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ABSTRACT. In terms of Wright generalized hypergeometric function we define a class of ana-
Iytic functions. The class generalize well known classek-sfarlike functions and-uniformly
convex functions. Necessary and sufficient coefficient bounds are given for functions in this
class. Further distortion bounds, extreme points and results on partial sums are investigated.
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1. INTRODUCTION

Let A denote the class of functions of the form
(1.1) f(z)= z+2anz”
n=2

which are analytic in the open unit dist= {z : |z| < 1}. We denote by5 the subclass oft
consisting of functiong’ which are univalent ird/.

Also we denote by, the class of analytic functions with varying arguments (introduced by
Silverman [16]) consisting of functionsof the form [1.1) for which there exists a real number
1 such that

(1.2) 0, + (n —1)n = m(mod 27), where arg(a,) =246, forall n>2.
Letk,~ be real parameters with> 0, —1 <~ < 1.
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Definition 1.1. A function f € A is said to be in the cladsC'V (k, ) of k-uniformly convex
functions of ordery if it satisfies the condition
2f"(2)

2f"(2) }
Re{1+ 55 —a} = 1

In particular, the classdsCV := UCV (1,0), k — UCV := UCV (k,0) were introduced
by Goodmanl(]6] (see alsb [10,/13]), and Kanas and Wisniowska [8] (see also [7]), respectively,
where their geometric definition and connections with the conic domains were considered.

Related to the cladsC'V (k, ) by means of the well-known Alexander equivalence between
the usual classes of convex and starlike functions, we define the £Ia@s ) of k-starlike
functions of ordery.

‘, zeU.

Definition 1.2. A function f € A is said to be in the clasSP(k, ) of k-starlike functions of
order~ if it satisfies the condition
zf (2)

2f (2) }
Re — >k
{ E 72)
The classesS, := SP(1,0), k — ST := SP(k,0) were investigated by Renning [13,/14],

Kanas and Wisniowska|9], Kanas and Srivastava [7].
Note that the classes

ST := SP(0,0), CV :=UCV(0,0)

are the well known classes of starlike and convex functions, respectively.
For functionsf € A given by [1.1) and € A given by

’

ze U

-1,

z) = z—l—anz", zeU,
we define the Hadamard product (or convolutionf@&ndg by
(f x9)(2) :Z+Zanbn2", z e U.
n=2

For positive real parametess, A4, ..., a,, A,andBy, By, ..., B4, B, (p,g € N =1,2,3,...)
such that

q p
(1.3) 1+ B,—= Y A,>0,
n=1 n=1
the Wright generalized hypergeometric functionl[24]

p\DQ[(alvAl)v"'7(ap7Ap>;(ﬁlaBl)v"'v(ﬁquQ);z] = p‘I]tI[(Oénv )1p7<ﬁn7 )1q; ]
is defined by

00 q -1 n
\I/ [(at7At)1p7</6t7Bt 1,q5 % Z {HF (67 —i—nAt} {Hr(ﬁt —i—nBt} %, A U.

n=0 t=0
fp<qg+1 A, =1(n=1,. ndB, =1(n=1,...,q), we have the relationship:
(14) qu]q[(arw )1p7<6n7 )lqa ] = qu(ala"'aap; 617"'7611;2)7 S Ua
where,F, (a1, ..., ap; b1, ..., By 2) is the generalized hypergeometric function and

(15) 0= (H F<at>> (H r(@)) .

J. Inequal. Pure and Appl. Mathl0(3) (2009), Art. 66, 9 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

A CLASS OF STARLIKE FUNCTIONS 3

In [3] Dziok and Raina defined the linear operator by using Wright generalized hypergeo-
metric function. Let

pébq[(OénAt)l,p; (6t;Bt)1,q; Z} =Qz pq’q[(at,At)l,p(ﬂt; Bt)l,q§ Z], zeU,
and
W = W[(an7 An)l,p; (/3717 Bn)l,q} tA— A
be a linear operator defined by
Wf(Z) =z p¢q[(at7 At)l,p; (61‘/: Bt)l,q; Z] * f(z)a S U

We observe that, fof of the form [1.1), we have

(1.6) WF(z) :z—l—ZUn a,z", ze€U,
n=2

where

QT (a; +Ai(n—1))---T'(ap + Ap(n — 1))
(n = DIC(BL+ Bi(n — 1)) -+ T(Bg + By(n — 1)) *

Op =

and( is given by [1.5).

In view of the relationship (1]4), the linear operafor [1.6) includes the Dziok-Srivastava op-
erator (se€ [5]) and other operators. For more details on these operators, see [1], [2]] [4], [11],
[12], [15] and [19].

