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Integral inequality.

In this paper we give an affirmative answer to an open problem proposed by Quéc

Anh Ng6, Du Duc Thang, Tran Tat Dat, and Dang Anh Tu@n [
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1. Introduction

In [6] the authors proved some integral inequalities and proposed the following ques-
tion:
Let f be a continuous function dn, 1] satisfying

@) [soa='5"0 0sesn

Under what conditions does the inequality

1 1
/ o (2)dx > / x5 (x)da
0 0

hold fora, 37?
In [1] the author has given an answer to this open problem, but there is a clear

gap in the proof of Lemma 1.1, so that the other results of the paper break down too.

In this paper we give an affirmative answer to this problem by presenting stronger
results. First we prove the following two essential lemmas.

Throughout this paper, we always assume tha a non-negative continuous
function on|0, 1], satisfying (..1).

Lemma 1.1. If (1.1) holds, then for each € [0, 1] we have
k+2

/1 £ F(£)dt > % (k € N).
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Proof. By our assumptions, we have

1 1 1 1 - y2
/ Y (/ f(t)dt) dy 2/ y’HTdy
T Yy T

1 1
= 5/ (y* " =y )dy

1 Loy 1

— = — X ——T
k(k+2) 2k 2(k+2)
On the other hand, integrating by parts, we also obtain

[ / i) dy= 1 / ey

1 1
= —%xk/sc f(t)dt-i-%/x ykf(y)dy-

k+2

1
T

1
+%/ y* fy)dy

Thus
I 1/t 1 1, 1 L
—— t)dt + — dy > ——— — — — kT2
k”:/zf() +k:/$yf(y)y_k:(k:+2) %’ "okt

! ! 1 1 k
o L R et

11 11 k
>k -2 —__k‘ —k‘-"-Q
= (2 2x)+k+2 2" T3kt 2)”
1—l‘k+2

k42
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Remarkl. By a similar argument, we can show that Leminaalso holds wherk
is a real number ifil, 0o). That is

1 1_Io¢+2
@ > — >1).
/:C tf(t)dt > ) (Va>1)

It is also interesting to note that the result 6f Lemma 1.3] holds if we take = 0
in Lemmal.l

Lemma1.2.Let f be a non-negative continuous function[énl] such thatfgc1 ft)dt >
1‘;2 (0 <z <1). Thenfor eachr € [0, 1] andk € N, we have

1—3:+
k:
/f = k41

0< / (F(0) — DU (1) — )t

:/;f’““(t)dt—/;tkf(t)dt—/Oltfk(t)dtJr/xltk“dt

it follows that

/xfkﬂ(t)dtz/x t’ff(t)dt+/x tfR(t )dt—ﬁ(l—ka).

By using Lemmal..1, we get

(1.2) /1 fE ) dt > /1 tfR(t)dt

Proof. Since
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We continue the proof by mathematical induction. The assertion is obvious=for

1. Let [ fr(t)dt > 152, we show thaif, f*+!(¢)dt > 1525~ We have

1 L Yy 11_yk+1d
> - J
/w(/yf(t)t) y_/x "
1

— 1 1 k+2
Ck+1 <y k+2” )w

1 1
K12 krl Gt DkR12)”
On the other hand, integrating by parts, we also obtain

/: (/yl fk(t)dt) dy=y /yl FH(@)dt : + /: yf*(y)dy

— /: f’“(t)dt—i—/: yf*(y)dy.

k+2

Thus

1 1 1 1 1
m/ Fdet |l Wy 2 s e Gk )

and hence

1 1 1 1
k k k+2
dy > £)dt _
/ny (y)y—z/rf() L R e I P s T
1—ab | |
> _ k+2
T R P R (N T
1 — xht?
kt2
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So by (L.2) we get
! k+1 ! k 1 — b2
> >
/xf (t)dt_/xtf (t)dt > rro

which completes the proof. O
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2. Main Results

Theorem 2.1.Let f be a non-negative and continuous functiorj@ri]. If fxl f@t)dt >
1222 () < z < 1), then for eachn,n € N,

/01 (@) de > /01 " f*(x)dx.

Proof. By using the general Cauchy inequali; Theorem 3.1], we have
n m+n m m—+n > M N
() ™ 2 ™ M 1),

which implies

n

1 m 1 1
m—+n d+ / m+nd >/ m £n d
/Of (z)dz el :C_O:Uf(:c):c

m-+n
Hence

m

/0 A <x)dx2/0 ' (:E)dx+m+n/0 e (x)dx_(m+n)(m+n+1)

:/Osc f(:c)d:c+m+n(/0 f +(x)d:c—m).

By Lemmal.2, we havefo1 frtr(eyde >

Therefore

1 1
m—+n d m rn d
| @ [am e
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Theorem 2.2. Let f be a continuous function such thatz) > 1 (0 < z < 1). If
Jo Fede > 5,

(2.1) /0 1 o (2)dx > /0 1 z° fP(x)dx

Proof. By a similar method to that used in the proof of Theoramthe inequality
(2 1) holds i1‘f1 fe+P(w)dr > 5. Soitis enough to prove thzﬁ; [ (z)dx >
7+1 (v >0). Sincef(z) >1(0 <z <1)and[y] <~v < [y] + 1, we have

/01 f(x)dx > /01 N (z)de

By Lemmal.2we obtain
[ r@az [ e s ]
f'ya:de/fode > )
0 0 +1 7 y+1
[

Remark2. The conditionf( ) >1(0 <z < 1)in Theorem2.2is necessary for
fo fz)de > -5 — (v > 0). For example, let

0 0<z<i
flz) =
22z — 1) %<$§1

dy = 1, thenf is continuous ono, 1] andf dx

“[S 5
A
e
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In the following theorem, we show that the conditiffx) > 1 (0 < z < 1) in
Theorem?.2 can be removed if we assume that- 5 > 1.

Theorem 2.3. Let f be a non-negative continuous function|[oni]. If fxl ft)dt >
1—2?

5— (0 <2 <1),then for eachy, 3 > 0 such thatw + 5 > 1, we have

1
a+0 1
/Of (@)de 2 53T

Proof. By using Theorem A of§] for ¢g(t) = ¢, « = 1, a = 0, andb = 1, the
assertion is obvious. O
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