journal of inequalities in pure and applied mathematics

http://jipam.vu.edu.au issn: 1443-5756



A SIMULTANEOUS SYSTEM OF FUNCTIONAL INEQUALITIES AND MAPPINGS WHICH ARE WEAKLY OF A CONSTANT SIGN

DOROTA KRASSOWSKA AND JANUSZ MATKOWSKI

FACULTY OF MATHEMATICS, COMPUTER SCIENCE AND ECONOMETRICS
UNIVERSITY OF ZIELONA GÓRA
PODGÓRNA 50, PL-65-246 ZIELONA GÓRA, POLAND
D.krassowska@wmie.uz.zgora.pl

Institute of Mathematics Silesian University Bankowa 14, PL-40-007 Katowice Poland

j.matkowski@wmie.uz.zgora.pl

Received 17 October, 2006; accepted 07 June, 2007 Communicated by Zs. Pales

ABSTRACT. It is shown that, under some algebraic conditions on fixed reals $\alpha_1, \alpha_2, \ldots, \alpha_{n+1}$ and vectors $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_{n+1} \in \mathbb{R}^n$, every continuous at a point function $f: \mathbb{R}^n \to \mathbb{R}$ satisfying the simultaneous system of inequalities

$$f(\mathbf{x} + \mathbf{a}_i) \le \alpha_i + f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^n, i = 1, 2, \dots, n+1,$$

has to be of the form $f(\mathbf{x}) = \mathbf{p} \cdot \mathbf{x} + f(\mathbf{0})$, $\mathbf{x} \in \mathbb{R}^n$, with uniquely determined $\mathbf{p} \in \mathbb{R}^n$. For mappings with values in a Banach space which are weakly of a constant sign, a counterpart of this result is given.

Key words and phrases: Linear functional inequalities, Kronecker's theorem, Mappings of weakly constant sign .

2000 Mathematics Subject Classification. Primary 39B72; Secondary 26D05.

1. Introduction

In this paper we consider the simultaneous system of functional inequalities

(1.1)
$$f(\mathbf{x} + \mathbf{a}_i) \le \alpha_i + f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^n, \quad i = 1, 2, \dots, n+1,$$

where $n \in \mathbb{N}$, $\alpha_1, \alpha_2, \dots, \alpha_{n+1} \in \mathbb{R}$, $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_{n+1} \in \mathbb{R}^n$ are fixed and $f : \mathbb{R}^n \to \mathbb{R}$ is an unknown function.

In Section 3, assuming Kronecker's type conditions on the vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_{n+1}$ and a inequality involving some determinants depending on these vectors and scalars $\alpha_1, \alpha_2, \dots, \alpha_{n+1}$, we show (Theorem 3.1) that for every continuous at least at one point function f satisfying (1.1) there exists a unique vector $\mathbf{p} \in \mathbb{R}^n$ such that

$$f(\mathbf{x}) = \mathbf{p} \cdot \mathbf{x} + f(\mathbf{0}), \quad \mathbf{x} \in \mathbb{R}^n.$$

This result seems to be a little surprising in the context of an obvious fact that, in general, the accompanying simultaneous system of functional equations has a lot of very regular but nonlinear solutions, even "depending on an arbitrary function" (cf. M. Kuczma [4], [2] or [3], where the full construction of the solution in a special one dimensional case is given). Theorem 3.1 generalizes a suitable result of [2], where the one dimensional case

$$f(x+a) \le \alpha + f(x), \qquad f(x+b) \le \beta + f(x), \qquad x \in \mathbb{R},$$

is considered. Let us mention that in the case when $\alpha = \beta = 0$, Montel [5] considered the accompanying simultaneous system of equations.

In Section 4 we define a mapping to be weakly of a constant sign. Using this notion and a total system of linear functionals, we present a counterpart of Theorem 3.1 for functions with values in a Banach space.

2. Kronecker's Theorem and a Lemma

The symbols $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are reserved, respectively, for the set of natural, integer, rational and real numbers.

We begin this section by recalling the following:

Theorem 2.1 (Kronecker (cf. [1, p. 382])). If the reals $v_1, v_2, \ldots, v_n, 1$ are linearly independent over the field \mathbb{Q} , the numbers $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{R}$ are arbitrary, and N and ϵ are positive, then there are the integers p_1, p_2, \ldots, p_n , and m > N, such that $|mv_i - p_i - \alpha_i| < \epsilon$ for each $i = 1, 2, \ldots, n$.

