)) ≤ p(n) +
n−1∑
s=0

φ′ (y (σ(s)))

×

{
f(s)

α
+
g(s)

α
y (σ(s)) +

h(s)

α

s−1∑
t=0

k(t)w (y (σ(t)))

}
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for all n ∈ Z0. Furthermore, it is easy to check that

ψ (σ(s)) ≤ 1

α
ln (p(s)) = φ−1 (p(s)) for all s ∈ Z0 with σ(s) ≤ 0 .

Thus Theorem2.2applies and we have

y(n) ≤ Φ−1

{
Φ

[(
exp

1

α

n−1∑
s=0

g(s)

)(
1

α
ln p(n) +

1

α

n−1∑
s=0

f(s)

)]

+ exp

(
1

α

n−1∑
s=0

g(s)

)
· 1

α

n−1∑
s=0

s−1∑
t=0

h(s)k(t)

}
for all n ∈ Z[0,λ], and from this the assertion follows.

Remark 6.

(i) In Corollary 3.4, if we setα = 2, p(n) ≡ c2, g(n) ≡ 0, then

x2(n) ≤ c2+
n−1∑
s=0

x2 (σ(s))

{
f(s) + h(s)

s−1∑
t=0

k(t)w (lnx (σ(t)))

}
, n ∈ Z0

implies

x(n) ≤ exp

{
Φ−1

[
Φ

(
1

2
ln p(n) +

1

2

n−1∑
s=0

f(s)

)
+

1

2

n−1∑
s=0

h(s)
s−1∑
t=0

k(t)

]}
n ∈ Z[0,λ] .

This is the discrete version of a result of Pachpatte in [14].

(ii) In caseΦ(∞) = ∞, (3.9) holds for alln ∈ Z0.
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4. Application
Consider the discrete delay equation

(4.1) xα(n) = F

(
n, x (σ(n)) ,

n−1∑
s=0

G (n, s, x (σ(s)))

)
, n ∈ Z0

with initial conditions (I1) and (I4), whereα ≥ 1 is a constant,σ, ψ satisfy
Assumptions (A3), (A4),x ∈ F(Za,R), F ∈ C(Z0×R2,R), andG ∈ C(Z2

0×
R,R). If F,G satisfy

|F (n, u, v)| ≤ p(n) +K|v| , n ∈ Z0, u, v ∈ R ,

|G(n, s, v)| ≤ [f(s) + g(s)|v|+ h(s)w (|v|)] |v|α−1 , n, s ∈ Z0, v ∈ R ,

for somep, f, g, h, w satisfying (A1) and (A2), and some constantK > 0, then
every solution of (4.1) satisfies

|x(n)|α =

∣∣∣∣∣F
(
n, x (σ(n)) ,

n−1∑
s=0

G (n, s, x (σ(s)))

)∣∣∣∣∣
≤ p(n) +K

∣∣∣∣∣
n−1∑
s=0

G (n, s, x (σ(s)))

∣∣∣∣∣
≤ p(n) +K

n−1∑
s=0

|G (n, s, x (σ(s)))|

≤ p(n) +K
n−1∑
s=0

[f(s) + g(s) |x (σ(s))|+ h(s)w (|x (σ(s))|)] |x (σ(s))|α−1

http://jipam.vu.edu.au/
mailto:
mailto:wscheung@hku.hk
mailto:
mailto:
mailto:tseng@math.tku.edu.tw
http://jipam.vu.edu.au/


Some New Discrete Nonlinear
Delay Inequalities and

Application to Discrete Delay
Equations

Wing-Sum Cheung and
Shiojenn Tseng

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 33 of 36

J. Ineq. Pure and Appl. Math. 7(4) Art. 122, 2006

http://jipam.vu.edu.au

for all n ∈ J(x) := the maximal existence lattice on whichx is defined. Ap-
plying Corollary3.1, this yields

|x(n)| ≤ Φ−1

{
Φ

[(
exp

K

α

n−1∑
s=0

g(α)

)(
p

1
α (n) +

K

α

n−1∑
s=0

f(s)

)]

+

(
exp

K

α

n−1∑
s=0

g(α)

)
K

α

n−1∑
t=0

h(t)

}

for all n ∈ J(x) ∩ Z[0,µ]. This gives the boundedness of solutions of (4.1).
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