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ABSTRACT. In this short note, we establish the uniform integrability and pointwise convergence
of an (unbounded) family of polynomials on the unit interval that arises in work on statistical
density estimation using Bernstein polynomials. These results are proved by first establish-
ing/generalizing some combinatorial and probability inequalities that rely on a new family of
completely monotonic functions.
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1. I NTRODUCTION

Let Pn,k(x) : [0, 1] → [0, 1] denote the probability of exactlyk successes inn independent
Bernoulli trials with success probabilityx, i.e.

Pn,k(x) = Pr{Bin(n, x) = k} =

(
n

k

)
xk(1− x)n−k,

and, for integersr, s ≥ 1, define the family of functions{Sn,r,s}∞n=1 by

(1.1) Sn,r,s(x) :=
√
n

n∑
k=0

Prn,rk(x)Psn,sk(x).

This family of polynomials arises in the context of statistical density estimation based on
Bernstein polynomials. Specifically, the caser = s = 1 has been considered by many authors
(for example, Babuet al.[3], Kakizawa [5] and Vitale [8]) and the caser = 1 ands = 2 has been
considered by Leblanc [6]. Issues linked to uniform integrability and pointwise convergence of
{Sn,1,1} and{Sn,1,2} have also been addressed by these authors. However, the generalization to
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anyr, s ≥ 1 has not yet been considered. In the present paper we will establish the following
result.

Theorem 1.1.Let r, s be fixed positive integers. Then

(i) 0 ≤ Sn,r,s(x) ≤
√
n for x ∈ [0, 1] andSn,r,s(0) = Sn,r,s(1) =

√
n.

(ii) {Sn,r,s}∞n=0 is uniformly integrable (w.r.t. Lebesgue measure) on[0, 1].
(iii) Sn,r,s(x) → gcd(r, s)[rs(r + s)2πx(1− x)]−1/2 for x ∈ (0, 1) asn→∞.

For the caser = s = 1, Babuet al. [3, Lemma 3.1] contains a proof of (iii). Leblanc [6,
Lemma 3] gives a proof of Theorem 1.1 whenr = 1 ands = 2. The proof herein generalizes
(but follows along the same lines as) these previous results. As an application of Theorem 1.1
we have, for any functionf that is bounded on[0, 1],

(1.2) lim
n→∞

∫ 1

0

Sn,r,s(x)f(x) dx =
gcd(r, s)√
rs(r + s)

∫ 1

0

f(x)√
2πx(1− x)

dx,

the latter integral generally being easier to evaluate (or approximate). This simple consequence
of Theorem 1.1 plays an important role in assessing the performance of nonparametric density
estimators based on Bernstein polynomials. Kakizawa [5], for example, went to great lengths
to establish (1.2) for the caser = s = 1.

In establishing Theorem 1.1, we first show that, for all0 ≤ k ≤ n andx ∈ [0, 1], (see
Corollary 2.4)

(1.3) Pn,k(x) ≥ P2n,2k(x) ≥ P3n,3k(x) ≥ · · · .

The proof of this inequality is based on a class of completely monotonic functions and hence
is of general interest. Using completely different methods, Leblanc and Johnson [7] previously
showed that{P2jn,2jk(x)}∞j=0 is decreasing inj and hence (1.3) is a generalization of this earlier
result.

The remainder of this paper is organized as follows. In Section 2 we introduce a new family
of completely monotonic functions and obtain some necessary combinatorial and probability
inequalities. In Section 3, we prove Theorem 1.1. Finally, in Section 4, we highlight the fact
that the results in Section 2 can be used to obtain other interesting inequalities.

2. PRELIMINARY RESULTS

Recall that a real valued functionf is said to be completely monotonic on(a, b) if and only
if (−1)nf (n)(x) ≥ 0 for all x ∈ (a, b) and integersn ≥ 0 (cf. Feller [4, XIII.4]). We begin with
the following lemma.

