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ABSTRACT. This note presents absolute bounds on the size of the coefficients of the character-
istic and minimal polynomials depending on the size of the coefficients of the associated matrix.
Moreover, we present algorithms to compute more precise input-dependant bounds on these co-
efficients. Such bounds are e.g. useful to perform deterministic Chinese remaindering of the
characteristic or minimal polynomial of an integer matrix.
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1. INTRODUCTION

The Frobenius normal form of a matrix is used to test two matrices for similarity. Although
the Frobenius normal form contains more information on the matrix than the characteristic poly-
nomial, the most efficient algorithms to compute it are based on computations of characteristic
polynomials (see for examplg![8, §89.7]). Now the Smith normal form of an integer matrix is
useful e.g. in the computation of homology groups and its computation can be done via the
integer minimal polynomial ]2].

In both cases, the polynomials are computed first modulo several prime numbers and then
only reconstructed via Chinese remaindering [4, Theorem 10.25]. Thus, precise bounds on the
integer coefficients of the integer characteristic or minimal polynomials of an integer matrix are
used to find how many primes are sufficient to perform a Chinese remaindering of the modularly
computed polynomials. Some bounds on the minimal polynomial coefficients, respectively the
characteristic polynomial, have been presentedlin [2], respectively in [1]. The aim of this note
is to present sharper estimates in both cases.

For both polynomials we present two kinds of resulibsolute estimatesiseful for com-
paring complexity constants, amdigorithmswhich compute more precise estimates based on
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the properties of the input matrix discovered at runtime. Of course, the goal is to provide such
estimates at a cost negligible when compared to that of actually computing the polynomials.

2. BOUND ON THE MINORS FOR THE CHARACTERISTIC POLYNOMIAL

2.1. Hadamard’s Bound on the Minors. The first bound of the characteristic polynomial
coefficient uses Hadamard'’s boundet(A)| < vnB? , see e.g.[[4, Theorem 16.6], to show
that the coefficients of the characteristic polynomial could be larger, but only slightly:

Lemma 2.1. Let A € C™*", withn > 4, whose coefficients are bounded in absolute value by
B > 1. The coefficients of the characteristic polynondialof A are denoted by;, j =0,...,n
and||C4||s = max{|c;|}. Then

1ogy(||Clalos) < g (logy(n) + logy(B%) + 0.21163175) .

Proof. Observe that;, the j-th coefficient of the characteristic polynomial, is an alternate sum
of all the(n — j) x (n — j) diagonal minors of4, see e.g.[[3, §lII.7]. It is therefore bounded by

Fing) = (7) V=5

First note, that from the symmetry of the binomial coefficients we only need to explore the
|n/2] first ones, since

V(n—1j) 32 ' >\/ for j<|n/2].

The lemma is true fof = 0 by Hadamard’s bound.
Forj = 1 andn > 2, we set

£n) = = (1o, (F(n,1)) = S loga(n) — (n — 1)logy(B) )
Now

df _2n—2+4+nln(n—1)—2nln(n) +2In(n) —In(n — 1)
dn n?(n — 1)In(2) '
Thus, the numerator of the derivative ffn) has two roots, one belovand one betweefhand

7. Also, f(n) is increasing fron? to the second root and decreasing afterwards. With 4
the maximal value of (n) is therefore at. = 6, for which it is
5

2
8 log,(5) — 3 log,(6) < 0.21163175.

For other;j’s, Stirling’s formula has been extended for the binomial coefficient byi& in
[9], and givesvi > 2,

1 1 1 ; —j

<TL) el2n 12j+1 12(n—j)+1 n (n>] ( n >n J
. < ; ; - . .
j V2 j(n—3) \J n—j

1 1 1 - 1 2
12n 125+1 12(n—j)+1 12n 6n+1’
since the maximal value of the latter isjat= 7. Therefore,

Then-*— is decreasing in for 2 < j < [n/2] so that its maximum IS5

Now first
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Consider now the rest of the approximation

K(n,j) = (3)3 (nij)n_j (n_j)BQ(n—j)‘

, n—j n n .
log, (K (n, 7)) = — log,(B?) + 5 loga(n) + 5T (n, j),

, n J n—j
T(n,j) = log, (E) += log, <j—2> .