Motivated by the earlier works of Kanas and Srivastava [7], Srivastava and Mishra [20] and
Vijaya and Murugusundaramoorthy [23], we define a new class of functions based on general-
ized hypergeometric functions.

Corresponding to the family P(v, k), we define the clasé’?(k, ) for a functionf of the
form (1.1) such that

an SR B0

We also let
VWP (k,7) =V N WE(k, 7).

The classiV?(k,~) generalizes the classes feluniformly convex functions and-starlike
functions. Ifp =2, ¢ =1, A, = Ay = B, = oy = 31 = 1, then fora, = 2 we have

W2(k,0) =k —UCYV,
and foras, = 1 we have
W?2(k,0) =k — ST.

In this paper we obtain a sufficient coefficient condition for functigrgven by [1.1) to be
in the class¥?(k, ) and we show that it is also a necessary condition for functions to belong
to this class. Distortion results and extreme points for functionglii?(k,~) are obtained.
Finally, we investigate partial sums for the clasd’?(k, ).
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2. MAIN RESULTS

First we obtain a sufficient condition for functions from the clas$ belong to the class

WE(k, 7).
Theorem 2.1.Let f be given by[(1]1). If

o0

(2.1) > (kn+n—k—)oalan| <17,

n=2
thenf € WP(k, ).

Proof. By definition of the clas$V?([a1], v), it suffices to show that

zWf(z)) 2(Wf(z))
W—li—ﬁe{w”}“‘% 2ev

Simple calculations give

-
SWFE) 1’
Wi(2)
S (= Dola 2"
L=y ol

Now the last expression is bounded above by- ) if (2.1) holds.

k

k

< (k+1)

<(k+1)

O

In the next theorem, we show that the conditjon|(2.1) is also necessary for functions from the

classVWP(k, 7).

Theorem 2.2.Let f be given by[(1]1) and satisfy (1.2).Then the funcfiobelongs to the class

VWY (k,~) if and only if {2.1) holds.

Proof. In view of Theorenj 2]1 we need only to show tifat VIWP(k,~) satisfies the coeffi-

cient inequality[(2[1). Iff € VW (k, v) then by definition, we have

Z+Z 2nanan 1 SR Z"‘Z Qnanan — 5
Z+En 5 Onlp 2" 24> 0 Oy 2™

or

o [ nza(n = Dowanz" | {( 7) + Xaa(n = )Unanz”_l}'

L+ > onanz™t |~ L+ >, opan2™ !
In view of (1.2), we set = 7" in the above inequality to obtain

Zzozz k(n — 1)0n|an|7“"71 < (1—7)— ZZO=2(” - 7)0n|an|rn71

L=2 0y onlan|r=t = 1= 3200 onlaglrm
Thus
oo
(2.2) Z(lm +n—k—7)oula,r"t <1 -7,
n=2

and lettingr — 1 in (2.2), we obtain the desired inequalify (2.1).
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Corollary 2.3. If a function f of the form ) belongs to the claBSV? (k, v), then
-7

n < 3 - 2, 3, e
’CL'_(lm—l—n—k—’y)an "
The equality holds for the functions
1— i(1—n)n
2.3)  hpylz) =z (1=7y)e M ozeU; 0<n<2m, n=23,....

(kn+n—Fk—~)o,
Next we obtain the distortion bounds for functions belonging to the 1ag%(k, v).
Theorem 2.4.Let f be in the clas$/ WP (k,v), |z| = r < 1. If the sequence
{(kn+n—k =)0},
is nondecreasing, then

1—n 2 1—v 2
(2:4) Al e e R e et
If the sequencé *+"=*=25 1™ is nondecreasing, then

2(1 —~) : 2(1 —~)
2.5 l1———1r < <l+—-—"r.
(2:5) Gimr 20, S @IS+ Gy

The result is sharp. The extremal functions are the functignsof the form(2.).
Proof. Sincef € VWP(k,~), we apply Theorerp 2]2 to obtain

(K _’Y+2)02i la,| < i(kn—l—n —k—=7)onla, <1 —7.
Thus " :02
1—
1£(2)] < |2 + |z|2n§; lan) <7+ mr%
Also we have .
1—
|f(2)| > |Z‘ - |z|2; |an| >r— MTQ

and [2.4) follows. In similar manner fgt, the inequalities

F <1+ nfanl2™ <1412 nay,
n=2 n=2

and .
>l < PR
lead to [(2.5). This completes the proof. O
Corollary 2.5. Let f be in the clas$’ WP (k,v), |z| =r < 1. If
(2.6) p>q, ag1 >1, a; >0, and A;>B; (j=2,...,q),

then the assertion§ (2.4), (2.5) hold true.