As an immediate consequence of this theorem we obtain the following

Corollary 2.2. Let $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ be the standard base of the real linear space \mathbb{R}^n . If reals $v_1, v_2, \dots, v_n, 1$ are linearly independent over the field \mathbb{Q} , and $\mathbf{v} := (v_1, v_2, \dots, v_n)$, then the set

$$\{m\mathbf{v} + p_1\mathbf{e}_1 + p_2\mathbf{e}_2 + \dots + p_n\mathbf{e}_n : m \in \mathbb{N}, p_1, p_2, \dots, p_n \in \mathbb{Z}\}\$$

is dense in \mathbb{R}^n .

In sequel we need a more special result which guarantees that the set of all linear combinations of the elements of the set $B = \{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_{n+1}\}$ with natural coefficients is dense in \mathbb{R}^n .

Lemma 2.3. Let $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ be an arbitrary base of linear space \mathbb{R}^n over \mathbb{R} . Suppose that $v_1, v_2, \dots, v_n \in \mathbb{R}$ are negative and the system of numbers $v_1, v_2, \dots, v_n, 1$ is linearly independent over the field \mathbb{Q} . If

$$\mathbf{a}_{n+1} = v_1 \mathbf{a}_1 + v_2 \mathbf{a}_2 + \dots + v_n \mathbf{a}_n,$$

then the set

$$A := \left\{ \sum_{i=1}^{n+1} m^{(i)} \mathbf{a}_i : m^{(i)} \in \mathbb{N}, i = 1, 2, \dots, n+1 \right\}$$

is dense in \mathbb{R}^n .

Proof. Let N>0 be fixed. Take $\mathbf{x}\in\mathbb{R}^n$. Then there exists a unique system of numbers $x_1,x_2,\ldots,x_n\in\mathbb{R}$ such that

$$\mathbf{x} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \dots + x_n \mathbf{a}_n.$$

By Kronecker's theorem, for every $k \in \mathbb{N}$ there exist $m_k > N$ and $p_{ik} \in \mathbb{Z}$ such that

$$|m_k v_i + p_{ik} - x_i| = |m_k v_i - (-p_{ik}) - x_i| < \frac{1}{k}, \quad i = 1, 2, \dots, n,$$

whence

$$\lim_{k \to \infty} (m_k v_i + p_{ik}) = x_i, \quad i = 1, 2, \dots, n.$$

Since $m_k \in \mathbb{N}$, $v_i < 0$ for i = 1, 2, ..., n, it follows that $p_{ik} \in \mathbb{N}$ for k large enough (in the opposite case we would have $\lim_{k \to \infty} (m_k v_i + p_{ik}) = -\infty$). It follows that, for k large enough, setting $m_k^{(n+1)} := m_k$ and $m_k^{(i)} := p_{ik}$, we get

$$m_k^{(i)} \in \mathbb{N}, \quad i = 1, 2, \dots, n+1.$$

Put

$$\mathbf{t}_k := \sum_{i=1}^n \left(m_k^{(n+1)} v_i + m_k^{(i)} \right) \mathbf{a}_i, \quad k \in \mathbb{N}.$$

By the definition of a_{n+1} we hence get

$$\mathbf{t}_k = \sum_{i=1}^{n+1} m_k^{(i)} \mathbf{a}_i, \quad k \in \mathbb{N},$$

whence $\mathbf{t}_k \in A$ for k sufficiently large. Moreover

$$\lim_{k \to \infty} \mathbf{t}_k = \lim_{k \to \infty} \sum_{i=1}^n \left(m_k^{(n+1)} v_i + m_k^{(i)} \right) \mathbf{a}_i$$
$$= \sum_{i=1}^n \lim_{k \to \infty} \left(m_k^{(n+1)} v_i + m_k^{(i)} \right) \mathbf{a}_i$$
$$= \sum_{i=1}^n x_i \mathbf{a}_i = \mathbf{x}.$$

This completes the proof of the density of A in \mathbb{R}^n .