Lemma 2.1. Let {ak}m
k=1 and {bk}m

k=1 be real numbers such thata1 ≥ a2 ≥ · · · ≥ am and
b1 ≥ b2 ≥ · · · ≥ bm ≥ 0 and letψ denote the digamma function. Define

φδ(x) :=
m∑

k=1

akψ(bkx+ δ), x > 0, δ ≥ 0.

If δ ≥ 1/2 and
∑m

k=1 ak ≥ 0, thenφ′δ is completely monotonic on(0,∞) and henceφδ is
increasing and concave on(0,∞).

The proof follows along the same lines as that in Alzer and Berg [2], who show thatφ0

is completely monotonic (and hence decreasing and convex) if and only if
∑
ak = 0 and∑

ak ln bk ≥ 0.
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Proof. Let x > 0 and δ ≥ 1/2 and recall that the integral representation ofψ(n) is (cf.
Abramowitz and Stegun [1, pp. 260])

ψ(n)(x) = (−1)n+1

∫ ∞

0

tne−xt

1− e−t
dt, n = 1, 2, . . . .

Therefore, forn = 1, 2, . . .,

(2.1) (−1)n+1φ
(n)
δ (x) = (−1)n+1

m∑
k=1

akb
n
kψ

(n)(bkx+ δ) =
m∑

k=1

ak

∫ ∞

0

(bkt)
ne−xbkt

eδt(1− e−t)
dt.

The substitution(s)u = bkt yield

(2.2) (−1)n+1φ
(n)
δ (x) =

∫ ∞

0

un−1e−ux

m∑
k=1

akη(u/bk) du,

whereη(x) = xe−δx(1 − e−x)−1 > 0. A little calculus shows that, forδ ≥ 1/2, η is strictly
decreasing on(0,∞) and hence, for everyu > 0, {η(u/bk)}m

k=1 is decreasing [note that, if
bk = 0, there is no difficulty in takingη(u/bk) = η(∞) = limx→∞ η(x) = 0, since these terms
vanish in (2.1)]. Since{ak}m

k=1 is also decreasing, Chebyshev’s inequality for sums yields
m∑

k=1

akη(u/bk) ≥
1

m

(
m∑

k=1

ak

)(
m∑

k=1

η(u/bk)

)
.

We see that, if
∑m

k=1 ak ≥ 0, the integrand in (2.2) is non-negative and hence(−1)n+1φ
(n)
δ ≥ 0

on (0,∞). We conclude thatφ′δ is completely monotonic on(0,∞) and, in particular,φδ is
increasing and concave on(0,∞) wheneverδ ≥ 1/2 and

∑
ak ≥ 0. �

Lemma 2.2. Letn, k, j be integers such that0 ≤ k ≤ n andj ≥ 1 and define

Qn,k(j) =

(
(j − 1)n

(j − 1)k

)
(
jn

jk

) =
Γ((j − 1)n+ 1)Γ(jk + 1)Γ(j(n− k) + 1)

Γ(jn+ 1)Γ((j − 1)k + 1)Γ((j − 1)(n− k) + 1)
.

ThenQn,k(j) is decreasing inj and

lim
j→∞

Qn,k(j) =

(
k

n

)k (
n− k

n

)n−k

.

Proof. The limit is easily verified using Stirling’s formula, thus we need only show thatQn,k(j)
is decreasing inj. TreatingQn,k(j) as a continuous function inj and differentiating we obtain

Q′n,k(j) = Qn,k(j)

{
k
(
qj(k)− qj(n)

)
+ (n− k)

(
qj(n− k)− qj(n)

)}
,

whereqj(x) = ψ(jx + 1) − ψ(jx − x + 1). Now, takingδ = 1, a1 = 1, a2 = −1, b1 = j and
b2 = j− 1 in Lemma 2.1, we have thatqj(x) is increasing on(0,∞) and henceQ′n,k(j) ≤ 0 for
all j ≥ 1 sinceQn,k(j) > 0 always. �

Remark 2.3. In light of Lemma 2.1, we may define, forj ≥ 1 andδ > 0,

Qn,k,δ(j) =
Γ((j − 1)n+ δ)

Γ((j − 1)n+ δ) Γ((j − 1)k + δ)

/
Γ(jn+ δ)

Γ(jk + δ) Γ(j(n− k) + δ)
.

