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1. Introduction

Let B(H) be the space of all bounded linear operators on a separable complex

Hilbert spaceH. A unitarily invariant norm|||-||| is a norm on the space of op-
erators satisfying||A||| = |||[UAV||| for all A and all unitary operator§ andV’ in
B(H). Except for the operator norm, which is defined on alBg#{ ), each unitarily
invariant normy||-||| is defined on a norm idedl) |, contained in the ideal of com-
pact operators. When we talk pfA||| we are implicitly assuming that belongs to
Cyiir-

IH'Il'Hhe absolute value of an operatbre B(H ), denoted byA|, is defined by A| =
(A*A)V/2, Lets (A), s5(A), ... be the singular values of the compact operator
i.e., the eigenvalues o¢fi|, rearranged such thaf(A) > sy(A4) > - --

Forp > 0 and for every unitarily invariant norm|-||| on B(H ), define

AP =11 APy,
It is known that
(L.1) 11 1A+ BPIWM < NI AP + 111 1B
forp>1and
(L2) A+ BPIYT < 2 (1 AP B

for0 < p < 1 (see e.g.,1, p.p. 95,108]). Based on the definition |¢if|||*” and
inequality (L.1), it can be easily seen thﬁt~|\|(p) is a unitarily invariant norm for

1Al = <ZS >

For0 < p < oo, let

3=
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If p > 1, then|[-||, is @ norm, called the Schattgmorm. So,

1A]l, = (tr|AP)7,

wheretr is the usual trace functional. When= 1, || A]|, is called the trace norm of

A. Note that for all positive real numbersaandp, we have
(1.3) AL, = 1AL, -

For the theory of unitarily invariant norms, the reader is referred o[ 8], [8],
[9], [10], and the references therein.

The Minkowski’s inequality for scalars asserts thaiifb; (i = 1,2,...,n) are
complex numbers and > 1, then

1 1 1
<Z|ai+bi\p> g(ZMN’) +<Z|biyp> :
=1 =1 =1

Hiai and Zhan 4], proved that ifA,, A;, B, B, are matrices of order and
1 <p,r<oo,then

(L) Il 1A+ Azl + 1By + Bal’ [
<MY+ BPIPT I Al + Bl

(L5) 141+ Aol + B+ Bof’||”
<2 (A + B+ A+ B])
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and

(1.6) H(|A1 4 AP+ | By + Bo?)”

T

< 9l1/p=1/r| <H(|A1’p + \B1|p)1/p

+ |14+ 1Boy e

These inequalities are norm inequalities of Minkowski type.

The purpose of this paper is to establish new operator norm inequalities. Our in-
equalities generalize the inequalitiés4), (1.5), and (L.6) for n—tuple of operators.
Our analysis is based on some recent results on convexity and concavity of functions
and on some operator inequalities.
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2. Norm Inequalities of Minkowski Type

In this section, we generalize inequality.4) for operatorsA;, B; € B(H) (i =
1,2,...,n), and other norm inequalities of Minkowski type. To achieve our goal we
need the following two lemmas. The first lemma can be foun@Jimifd a stronger
version of the second lemma can be foundah [

Lemma2.l.Let A,,..., A, € B(H) be positive operators. Then, for every unitar- Operator Norm Inequalities
ily invariant norm Khalid Shebrawi and

Hussien Albadawi

i n " vol. 9, iss. 1, art. 26, 2008
2.1) H Al < | <Z Az)
=1 =1
forr > 1 and Title Page
n " n Contents
2.2 A; < Al
@2 )| <[z « »
foro<r <1. < >
Lemma2.2.Let Ay,..., A, € B(H) be positive operators. Then, for every unitar- Page 6 of 21
ily invariant norm,
. Go Back
(2.3) ‘ ‘ ‘ (Z Ai> <n! Z Al ‘ Full Screen
=1 = Close
forr > 1 and
n n T journal of inequalities
2.4 AT < pl-r A, in pure and applied
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Now, we are in a position to generalize 4).