3. MAIN RESULT

Theorem 3.1. Let $n \in \mathbb{N}$, $\mathbf{a}_i = (a_{i,1}, a_{i,2}, \dots, a_{i,n}) \in \mathbb{R}^n$, $i = 1, 2, \dots, n$, negative reals v_1, v_2, \dots, v_n and $\alpha_1, \alpha_2, \dots, \alpha_{n+1} \in \mathbb{R}$ be fixed and such that:

- (i) $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ form a base of the linear space \mathbb{R}^n over \mathbb{R} ;
- (ii) $v_1, v_2, \ldots, v_n, 1$ are linearly independent over \mathbb{Q} ,
- (iii) $\mathbf{a}_{n+1} = v_1 \mathbf{a}_1 + v_2 \mathbf{a}_2 + \cdots + v_n \mathbf{a}_n,$
- (iv)

$$(-1)^{n} \left(\operatorname{sgn} \mathbf{W}^{(n)} \right) \begin{vmatrix} \alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} & \alpha_{n+1} \\ a_{1,1} & a_{2,1} & \cdots & a_{n,1} & a_{n+1,1} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{1,n} & a_{2,n} & \cdots & a_{n,n} & a_{n+1,n} \end{vmatrix} \leq 0,$$

where

$$\mathbf{W}^{(n)} := \begin{vmatrix} a_{1,1} & a_{2,1} & \cdots & a_{n,1} \\ a_{1,2} & a_{2,2} & \cdots & a_{n,2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1,n} & a_{2,n} & \cdots & a_{n,n} \end{vmatrix}.$$

If a continuous at least at one point function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ satisfies the simultaneous system of functional inequalities

(3.1)
$$f(\mathbf{x} + \mathbf{a}_i) \le \alpha_i + f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^n, \ i = 1, 2, \dots, n+1,$$

then there exists a unique $\mathbf{p} \in \mathbb{R}^n$ such that

$$f(\mathbf{x}) = \mathbf{p} \cdot \mathbf{x} + f(\mathbf{0}), \quad \mathbf{x} \in \mathbb{R}^n.$$

Moreover,

$$\mathbf{p} = \frac{1}{\mathbf{W}^{(n)}} \left[p_1^{(n)}, p_2^{(n)}, \dots, p_n^{(n)} \right],$$

where

$$p_i^{(n)} := \begin{vmatrix} a_{1,1} & a_{2,1} & \cdots & a_{n,1} \\ \cdots & \cdots & \cdots & \cdots \\ a_{1,i-1} & a_{2,i-1} & \cdots & a_{n,i-1} \\ \alpha_1 & \alpha_2 & \cdots & \alpha_n \\ a_{1,i+1} & a_{2,i+1} & \cdots & a_{n,i+1} \\ \cdots & \cdots & \cdots & \cdots \\ a_{1,n} & a_{2,n} & \cdots & a_{n,n} \end{vmatrix}, \qquad i = 1, 2, \dots, n.$$

Proof. Suppose that the function $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ satisfies system (3.1). Using an easy induction argument, one can show that f satisfies the inequality

(3.2)
$$f\left(\sum_{i=1}^{n+1} m^{(i)} \mathbf{a}_i + \mathbf{x}\right) \le \sum_{i=1}^{n+1} m^{(i)} \alpha_i + f(\mathbf{x}),$$

for all $m^{(i)} \in \mathbb{N}$, i = 1, 2, ..., n + 1 and all $\mathbf{x} \in \mathbb{R}^n$. By Lemma 2.3, the set

$$A := \left\{ \sum_{i=1}^{n+1} m^{(i)} \mathbf{a}_i : m^{(i)} \in \mathbb{N}, \quad i = 1, 2, \dots, n+1 \right\}$$

is dense in \mathbb{R}^n . Thus there exist the sequences of positive integers $(m_k^{(i)})_{k\in\mathbb{N}}$ for $i=1,2,\ldots,n+1$ such that

$$\lim_{k \to \infty} \sum_{i=1}^{n+1} m_k^{(i)} \mathbf{a}_i = \lim_{k \to \infty} \left(\sum_{i=1}^{n+1} m_k^{(i)} a_{i,1}, \sum_{i=1}^{n+1} m_k^{(i)} a_{i,2}, \dots, \sum_{i=1}^{n+1} m_k^{(i)} a_{i,n} \right)$$

