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ABSTRACT. A generalized Ostrowski type inequality for twice differentiable mappings in terms
of the upper and lower bounds of the second derivative is established. The inequality is applied
to numerical integration.
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1. INTRODUCTION

The integral inequality that establishes a connection between the integral of the product of
two functions and the product of the integrals is known in the literature as the Griss inequality.
The inequality is as follows:

Theorem 1.1.Let f,g : [a,b] — R be integrable functions such thét < f(z) < ¢ and
v < g(x) <Tforall z € [a,b], where¥, ¢, vandI are constants. It follows that,

R Ly Ny

where the constant is sharp.
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2 A. RAFIQ, N. A. MIR, AND FIZA ZAFAR

In [2], S.S. Dragomir and S. Wang proved the following Ostrowski type inequality in terms
of lower and upper bounds of the first derivative.

Theorem 1.2.Let f : [a, b] — R be continuous ofu, b] and differentiable ora, b) and where
the first derivative satisfies the condition,

y< fl(x) LT forall z € [a, b],
then,

) = (@ (_Lb)‘ <lo—ayr—y

1 b
1.2 ‘f R e L e =l it | B
forall z € [a, b].
In[1], S.S. Dragomir and N.S. Barnett, proved the following inequality.

Theorem 1.3.Let f : [a,b] — R be continuous offu, b] and twice differentiable ofia, ),
where the second derivatiy€ : (a,b) — R satisfies the condition,

e < f"(z)<® forall z € (a,b),

(b—a)2+l L_ath 2
24 2

then,

f'(b) = f'(a)
b—a

(1.3) ‘f(x) +

forall x € [a, b].

In this paper we establish a more general form[of](1.3) and apply the result to numerical
integration.

2. MAIN RESULTS

Theorem 2.1.Let f : [a,b] — R be a continuous mapping da, b], and twice differentiable
on (a, b) with second derivativg¢” : (a,b) — R satisfying the condition:
b—a b— a]

o < f"(z) <O, forallxe{aJrh 5 b—h 5

It follows that,

Lo (x_ a+b)2_ (3h 1) <b—a>2] (f’(b) —f’(a))

forallz € [a + h%5%, b — h%2%] andh € [0, 1].

J. Inequal. Pure and Appl. Math?(4) Art. 124, 2006 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/
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Proof. The proof uses the following identity,

(2.2) / ﬂWﬁ—®—ﬂM1—mf@)

—(b—a)(l—h)(x— b—a

2

a+b

)f%w+n (f (@) + £ )

h2 (b —a)?

SO - g+ [ K @

forall z € [a + h%5%, b — h%52], where the kernek : [a,b]? — R is defined by

{%[t—(a+hb7a)}2 if ¢ € [a, 2]
(2.3) K(z,t) =

L= (b—ht50)]* ift e (x,0].
This is a particular form of the identity given inl[3, p. 59; Corollary 2.3].
Observe that the kerné{ satisfies the estimation

3[(0—h5e) —a]”, wefathize o)

(2.4) 0< K(x,t) < {

3o —(a+ni5)]", we gty
Applying the Griss inequality for the mappingé(-) and K (z, -) we get,

b b b
(2.5) ‘ﬁ/ K(x,t)f”(t)dt—bia/ K(x,t)dtﬁ/ f”(t)dt‘

| Ll(b—ht5t) —a]”, we [a+hbze, o)
S;l(q’—w)x ,
slr—(a+ht5)]", ze 40— ht3e].
Observe that,
' o[t = (a+nt52)]" Pt (b—ht5))’
/a K(x,t)dt:/a ; dt+/z 5 dt
1 b—a\\® b—a SR (b—a)
— (b—a)(1—h) [(b_a)Qil_h) +%(x—“;b>
(2.6) +h3(b2—;a).
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Using (2.6)) in (2.5) , we get

b_a/K dt_[(b_a);(ll_h)g‘i‘%(l—h)(x—a;b>2
L (62; a)2] <f’(bz)):£'(a)>‘

Loy {%[(bh%“)xf, v € [athige, 557)
J(@—0
=4

slr— (ot ht5)]", we [0 —htg].