Theorem 2.3.Let A;,B; € B(H) (i = 1,2,...,n) andp > 1. Then, for every
unitarily invariant norm,

1 1 1
(2.5) n~11/p=1/2| Z |A; + Bil? < Z | 4,7 + Z | B[P
=1 i=1 =1
and
2.6) |[D_1AF]] +||D 1Bl
i=1 i=1 s .
<P PN A+ B+ ||| 1A - Bl
=1 =1
Proof. Let
A, 0 -+ 07 B, 0 --- 0
A, 0 -+ 0 B, 0 --- 0
A= . . . . and B=| . . . .
An 0 0 ] B, 0 0
be operators iB (P, H). Then
YAl 0 0 S BP0 0
) 0 0 0 ) 0 0 0
AP = . B = | ,
0 0 0 0 0 0
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and

ST JA+B) 0 - 0

) 0 0 --- 0
|A+B| - . . . .
0 0 --- 0

By applying (L.1) to the operators! and B, we get
Operator Norm Inequalities
Khalid Shebrawi and
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n g n g n g
(2.7) | (Z |A; + Bi]2> < (Z ‘Ai|2> + (Z ‘Bi‘2> ) vol. 9, iss. 1, art. 26, 2008
i=1 i=1 i=1

For1l < p < 2,itfollows, from (2.2) and ¢.4), that Title Page
n 4 n Contents
(2.8) (Z IAZ-|2> <D 147]]|, «“ b
=1 =1 p >
. L . Page 8 of 21
(2.9) (Z |Bi|2> <D IBiF||| Go Back
- = Full Screen
and Close
e |[smenr| | (Smenr) || e
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Forp > 2, it follows, from (2.1) and ¢.3), that

< (Z 4 +Bi|2> ,

i=1

M|

n

> A+ Bif”

i=1

(2.11)

[S14S)

(2.12) (Z |Az~|2) < /2
=1

and

(2.13) <Z|BZ-|2> <IN B
i=1 =1

Consequently, inequality?(5) follows, by combining £.11), (2.12), and ¢.13 by
(2.7). This completes the proof of inequality.).

For inequality £.6), replacingA; andB; in (2.5) by A; + B; andA; — B;, respec-
tively, we have

> A
i=1

[N4S)

1
2.14)  2||D IAf
=1
n 1 n 1
< pl/pm1 ‘ Z’AMLBJP + Z‘Ai_Bi’p
=1 =1
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Again, replacing4; andB; in (2.5) by A; + B; andB; — A;, respectively, we have

1
n P
2.15) 2| _IBI
=1
1/p—1/2
S nl /p=1/2l ‘ Z |AZ + Bl|p + Z |A1 B Bl|p Operator Norm Inequalities
i=1 i=1 Khalid Shebrawi and
Hussien Albadawi
Now, inequality £.6) follows, by adding inequalities?(14) and ¢.15. This com- vol. 9, iss. 1, art. 26, 2008
pletes the proof of the theorem. ]
Based on inequalityl(2) and using a procedure similar to that given in the proof Title Page
of Theorem2.3, we have the following result.
Contents
Theorem 2.4.LetA;, B; € B(H) (i =1,2,...,n)and0 < p < 1. Then, for every o N
unitarily invariant norm,
< >
1
n P
(2.16) 21 V/pp~1t/p=1/2 Z |A; + By ‘ Page 10 of 21
i=1 Go Back
p ? p ! Full Screen
< {ID_1AP|| +[|]D_ 1B
i=1 i=1 Close
and journal of inequalities
in pure and applied
n P n » mathematics
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i=1
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> 1B
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P

n

> A+ Bif”

=1

n

> A, — Bif”

=1

< U/p=1pl/p=1/2] ‘ +

Forp > 1inequalities £.5) and @.6) can be written in equivalent forms as follow:

(»)

(2.18) n~H/p-1/2 <Z|Ai+Bi|p>
=1

< (; IAZ-IP)

T (Z |Bz’|p> p
=1

(»)

1 1
< plt/p=1/2 (Z |Ai + Bz‘|p> + (Z |Ai — Bz’|p>
=1 i=1

In the following theorem we give inequalities related to inequalitied & and
(2.19. In order to do that we need the following lemma, which is a particular case
of Theorem 2 inT].