$$= (0, 0, \dots, 0),$$

and, obviously,

$$\lim_{k \to \infty} m_k^{(i)} = \infty, \qquad i = 1, 2, \dots, n+1.$$

It follows that, for each $i=1,2,\ldots,n$, the limit $\lim_{k\to\infty}\frac{m_k^{(i)}}{m_k^{(n+1)}}$ exists, and

$$\sum_{i=1}^{n+1} \left(\lim_{k \to \infty} \frac{m_k^{(i)}}{m_k^{(n+1)}} a_{i,j} \right) = \lim_{k \to \infty} \frac{\sum_{i=1}^{n+1} m_k^{(i)} a_{i,j}}{m_k^{(n+1)}} = 0, \qquad j = 1, 2, \dots, n.$$

Consequently,

(3.3)
$$\lim_{k \to \infty} \frac{m_k^{(i)}}{m_k^{(n+1)}} = \frac{\mathbf{W}_i^{(n)}}{\mathbf{W}^{(n)}}, \qquad i = 1, 2, \dots, n,$$

where

$$\mathbf{W}_{i}^{(n)} := \begin{vmatrix} a_{1,1} & \cdots & a_{i-1,1} & -a_{n+1,1} & a_{i+1,1} & \cdots & a_{n,1} \\ a_{1,2} & \cdots & a_{i-1,2} & -a_{n+1,2} & a_{i+1,2} & \cdots & a_{n,2} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{1,n} & \cdots & a_{i-1,n} & -a_{n+1,n} & a_{i+1,n} & \cdots & a_{n,n} \end{vmatrix}, \qquad i = 1, 2, \dots, n.$$

Let x_0 be a point of the continuity of f. From inequality (3.2), we get

$$\frac{f\left(\sum_{i=1}^{n+1} m_k^{(i)} \mathbf{a}_i + \mathbf{x}_0\right)}{m_k^{(n+1)}} \le \sum_{i=1}^{n+1} \frac{m_k^{(i)}}{m_k^{(n+1)}} \alpha_i + \frac{f(\mathbf{x}_0)}{m_k^{(n+1)}}.$$

Letting here $k \to \infty$ and applying (3.3), we obtain

$$(3.4) 0 \leq \sum_{i=1}^{n} \frac{\mathbf{W}_{i}^{(n)}}{\mathbf{W}^{(n)}} \alpha_{i} + \alpha_{n+1}.$$

Setting

$$\overline{\mathbf{W}_{i}^{(n)}} := - \begin{vmatrix} a_{1,1} & \cdots & a_{i-1,1} & a_{i+1,1} & \cdots & a_{n,1} & a_{n+1,1} \\ a_{1,2} & \cdots & a_{i-1,2} & a_{i+1,2} & \cdots & a_{n,2} & a_{n+1,2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{1,n} & \cdots & a_{i-1,n} & a_{i+1,n} & \cdots & a_{n,n} & a_{n+1,n} \end{vmatrix}, \qquad i = 1, 2, \dots, n,$$

we can write inequality (3.4) in the form

$$0 \le \operatorname{sgn} \mathbf{W}^{(n)} \left(\sum_{i=1}^{n} (-1)^{n-i+1} \overline{\mathbf{W}_{i}^{(n)}} \alpha_{i} + \mathbf{W}^{(n)} \alpha_{n+1} \right),$$

whence, by the Laplace expansion of a determinant,

$$0 \le (-1)^n \operatorname{sgn} \mathbf{W}^{(n)} \begin{vmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n & \alpha_{n+1} \\ a_{1,1} & a_{2,1} & \cdots & a_{n,1} & a_{n+1,1} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{1,n} & a_{2,n} & \cdots & a_{n,n} & a_{n+1,n} \end{vmatrix}.$$

Hence, taking into account condition (iv), we infer that

$$\begin{vmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n & \alpha_{n+1} \\ a_{1,1} & a_{2,1} & \cdots & a_{n,1} & a_{n+1,1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{1,n} & a_{2,n} & \cdots & a_{n,n} & a_{n+1,n} \end{vmatrix} = 0.$$