Proof. From [2.6) we have that the sequeng@is: +n — k — 7)o, }o, and{ &2=k=26, 4>
are nondecreasing. Thus, by Theoien 2.4, we have Corpllgry 2.5.
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Theorem 2.6. Let f be given by[(1]1) and satisfy (1.2). Then the functforbelongs to the
classVWP(k,~) if and only if f can be expressed in the form

(2.7) F(2) =Y pnhngy(2), po >0 and Y g, =1,
n=1 n=1

whereh, (z) = z andh,,, are defined by[ (2]3).
Proof. If a function f is of the form [(2.] ) then b)[(I].Z) we have

z@n

—Z+Z lm+n—k: Mo 2", zeU.

Since
i(kn+n—k v¥)o. 17 !
—~ "(kn+n—k—7y)o, "
—Zunl— =1 —m)(l—-9)<1-7,
by Theorenj 2]2 we havg € VIVE(k, 7).
(kn+n—k—v)on

Conversely, iff is in the clasd/ WP (k, v), then we may sef,, = — ,n > 2and
p1 =1—3""", u,. Then the functiory is of the form[2.7) and this completes the proof]

3. PARTIAL SUMS

For a functionf € A given by [1.1), Silvermari [17] and Silvia [18] investigated the partial
sumsf; andf,, defined by

(3.1) fiz) =2z and f,.(z —z—i—Zan , (m=2,3...).

We consider in this section partial sums of functlons in the cladg? (k,~) and obtain sharp
lower bounds for the ratios of the real partfofo f,,(z) andf’ to f/ .

Theorem 3.1. Let a functionf of the form [(1.1.) belong to the clas&iV?(k, ) and assume
(2.6). Then

f(z) 1
(3.2) Re{ >1-— , z2ze€elU meN

fm(z) dm+1
and

fm(z)} dm+1
3.3 Re > , z€eU meN,
33) SERie
where

k — k-
(3.4) d, = mn Yo,
L=y

Proof. By (2.6) it is not difficult to verify that
(3.5 dpi1>d,>1, n=23,....

Thus by Theorerpn 2|1 we have

(3.6) Z|an|+dm+1 Z |an|<2d jan| < 1.

n=m-1
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Setting

(3.7) 9(2) = dpia {LZ) _ (1 1 ) } 14 Q1 D i anzn—17

fm<z) dmt1 1+ an:2 anz" !

it suffices to show that
Reg(z) >0, zeU.
Applying (3.6), we find that
‘g(z) - 1‘ < ndm—irl ZZO:mH |an0|o <1, zel
g(z) +1 2-2 Zn:2 |an| — dimia Zn:m+1 [
which readily yields the assertion (B.2) of Theoijen]j 3.1. In order to see that

Zm+1
(3.8) f(z)=z+ , z€eU,
derl
gives sharp the result, we observe thatfes re'™/™ we have
/(2) A P
fm(Z) dm+1 dm+1

Similarly, if we take
fm(z) dm+1 }

h@*:“+¢””{f@>_1+mml

)R e
L+ sapzm! ’ ’

and making use of (3.6), we can deduce that

fmz>—1‘<: (1 i) 202 e L _,
h(z) +1] = 2— 22::2 |an| — (1 — dpy1) Zf:mﬂ lan] =
which leads us immediately to the assertion]|(3.3) of Thegreimn 3.1. The bound]in (3.3) is sharp
for eachm € N with the extremal functiorf given by [3.8), and the proof is complete. [

Theorem 3.2. Let a functionf of the form ) belong to the classiV?(k,~) and assume
(2.8). Then

zeU,

f'(2) m+1
59 m{m@}zy‘%ﬂ
and
f;ln(z) i1
(3.10) Re{ f'(2) } = + 14 dms1’

whered,, is defined by{ (314)

Proof. By setting
mdz%ﬂ{ﬂﬁ—Q—m+ﬁ},zaz

fi(2) dm+1
and )
S (2 dm 1
h — 1 dm - 9 U7
=l *”{fu> EESET Y A
the proof is analogous to that of Theorem| 3.1, and we omit the details. O
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Concluding Remarks: Observe that, if we specialize the parameters of the 8fagg (k, v),
we obtain various classes introduced and studied by Goodman [6], Kanas and Srivastava [7],
Ma and Mindal[10], Rgnning [13, 14], Murugusundaramookhwl. [22,(23], and others.
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