(»)

D=

(p)

- (Z |Bi|P>p
=1

and

(p) (p)

(2.19) (Z yAi|p>

(p)

e
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Lemma 2.5. LetA;, B; € B(H) (i=1,2,...,n)andp > 2. Then

(2.20) (Z\Aiﬁ) < npl/*1/p l (ZMM)
i=1 =1

for every unitarily invariant norm.

Theorem 2.6.Let A;, B; € B(H) (i
unitarily invariant norm,

1
(2.21) @7V (Z]AiJrBi\p)
=1

and

(2.22) <Z | AP

i=1

)

< pl-l/p

1
p

T <Z B

[

i=1

n

> A+ Bif”

i=1

=1,2

g Ly e

)
)

hSA

S

,n)andp > 2. Then, for every

3=

1
+ (Z |4; — BN’)
=1

+ (Z |Bz‘|p> p
=1
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Proof. By using ¢.2), (2.9), (2.7), and ¢.20), respectively, we have

(ZAHLBz‘p)p < Z|Ai+3z'|‘
=1 =1

n

<2 ||| 14+ B

i=1

n 3 n 3
i=1 =1
n ) n .
< ni-1/p <Z |Ai|P> + <Z |Bi|p>
=1 =1

This proves inequality4.21). Inequality ¢.22) follows from inequality £.27) by a

N =

proof similar to that given for inequality?(6) in Theoren?.3. The proof is complete.

O
It is known that for a positive operatar and for0 < r» < 1, we have
(2.23) A" < []JAI]

for every unitarily invariant norm; and the reverse inequality holds-for1.
Using inequality .23 we have the following application of Theoreirs.

Corollary 2.7. Let A;, B, € B(H) (i = 1,2,...,n) andp > 2. Then, for every

Operator Norm Inequalities
Khalid Shebrawi and

Hussien Albadawi

vol. 9, iss. 1, art. 26, 2008

Title Page
Contents
44 44
< >
Page 13 of 21
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au

unitarily invariant norm,

(2.24) n~(1=1/p) Z |A; + Byl?
i=1

1 1 1
g )
=1 1=1

and
1 1 Operator Norm Inequalities
n P n D Khalid Shebrawi and
(225) ‘AZ ’p —+ ‘Bl‘p Hussien Albadawi
; ; vol. 9, iss. 1, art. 26, 2008
1 1
n P n
<n'"t7 (Z | Ai + Bz'\p> + <Z | Ai — Bz’\p> : Title Page
i=1 i=1
] ] ) ) Contents

Remarkl. In view of (2.5), (2.21), and ¢.23, one might conjecture that #;, B; €
B(H) (i =1,2,...,n), then, for every unitarily invariant norm, « 4

1 < >

n P
(2.26) (Z |A; + B,;|p> Page 14 of 21
=1 Go Back
1 1
n P n P
< plt/p=1/2] ‘ Z | A, + Z B, Full Screen
i=1 i=1 Close

forp > 1 and journal of inequalities
1 1 1 in pure and applied
n P n P n P q
‘ P 1-1/p P P mathematics
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forp > 2.

Remark2. Using the same procedure used in the proof of inequdliity (n Theorem
2.3, inequalities {.1) and (..2) imply that

2.28) ||| [APIY?+ Il IBIPIMYP < Il |A+ BPIM? + 1] 1A - BP||IM”
forp > 1and
@2.29) ||| [APIIIYP 1] 1BPIIMP < 2Y74(||] 1A+ BPII|MP+ I 1A - BPII)MP)

for0 < p < 1. Forp > 1, it follows, from the triangle inequality for norms and a
scalar inequality, that

(2.30) ||| [A+ BP +|A—BPI["" <||| [A+ B[] + ]| |[A— BIP|I|'”

Forp > 2, the left hand side ofA 30 is the right hand side of the famous Clarkson
inequality

(2.31) 2([[ [AP + Bl < (Il [A+ B + |A+ BI"|Il,

see e.g.,q]. In view of the inequalities4.29 and ¢.30 we may introduce the
following question: Fop > 2 are the following inequalities:

(2.32) AP 4+ 11 BPHYP < 1l |A+ B + A - BPP|||Y”
and

p
(2.33) 21[1 AP+ |BPIL< (I AP + 111 1B
true?