Now, by Laplace's expansion theorem,

$$\alpha_{n+1} = (-1)^{n+1} \frac{\sum_{i=1}^{n} (-1)^{1-i} \overline{\mathbf{W}_{i}^{(n)}} \alpha_{i}}{\mathbf{W}^{(n)}},$$

whence by (3.2),

$$f\left(\sum_{i=1}^{n+1} m^{(i)} \mathbf{a}_{i} + \mathbf{x}\right)$$

$$\leq \sum_{i=1}^{n} m^{(i)} \alpha_{i} + m^{(n+1)} (-1)^{n+1} \frac{\sum_{i=1}^{n} (-1)^{1-i} \overline{\mathbf{W}_{i}^{(n)}} \alpha_{i}}{\mathbf{W}^{(n)}} + f(\mathbf{x})$$

$$= \frac{1}{\mathbf{W}^{(n)}} \left[\sum_{i=1}^{n} m^{(i)} \mathbf{W}^{(n)} \alpha_{i} + m^{(n+1)} \sum_{i=1}^{n} (-1)^{n+2-i} \overline{\mathbf{W}_{i}^{(n)}} \alpha_{i}\right] + f(\mathbf{x}),$$

for all $m^{(i)} \in \mathbb{N}$, and $x \in \mathbb{R}^n$.

Applying Laplace's theorem for the *i*th columne of $\mathbf{W}^{(n)}$ and for the last columne of $\overline{\mathbf{W}_i^{(n)}}$, we have

$$\begin{split} \sum_{i=1}^{n} m^{(i)} \mathbf{W}^{(n)} \alpha_{i} + m^{(n+1)} \sum_{i=1}^{n} (-1)^{n+2-i} \overline{\mathbf{W}_{i}^{(n)}} \alpha_{i} \\ &= \sum_{i=1}^{n} m^{(i)} \alpha_{i} \sum_{j=1}^{n} (-1)^{i+j} a_{i,j} \mathbf{W}_{ij}^{(n)} \\ &+ m^{(n+1)} \left(\sum_{i=1}^{n} (-1)^{n-i} a_{i,j} \alpha_{i} \left(\sum_{j=1}^{n} (-1)^{n+j} a_{n+1,j} \overline{\mathbf{W}_{ij}^{(n)}} \right) \right), \end{split}$$

where $\underline{\mathbf{W}_{ij}^{(n)}}$ is obtained from $\underline{\mathbf{W}_{i}^{(n)}}$ by deleting the jth row and ith column, and $\overline{\underline{\mathbf{W}_{ij}^{(n)}}}$ is obtained from $\overline{\underline{\mathbf{W}_{i}^{(n)}}}$ by deleting the jth row and the last column. Since

$$\mathbf{W}_{ij}^{(n)} = \overline{\mathbf{W}_{ij}^{(n)}}, \qquad i, j = 1, 2, \dots, n,$$

applying Fubini's theorem for sums, we have

$$\sum_{i=1}^{n} m^{(i)} \mathbf{W}^{(n)} \alpha_{i} + m^{(n+1)} \sum_{i=1}^{n} (-1)^{n+2-i} \overline{\mathbf{W}_{i}^{(n)}} \alpha_{i}$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n} m^{(k)} a_{k,j} \left((-1)^{k+j} \mathbf{W}_{kj}^{(n)} \alpha_{k} \right) + m^{(n+1)} a_{n+1,j} \sum_{i=1}^{n} (-1)^{j-i} \mathbf{W}_{ij}^{(n)} \alpha_{i}.$$

Adding and subtracting the term $\sum_{i=1}^{n} (-1)^{j-i} \mathbf{W}_{ij}^{(n)} \alpha_i$ in the sum over k gives

$$\sum_{i=1}^{n} m^{(i)} \mathbf{W}^{(n)} \alpha_{i} + m^{(n+1)} \sum_{i=1}^{n} (-1)^{n+2-i} \overline{\mathbf{W}_{i}^{(n)}} \alpha_{i}$$

$$= \sum_{j=1}^{n} \left(\sum_{k=1}^{n} m^{(k)} a_{k,j} + m^{(n+1)} a_{n+1,j} \right) \left(\sum_{i=1}^{n} (-1)^{j-i} \mathbf{W}_{ij}^{(n)} \alpha_{i} \right)$$

$$+ \sum_{j=1}^{n} \left(\sum_{k=1}^{n} m^{(k)} a_{k,j} \left(\sum_{i=1}^{n} (-1)^{j-i+1} \mathbf{W}_{ij}^{(n)} \alpha_{i} + (-1)^{k+j} \mathbf{W}_{kj}^{(n)} \alpha_{k} \right) \right).$$