T(n, j) is maximal forj = =4+ "\We end with the fact that for > 4,
—1++v1+4 2 1
T | n, Tviwien) —log, (\/2#) + —log, _
2e n n 2(n — 2)

is maximal ovefZ for n = 16 where itis lower thain.2052. The latter is lower thaf. 21163175.
O

We have

where

We show the effectiveness of our bound on an example matrix:

101 1 1 17

1 1 -1 -1 —1

(2.1) 1 -1 1 -1 -1
1 -1 -1 1 -1

1 -1 -1 -1 1 |

This matrix hasX®—5.X*+40X?—80X +48 for its characteristic polynomial aré) = (?) Nz
is greater than Hadamard’s bout@9, and less than our bourgd.66661.
Note that this numerical bound improves on the one used in [5, lemma 2. 1Psihide3175 <
2 + log,(e) =~ 3.4427. While yielding the same asymptotic result, their bound would state e.qg.
that the coefficients of the characteristic polynomial of the example are lowe21f7as.

2.2. Locating the Largest Coefficient. The proof of Lemma 2]1 suggests that the largest co-
efficient is to be found between ti§2(,/n) last ones. In next lemma we talk®into account

in order to sharpen this localization. This gives a simple search procedure, computing a more
accurate bound as soon Ads known.

Lemma 2.2. Let A € C™*", withn > 4, whose coefficients are bounded in absolute value by
B > 1. The characteristic polynomial of is C'4. Then

(n—i)

-----

whereD = =LVLENE | 5 ~ 5 418236. Moreover, the cost of computing the associated bound
on the size is
NLD
o(—1.
(5

This localization improves by a factor closeﬁo the localization of the largest coefficient
proposed in[1, Lemma 4.1].
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Proof. Consider

N (n —— s (1) . n
F(n,y)-(j) (n—j)B forj_z,...,bj.
The numerator of the derivative éf with respect tgj is
nly/(n— )B2" (2H(n — j) — 2H(j) — In(n — j) — In(B2) — 1),

whereH (k) = Zle 7 is thek-th Harmonic number. We have the bounds

In(k) +~ + < H(k) <In(k) +~v+ ——

1
2k + 1= —2 2% + 1

from [7, Theorem 2]. This bound proves thatn, j) has at most one extremal value b

J < |5]. Moreover,
oF n 2 2
Eﬁ'@“§)<:rﬁ“‘1+*“(n32)

2
is thus strictly negative, as soonas> 4. Now let us define

G(j) =2H(n —j) —2H(j) — In(n — j) — In(B?) — 1.
Using the bounds on the Harmonic numbers, we have that
2 2 , n—j )
<G(j) -1 14+ 1In(B
2n —2j + = — 2 2+ 1 G n( J? >+ it
2 2
< .
2n—2j+— 2j—|———2

Then, on one hand, we have thbat2 e jS; is increasing foR < j < 7 so that its
3
minimal value is
M;(n) 2 6 at j=2
in)=———"-—-— = 2.
m—6+.L 13 7

Finally, M;(n) > — & if We let n go to infinity.

On the other hand2 5T 2j+i72 is also increasing and therefore its maximal value is
1—v

2(—4+7v)
(n—ny—14+2v)3n+1)
Finally, M,(n) < f;g_—;;)), its value at = 4.

Then, the monotonicity off and its bound prove that the maximal valueff, j) is found
for j* between the solutiong andj, of the two equations below:

M,(n) = at j=n/2.

_.]z 6
(2.2) m( 7 ) =1+In(B?% + 3
n— js 2 2(77 B 4)

2.3 | —1+In(B%) - >~~~
&3 n( 72 ) )" 5 )
This proves in turn that

. -1+ v1+4+20B%n

J* < max < 0; 552

where
§ =2 3 2w> ~ 5.418236.
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Now for the complexity, we use the following recursive scheme to compute the bound:
log(F(n, 0)) = % log(nB?)

log(F(n,j+1)) =log (%) + log (%) + = log(n — j — 1) — L log(n — j)
O
For instance, if we apply this lemma to mafrix]2.1 we see that we just have to ldtfeaf)

for
o =14++V14+26B%n
J< 52

3. EIGENVALUE BOUND ON THE MINIMAL POLYNOMIAL

~ 1.183.

For the minimal polynomial the Hadamard bound may also be used, but is too pessimistic
an estimate, in particular when the degree is small. Indeed, one can use Mignotte’s bound on
the minimal polynomial, as a factor of the characteristic polynomial. Them@npoly, ||. <
24]|Ca||-, se€ (6, Theorem 4]. This yields that the bit size of the largest coefficient of the
minimal polynomial is only bits less than that of the characteristic polynomial.

Therefore, one can instead use a bound on the eigenvalues determined by consideration e.g.
of the Gershgorin disks and ovals of Cassini (§eé [10] for more details on the regions containing
eigenvalues, and [2, Algorithm OCB] for a blackbox algorithm efficiently computing such a
bound). This gives a bound on the coefficients of the minimal polynomial of the fifim
where/ is a bound on the eigenvalues ahi$ the degree of the minimal polynomial.