The same arguments in the proof of Theorem 2.2 show thatQn,k,δ(j) is decreasing inj for all
δ ≥ 1/2 and has the same limiting value of(k/n)k(1− k/n)n−k.
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Corollary 2.4. Let0 ≤ k ≤ n. Then{Pjn,jk(x)}∞j=1 is decreasing inj for every fixedx ∈ [0, 1].

Proof. P(j−1)n,(j−1)k(x) ≥ Pjn,jk(x) if and only if Qn,k(j) ≥ xk(1 − x)n−k and we have, by
Lemma 2.2,

Qn,k(j) ≥ (k/n)k(1− k/n)n−k = sup
x∈[0,1]

xk(1− x)n−k,

which completes the proof. �

3. PROOF OF THEOREM 1.1

We now give a proof of Theorem 1.1. First note that (i) holds since
n∑

k=0

Prn,rk(x)Psn,sk(x) ≤
n∑

k=0

Prn,rk(x) ≤
rn∑

k=0

Prn,k(x) = 1,

with equality if and only ifx = 0, 1. Similarly, (ii) holds since{Sn,1,1}∞n=1 is uniformly inte-
grable on[0, 1] (cf. [6]) and, by Corollary 2.4, we haveSn,r,s(x) ≤ Sn,1,1(x) for all x ∈ [0, 1].

To prove (iii), letU1, . . . , Un andV1, . . . , Vn be two sequences of independent random vari-
ables such thatUi is Binomial(r, x) andVi is Binomial(s, x). Now, defineWi = r−1Ui − s−1Vi

so thatWi has a lattice distribution with spangcd(r, s)/rs (cf. Feller [4]). We can writeSn,r,s(x)
in terms of theWi as

Sn,r,s(x)√
n

=
n∑

k=0

Prn,rk(x)Psn,sk(x) = P

(
n∑

i=1

Ui

r
=

n∑
i=1

Vi

s

)
= P

(
n∑

i=1

Wi = 0

)
.

Now, define the standardized variablesW ∗
i = Wi

√
rs/
√

(r + s)x(1− x) so thatVar(W ∗
i ) = 1

and note that these also have a lattice distribution, but with spangcd(r, s)/
√
rs(r + s)x(1− x).

Theorem 3 of Section XV.5 of Feller [4] now leads to

lim
n→∞

Sn,r,s(x)√
n

= lim
n→∞

P

(
1√
n

m∑
i=1

W ∗
i = 0

)
=

gcd(r, s)φ(0)√
nrs(r + s)x(1− x)

,

whereφ corresponds to the standard normal probability density function. The result now fol-
lows from the fact thatφ(0) = 1/

√
2π. �

4. CONCLUDING COMMENTS

We conclude by pointing out the fact that Lemma 2.2 also leads to some other interesting
combinatorial and discrete probability inequalities. For example, sinceQn,k(j) is decreasing,
we immediately obtain (

(j − 1)n

(j − 1)k

)(
(j + 1)n

(j + 1)k

)
≥
(
jn

jk

)2

.

Indeed, sinceQn,k(j − m + 1) ≥ Qn,j(j + m) for m = 1, . . . , j, we see that the sequence
{Am}j

m=1 defined by

(4.1) Am =

(
(j +m)n

(j +m)k

)(
(j −m)n

(j −m)k

)
is increasing.

Finally, Corollary 2.4 trivially leads to a similar family of inequalities for “number of failure”
negative binomial probabilities. LetHn,k be the probability of exactlyn failures(n ≥ 0) before
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thekth success(k ≥ 1) in a sequence of i.i.d. Bernoulli trials with success probabilityp ∈ [0, 1]
so that, forj = 1, 2, . . .,

Hjn,jk =

(
jn+ jk − 1

jk − 1

)
pjk(1− p)jn =

k

n+ k
Pj(n+k),jk.

Hence, as a direct consequence of Corollary 2.4, we have that{Hjn,jk}∞j=1 is also decreasing.
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