Let us note that

$$\sum_{j=1}^{n} \left(\sum_{k=1}^{n} m^{(k)} a_{k,j} \left(\sum_{i=1}^{n} (-1)^{j-i+1} \mathbf{W}_{ij}^{(n)} \alpha_i + (-1)^{k+j} \mathbf{W}_{kj}^{(n)} \alpha_k \right) \right) = 0.$$

Indeed, we have

$$\sum_{j=1}^{n} \left(\sum_{k=1}^{n} m^{(k)} a_{k,j} \left(\sum_{i=1}^{n} (-1)^{j-i+1} \mathbf{W}_{ij}^{(n)} \alpha_i + (-1)^{k+j} \mathbf{W}_{kj}^{(n)} \alpha_k \right) \right)$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{n} m^{(k)} a_{k,j} \left(\sum_{i \in \{1,2,\dots,n\}-k} (-1)^{j-i+1} \mathbf{W}_{ij}^{(n)} \alpha_i \right)$$

$$= \sum_{k=1}^{n} m^{(k)} \left(\sum_{i \in \{1,2,\dots,n\}-k} \alpha_i \left(\sum_{j=1}^{n} (-1)^{j-i+1} a_{k,j} \mathbf{W}_{ij}^{(n)} \right) \right)$$

and

$$\sum_{i=1}^{n} (-1)^{j-i+1} a_{k,j} \mathbf{W}_{ij}^{(n)}$$

is a determinant with two equal columns. Thus we have shown that f satisfies the inequality

$$f\left(\sum_{i=1}^{n+1} m^{(i)} \mathbf{a}_i + \mathbf{x}\right) \le \sum_{i=1}^n \left(\left(\frac{1}{\mathbf{W}^n} \sum_{i=1}^n (-1)^{j-i} \mathbf{W}_{ij}^{(n)} \alpha_i \right) \left(\sum_{i=1}^{n+1} m^{(i)} a_{ij}\right) \right) + f(\mathbf{x}),$$

for all $m^{(i)} \in \mathbb{N}$, and $x \in \mathbb{R}^n$, which can be written in the form

(3.5)
$$f(\mathbf{t} + \mathbf{x}) \le \mathbf{p} \cdot \mathbf{t} + f(\mathbf{x}), \qquad \mathbf{t} \in A, \mathbf{x} \in \mathbb{R}^n.$$

Now take an arbitrary $\mathbf{x} \in \mathbb{R}^n$. By the density of A there is a sequence (\mathbf{t}_n) such that

$$\mathbf{t}_n \in A \ (n \in \mathbf{N}), \qquad \lim_{n \to \infty} \mathbf{t}_n = \mathbf{x}_0 - \mathbf{x}.$$

From (3.5) we have

$$f(\mathbf{t}_n + \mathbf{x}) \le \mathbf{p} \cdot \mathbf{t}_n + f(\mathbf{x}), \quad n \in \mathbf{N}.$$

Letting here $n \to \infty$, and making use of the continuity of f at \mathbf{x}_0 , we obtain

$$f(\mathbf{x}_0) \le \mathbf{p} \cdot (\mathbf{x}_0 - \mathbf{x}) + f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^n.$$

To prove the converse inequality, note that replacing x by x - t in (3.5) we get

$$f(\mathbf{x}) \le \mathbf{p} \cdot \mathbf{t} + f(\mathbf{x} - \mathbf{t}), \qquad \mathbf{t} \in A, \mathbf{x} \in \mathbb{R}^n.$$

Taking a sequence (\mathbf{t}_n) such that

$$\mathbf{t}_n \in A \ (n \in \mathbf{N}), \qquad \lim_{n \to \infty} \mathbf{t}_n = \mathbf{x} - \mathbf{x}_0,$$

(which, by the density of A, exists) we hence get

$$f(\mathbf{x}) \le \mathbf{p} \cdot \mathbf{t}_n + f(\mathbf{x} - \mathbf{t}_n), \qquad n \in \mathbf{N}.$$