Also, by using identity(2.2)) , the above inequality reduces to,

‘(1 — h) {f(x) — (a:— Hb) 7 (x)} Ll k)

2 2
1 a+b\> (Bh—1)(b—a)*| [ f(b) - f(a)
+ 5(1—}1)(55_7) - 24 ]( b—a >

=IRCY

. (b — nbe “)—a:]z, x € [a+ hi5e, oty

Z(‘D p) X { 9
o — (a4 b)), @ e [222b— higt]

Since
{01512 (o)
2 ’ 2

but on the other hand,

N

2 ’ 2

inequality [2.1) is proved.
Remark 2.2. Forh = 0 in (2.1), we obtain[(1]3).
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Corollary 2.3. If f is as in Theorenm 21, then we have the following perturbed midpoint
inequality:

QJ)kl—mf(“;b)+hL@LLﬂQ

2

Gh-1(-a)
- B DO ) pa) b_a/f dt\

5 (@ —9)(b—a)* (1 -h)",

32
giving,
a+b (b_a) / 2
_ < _
e |r(50)+ "o (] < 35 (@~ ) 0 - o),
for h = 0.
Remark 2.4. The classical midpoint inequality states that
a+b 1 1 .
. — < (b —
29) (50) -5t [ s = go- o,

If ® — ¢ < 3 |f"|l. . then the estimation provided lfg.7) is better than the estimation in the
classical midpoint inequalitf2.9). A sufficient condition ford — ¢ < 3 ||f”||, to be true is
0 < ¢ < d.Indeed, if0 < ¢ < &, thend® — ¢ < || /"l <3 I/l

Corollary 2.5. Let f be as in Theorein 2.1, then,

fla)+ @) (b—a) ,
(2.10) 5 BT (f'(b) — i / f(t) dt’
1
<z @—9)@=h’b-a)
Proof. Putz = a andz = bin turn in (2.1) and use the triangle inequality. O

Corollary 2.6. Let f be as in Theorerm 2.1, then we have the following perturbed Trapezoid
inequality:

a —a b
iy  |[HOTIE B2 ) - pwy - 1 [ o
< (@) (b0,
Proof. Puth = 1 in (2.10). O

Remark 2.7. The classical Trapezoid inequality states that

(2.12) ’f RFAC /f dt’ iz(b—a)“’uf”lloo

If we assume thab — ¢ < 2 || /||, , then the estimation provided §.10) is better than the
estimation in the classical Trapezoid inequalityl2).
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3. APPLICATIONS IN NUMERICAL INTEGRATION

Let/, : a = 29 < 21 < -+ < 5,1 < x, = b be a division of the intervala, ],
& € |z, xi], (i=0,1,...,n— 1) a sequence of intermediate points and:= z;,1 — ;
(t=0,1,...,n —1). Following the approach taken in/[1] we have the following:

Theorem 3.1.Let f : [a,b] — R be continuous offu, b] and a twice differentiable function
on (a,b), whose second derivativé, : (a,b) — R satisfies:

o< f"(z) <P, forall z € (a,b),
then,

(3.1) /f A T €6) + Ry £ 10 66)

where

(3:2) A(ff 10, 6,0) = (1=06) > hif(&)
1_ th (& $z+xz 1) gz +5Zh ( X +f<xz+1)>

— |1 (1 Ti + Tiy1 ?
2 2

_l_
: (35 - 1) hz2 / ’
_—24 } (f (%’H) —f (%))

and the remainder (f, f', ., &, 5) satisfies the estimation:

mz_'_szrl ?
1 n—1
(3:3) <5 (@ 90)(1—5)2;@

whered € [0,1] andz; + 6% < & < w;q — 0%

Proof. Applying Theorenf 2]1 on the intervat;, z;,1] (i = 0,...,n — 1) gives:

(1-8) [urte) e (6 2570 i ] o, (L2020

1 it )T (B0-1)hR2|,, , @il
#5300 (6=t ) - B () - e - [ o
1 1 i+ 24 []?
g(‘b ©) hi |:2<1_5)hi+€i_T:| )
<@g (107 R
as
gi—“"”;%“ g(1—5)% foralli € {0,1,....,n — 1}

for any choice; of the intermediate points.
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Summing the above inequalities oviefrom 0 to n — 1, and using the generalized triangle
inequality, we get the desired estimati#h?3)) . O

Corollary 3.2. The following perturbed midpoint rule holds:

b
(3.4) / F(2)de = M(f. f'sI,) + Ras (f, . 1)

where

(35)  M(f.f.1) th(x’m“) 24Zh2 (wi2) = f' (@)

and the remainder terrk,,(f, f', I,,) satisfies the estimation:

! 1 —

(3.6) [Ras(f, £ )] < ﬁ@—so)Zh?.
=0
Corollary 3.3. The following perturbed trapezoid rule holds
b
3.7) [ 1@ =T (s L)+ Re (111,
where
+f xz—&-l 2 '

38)  T(f.f 1) Zh 122h (wi1) = f' (1))
and the remainder terrRT (f f', I,,) satisfies the estimation:

/ 3
(3.9) Re (£, 1) < 55 (8~ 0 Zh

Remark 3.4. Note that the above mentioned perturbed midpoint fornf8lg) and perturbed
trapezoid formul&(3.8)) can offer better approximations of the integﬁl f (z) dx for general

classes of mappings as discussed in Remjarks 2.2 and 2.4.
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