We can then use the following lemma to bound the coefficients of the minimal polynomial:

Lemma 3.1. Let A € C™*" with its spectral radius bounded ¥ > 1. Letminpoly,(X) =
S mi X% Then

ol ifd <p
min {\/ﬁdd : ,/%2%‘1} otherwise
This improves the bound given ini[2, Proposition 3.1] by a factdbgfd) whend > (.

Proof. Expanding the minimal polynomial yields:;| < (?)ﬁd*i by e.g. [6, Theorem 1V.84.1].
Then, ifd < 3, we bound the latter by’ 37—,

Now, whend > (3, we get the first bound in two steps: first, fox g, we bound the binomial
factor byd’ and thus get

(§)o < antst < atpt
sinced > (3; second, for > ¢, we bound the binomial factor b{—* and thus get
(d> Bdfi S ddfiﬁdfi < dgﬁ%
1

The second bound, wheh > (3 is obtained by bounding the binomial coefficients by the
middle one,(ﬁ), and using Snica’s bound|[9] on the latter. This gives that

A\ sa-i L\/gggd
() s i/ pite
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For matrices of constant size entries, botandd areO(n). However, wheni and/orj is
small relative tan (especiallyd) this may be a striking improvement over the Hadamard bound
since the length of latter would be of ordelog(n) rather thani log(3).

This is the case e.g. for the Homology matrices in the experimenis of [2]. Indeed, for those,
AA!, the Wishart matrix of4, has very small minimal polynomial degree and has some other
useful properties which limit (e.g. the matrixA A! is diagonally dominant). For example, the
most difficult computation of [2], is that of thg5605 x 69235 matrix n4c6.b12 which has
a degrees27 minimal polynomial with eigenvalues bounded by7. The refinement of lemma
yields there a gaiim sizeon the one ofi[2] of roughl$}%. In this case, this represents saving
23 modular projections and an hour of computation.

4, CONCLUSION

We have presented in this note bounds on the coefficient of the characteristic and minimal
polynomials of a matrix. Moreover, we give algorithms with low complexity computing even
sharper estimates on the fly.

The refinements given here are only constant with regards to previous results but yield sig-
nificant practical speed-ups.

REFERENCES

[1] J.-G. DUMAS, C. PERNETAND ZHENDONG WAN, Efficient computation of the characteristic
polynomial, Proceedings of the 2005 International Symposium on Symbolic and Algebraic Com-
putation, Beijing, ChinaM. Kauers (Ed.), pages 140-147. ACM Press, New York, 2005.

[2] J.-G. DUMAS, B.D. SAUNDER&ND G. VILLARD, On efficient sparse integer matrix Smith
normal form computations), Symbolic Computatioi32(1/2) (2001), 71-99.

[3] F.R. GANTMACHER,The Theory of MatricesChelsea, New York, 1959.

[4] J.von zur GATHENAND J. GERHARD Modern Computer AlgebraCambridge University Press,
New York, NY, USA, 1999.

[5] M. GIESBRECHTAND A. STORJOHANN, Computing rational forms of integer matrickssym-
bolic Computation34(3) (2002), 157-172.

[6] M. MIGNOTTE, Mathématiques pour le Calcul Formdtresses Universitaires Francaises, 1989.

[7] FENG QI, RUN-QING CUI, CHAO-PING CHEMND BAI-NI GUO, Some completely mono-
tonic functions involving polygamma functions and an applicatbbMath. Anal. Applics.310(1)
(2005), 303-308.

[8] A. STORJOHANN, Algorithms for Matrix Canonical FormsPhD thesis, Institut fur Wis-
senschaftliches Rechnen, ETH-Zentrum, Zirich, Switzerland, November 2000.

[9] P. STANICA, Good lower and upper bounds on binomial coefficiedtdnequal. in Pure & Appl.
Math., 2(3) (2001), Art. 30. [ONLINE http://jipam.vu.edu.au/article.php?sid=
146].

[10] R.S. VARGA, GerSgorin and his Circlesvolume 36 ofSpringer Series in Computational Mathe-
matics Springer-Verlag, Berlin, 2004.

J. Inequal. Pure and Appl. Mat}8(2) (2007), Art. 31, 6 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/article.php?sid=146
http://jipam.vu.edu.au/article.php?sid=146
http://jipam.vu.edu.au/

	1. Introduction
	2. Bound on the Minors for the Characteristic Polynomial
	2.1. Hadamard's Bound on the Minors
	2.2. Locating the Largest Coefficient

	3. Eigenvalue Bound on the Minimal Polynomial
	4. Conclusion
	References