Letting here $n \to \infty$, and again making use of the continuity of f at \mathbf{x}_0 , we obtain the inequality

$$f(\mathbf{x}) \le \mathbf{p} \cdot (\mathbf{x} - \mathbf{x}_0) + f(\mathbf{x}_0), \quad \mathbf{x} \in \mathbb{R}^n.$$

Thus

$$f(\mathbf{x}) = \mathbf{p} \cdot \mathbf{x} + (f(\mathbf{x}_0) - \mathbf{p} \cdot \mathbf{x}_0), \quad \mathbf{x} \in \mathbb{R}^n.$$

Since $f(\mathbf{0}) = f(\mathbf{x}_0) - \mathbf{p} \cdot \mathbf{x}_0$, the proof is completed.

4. APPLICATION FOR MAPPINGS WHICH ARE WEAKLY OF A CONSTANT SIGN

We start this section with the following.

Definition 4.1. Let X be an arbitrary nonempty set, Y - an arbitrary real linear topological space, Y^* - the conjugate space of Y, and $T \subset Y^*$.

- (i) We say that a mapping $G: X \to Y$ is T-weakly of a constant sign if for each functional $\phi \in T$ either $\phi \circ G$ is nonpositive or $\phi \circ G$ is nonnegative.
- (ii) The mappings $G_1: X \to Y$ and $G_2: X \to Y$ are said to be T-weakly of the same sign if $(\phi \circ G_1) \cdot (\phi \circ G_2) \geq 0$ for every functional $\phi \in T$.

Now applying Theorem 3.1 we prove:

Theorem 4.1. Let Y be a real Banach space and $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\} \subset \mathbb{R}^n$, $\mathbf{a}_i = (a_{i,1}, a_{i,2}, \dots, a_{i,n})$, $i = 1, 2, \dots, n$ be a base of the real linear space \mathbb{R}^n . Suppose that reals v_1, v_2, \dots, v_n are negative and v_1, v_2, \dots, v_n , 1 are linearly independent over the field \mathbb{Q} . Let $\mathbf{a}_{n+1} = v_1 \mathbf{a}_1 + v_2 \mathbf{a}_2 + \dots + v_n \mathbf{a}_n$.

If a mapping $F: \mathbb{R}^n \to Y$ is continuous at least at one point and there exist a total system $T \subset Y^*$ and the vectors $\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_{n+1} \in Y$ such that

(i) the mappings

(*)
$$\mathbb{R}^n \ni \mathbf{x} \to F(\mathbf{x} + \mathbf{a}_i) - F(\mathbf{x}) - \mathbf{y}_i, \qquad i \in \{1, 2, \dots, n+1\},$$

are T-weakly of a constant and the same sign;

(ii) for every $\phi \in T$,

$$(-1)^{n} \left(\operatorname{sgn} \mathbf{W}^{(n)} \right) \begin{vmatrix} \phi(\mathbf{y}_{1}) & \phi(\mathbf{y}_{2}) & \cdots & \phi(\mathbf{y}_{n}) & \phi(\mathbf{y}_{n+1}) \\ a_{1,1} & a_{2,1} & \cdots & a_{n,1} & a_{n+1,1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{1,n} & a_{2,n} & \cdots & a_{n,n} & a_{n+1,n} \end{vmatrix} \leq 0,$$

then there exists a unique linear continuous mapping $L: \mathbb{R}^n \to Y$ such that

(4.1)
$$F(\mathbf{x}) = L(\mathbf{x}) + F(\mathbf{0}), \quad \mathbf{x} \in \mathbb{R}^n.$$

Proof. Assume that $F: \mathbb{R}^n \to Y$ satisfies assumptions (i) and (ii). By Definition 4.1, we have either, for all $\phi \in T$ and $i = 1, 2, \dots, n+1$,

$$\phi(F(\mathbf{x} + \mathbf{a}_i) - F(\mathbf{x}) - \mathbf{y}_i) < 0, \quad \mathbf{x} \in \mathbb{R}^n,$$

or, for all $\phi \in T$ and $i = 1, 2, \dots, n + 1$,

$$\phi(F(\mathbf{x} + \mathbf{a}_i) - F(\mathbf{x}) - \mathbf{y}_i) \ge 0, \quad \mathbf{x} \in \mathbb{R}^n.$$