Inequalities £.32) and .39, if true, form a refinement of the Clarkson inequality

(2.31).
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3. Norm Inequalities of Minkowski Type for the Schatten P—Norm

In this section, we present some norm inequalities of Minkowski type for the Schat-
ten p—norm. These inequalities generalize the inequalities) (@and (L.6) for an
n—tuple of operators.

Theorem 3.1.LetA;, B; € B(H) (i=1,2,...,n)andl < p,r < co. Then

(3.1) U/ Z|A +B|p
and
n : n .
(3.2) Z]Ai\” + ZyBin
=1 ;

3=

<n (1-1/r)/p

Proof. It follows, from (1.3) and the triangle inequality, that

N Ai + By 0 0
i=1 1 : E :
0 - Au+B,

pr

Operator Norm Inequalities
Khalid Shebrawi and

Hussien Albadawi

vol. 9, iss. 1, art. 26, 2008

Title Page
Contents
44 44
< >
Page 16 of 21
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au

A, 0 - 0 T By O
0 Ay --- 0 0 By
- : : .. : + : :
| 0 0 -+ A, ] 0 0
A 0 -+ 0 T By 0
0 Ay, --- 0 0 By
< . . ) + ) .
. 0 0 --- A, 0 O
pr
(3-3) =D 1A Do 1Bl
i=1 1 i=1 1

Now, by using (.3), (2.3, (3.9), and ¢.2), respectively, we have

1
n P n ™| pr
Y H (Z . B”p)
i=1 , i=1 1
1
n pr
< n(r—l)/pr Z |14Z + Bi|pr
1=1 1
1
n pr n P
< n(l—l/r)/p Z |Ai|p7" + Z |Bi|pr
=1 1 =1 1

1
T

1=
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P
+

T

n P

> A

=1

n

> B

=1

< p(=1/)/p

T

This proves inequalityd.1). The proof of inequality §.2) follows from (3.1) by a

proof similar to that given for inequality?(6) in Theorenm?.3. The proofis complete.

O
The following is our final result.

Theorem 3.2.LetA;, B; € B(H) (i=1,2,...,n)and1 < p,r < co. Then

1 1
(3.4) n~1/p=t/M (Z |A;i + Bi’p) < (Z |Ai’p) + <Z \Bz"p)
=1 =1 =1

and

(3.5) (Zvup) + (Z‘B"‘p>

r

T
1 1

< nlt/e=1/r (ZAWBAP) + (ZlAi—Bz-lp>
i=1

=1
r T

Proof. First suppose that < p. By using (L.3), (2.2), (3.9), and ¢.4), respectively,
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we have

1
n % n % r
(Z |A; + Bﬁ) = <Z |A; + Bi\p>
i=1 i=1
r 1
1
n T
S Z |Az + Bz|r Operator Norm Inequalities
i—1 1 Khalid Shebrawi and
1 : Hussien Albadawi
n T n v vol. 9, iss. 1, art. 26, 2008
S|t + 1B
i=1 1 =1 1
v : E Title Page
n P n P
< nl/T—l/p (Z |Ai|p) + (Z |Bi|p> Contents
= 1 = 1 «“ »
i z - z < >
1/r—1
= pl/r=1/p > A + (DB :
i—1 . i=1 . Page 19 of 21
Next, forp < r, by using (.3 and (3.1), we have Go Back
1 1 Full Screen
n D n P
<Z ’Az + B@‘P) = Z ’Az + Bl‘p Close
i=1 i=1 r
" P ) journal of inequalities
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bS]

i=1 =1
r r

o (|(5me) | ()

This proves inequalityd.4). The proof of inequality §.5) follows from (3.4) by a
proof similar to that given for inequality?(6) in Theorenm?.3. The proofis complete.

]

Remark3. For the Schattep—norm, (3.4) is better than4.21), and ifrp < 2 or
r(4 —p) < 2, then @.1) is better thanZ.5).
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