Without any loss of generality we may confine the consideration to the first case. From the linearity of ϕ we obtain the simultaneous system of inequalities

$$\phi(F(\mathbf{x} + \mathbf{a}_i)) < \phi(F(\mathbf{x})) + \phi(\mathbf{y}_i), \quad \mathbf{x} \in \mathbb{R}^n; \quad \mathbf{y}_i \in Y, i = 1, 2, \dots, n+1; \quad \phi \in T.$$

Let us fix $\phi \in T$. Setting $f := \phi \circ F$ and $\alpha_i := \phi(\mathbf{y}_i)$, we hence get

$$f(\mathbf{x} + \mathbf{a}_i) \le \alpha_i + f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^n, \quad i = 1, 2, \dots, n+1,$$

i.e. f satisfies system (3.1). Since all the required assumptions of Theorem 3.1 are satisfied, there exists a vector \mathbf{p} , such that

$$f(\mathbf{x}) = \mathbf{p} \cdot \mathbf{x} + f(\mathbf{0}), \quad \mathbf{x} \in \mathbb{R}^n.$$

Hence, by the definition of f,

$$\phi(F(\mathbf{x}) - F(\mathbf{0})) = \mathbf{p} \cdot \mathbf{x}, \quad \mathbf{x} \in \mathbb{R}^n.$$

It follows that for every $\phi \in T$, there exists $\mathbf{p} := \mathbf{p}_{\phi}$, such that

$$\phi(F(\mathbf{x}) - F(\mathbf{0})) = \mathbf{p}_{\phi} \cdot \mathbf{x}, \quad \mathbf{x} \in \mathbb{R}^n.$$

Setting L := F - F(0), we hence get

$$\phi(L(\mathbf{x} + \mathbf{y})) = \phi(F(\mathbf{x} + \mathbf{y}) - F(\mathbf{0}))$$

$$= \mathbf{p}_{\phi} \cdot (\mathbf{x} + \mathbf{y})$$

$$= \mathbf{p}_{\phi} \cdot \mathbf{x} + \mathbf{p}_{\phi} \cdot \mathbf{y}$$

$$= \phi(F(\mathbf{x}) - F(\mathbf{0})) + \phi(F(\mathbf{y}) - F(\mathbf{0}))$$

$$= \phi(L(\mathbf{x})) + \phi(L(\mathbf{y})),$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, whence

$$\phi(L(\mathbf{x} + \mathbf{y}) - L(\mathbf{x}) - L(\mathbf{y})) = 0, \quad \mathbf{x}, \mathbf{y} \in \mathbb{R}^n,$$

for every functional $\phi \in T$. Since T is total set of functionals (cf. [6]),

$$L(\mathbf{x} + \mathbf{y}) - L(\mathbf{x}) - L(\mathbf{y}) = 0, \quad \mathbf{x}, \mathbf{y} \in \mathbb{R}^n,$$

that is, L is an additive mapping. Now the continuity of F at least at one point implies that $L := F - F(\mathbf{0})$ is continuous and, consequently, a linear map. The proof is completed.

REFERENCES

- [1] G.H. HARDY AND E.M. WRIGHT, An Introduction to the Theory of Numbers, Oxford, 1960.
- [2] D. KRASSOWSKA AND J. MATKOWSKI, A pair of functional inequalities and a characterization of L^p -norm, Ann. Polon. Math., 85 (2005), 1–11.
- [3] D. KRASSOWSKA AND J. MATKOWSKI, A pair of functional inequalities of iterative type related to a Cauchy functional equation, in *Functional Equations, Inequalities and Applications*, Kluwer Academic Publishers, Dordrecht-Boston-London, 2003, 73–89.
- [4] M. KUCZMA, An Introduction to the Theory of Functional Equations and Inequalities, Cauchy's Equation and Jensen's Inequality, PWN Polish Sci. Publ. and Silesian University, Warszawa-Kraków-Katowice, 1985.
- [5] P. MONTEL, Sur les propriétés périodiques des fonctions, C. R. Acad. Sci. Paris, **251** (1960), 2111–2112.
- [6] A. WILANSKY, *Functional Analysis*, Blaisdel Publishing Company, New York-Toronto-London, 1964.