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ABSTRACT. The main aim of this paper is to prove that the maximal opergtor sup |o,, | of

the Fejér means of the Vilenkin-Fourier series is not bounded from the Hardy Byacéo the
spaceL /5.
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Let N, denote the set of positive integers;= N, U {0}. Letm := (mg, m4,...) denote a
sequence of positive integers not less thabenote byZ,,, := {0,1,..., my — 1} the additive
group of integers modulo.

Define the groug,, as the complete direct product of the groufs,, with the product of
the discrete topologies ¢f,,;’'s.
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The direct product: of the measures

7)) = (€ Zn)

is the Haar measure @, with u(G,,) = 1.

If the sequence: is bounded, thety,, is called a bounded Vilenkin group, else itis called an
unbounded one. The elementggf, can be represented by sequences (zo, x1,...,z;,...)
(z; € Zm,). Itis easy to give a base for the neighborhoodé&/pf :

Iy(z) = Gy,
In(.CE) = {y € Gm|y0 =0y -y Yn-1 = xn—l}

for x € G,,, n € N. Definel,, := I,,(0) forn € N,.
If we define the so-called generalized number system basediarthe following way:

My =1, My = mkMk(k € N),

then everyn € N can be uniquely expressedas= >~ n;M;, wheren; € Z,, (j € N,)
and only a finite number of;;’s differ from zero. We use the following notations. Let (for
n > 0) |n| := max{k € N : ny # 0} (thatis, M, < n < M), n¥) = > —pniM; and
Ny ‘=N — n(k).

Denote byL,(G,,) the usual (one dimensional) Lebesgue spaged|{ the corresponding
norms)(1 < p < oo).

Next, we introduce ofy,,, an orthonormal system which is called the Vilenkin system. At first
define the complex valued functiong(z) : G,, — C, the generalized Rademacher functions

as
2mxy,

ri(z) :=exp (* = -1, v € G, k €N).

my
Now define the Vilenkin system := (¢, : n € N) onG,, as:

Unl(a) =[] ri*() (neN).

Specifically, we call this system the Walsh-Paley one i 2.

The Vilenkin system is orthonormal and completdif{G,,,) [9].

Now, we introduce analogues of the usual definitions in Fourier-analysfscIf,(G,,) we
can establish the following definitions in the usual manner:

(Fourier coefficients) Flk) = / fidp (k€ N),
Gm
n—1 N
(Partial sums) Spf = f(k)y, (n e Ny, Sof :=0),
k=0
1 n—1
(Fejér means) ouf == Suf  (neN,),
n
k=0
n—1
(Dirichlet kernels) D,:=) ¥ (neN).
k=0
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Recall that
o M,, fxel,,
1 D xT) =
i (2) 0, ifze G\
The norm (or quasinorm) of the spafg(G,,) is defined by

1

= ([ r@raw)  0<p<io.
The space weak-, (G,,) consists of all measurable functiofisor which
Hf”weakap(Gm) = ililg >‘:u (’f‘ > )\); < +00.

Theo-algebra generated by the interv@ls (z) : () € G,,} will be denoted byF,, (n € N).

Denote byf = (f™,n € N) a martingale with respect {¢7,,, n € N) (for details see, e. g.
[10,[14]).

The maximal function of a martingalgis defined by

f* = sup |1
neN
respectively.
In casef € L, (G,,), the maximal functions are also be given by
ff(x) =sup —— fu)p(u).
(@) neN 1 (1n()) In(z) () ()

For0 < p < oo the Hardy martingale spacég,(G,,,) consist of all martingales for which
1l = LF7]l, < oo

If f €L (Gn),thenitis easy to show that the sequefisg, (f) : n» € N) is a martingale.
If fisamartingale, thatig = (f : n € N), then the Vilenkin-Fourier coefficients must be
defined in a slightly different manner:

F) = Jim [ 50 @5 @) u ).
The Vilenkin-Fourier coefficients of € L, (G,,) are the same as those of the martingale
(Su, (f) : n € N) obtained fromf.
For a martingalef the maximal operators of the Fejér means are defined by

0" f (z) = sup |on(f; z)|.
neN
In this one-dimensional case the weak type inequality
. c
p(@f>2< Sl (>0

can be found in Zygmund [16] for the trigonometric series, in Schipp [6] for Walsh series and
in Pal, Simonl[5] for bounded Vilenkin series. Again in one-dimension, Fujji [3] and Simon [8]
verified thato* is bounded fronmf/; to L,. Weisz [11| 13] generalized this result and proved the
boundedness af* from the martingale Hardy spaég, to the spacé., for p > 1/2. Simon [7]

gave a counterexample, which shows that this boundedness does not hbld jox 1/2. In

the endpoint case = 1/2 Weisz [15] proved that* is bounded from the Hardy spaéh , to

the space weak~ ;. By interpolation it follows that* is not bounded froniZ, to the space
weakL, forall 0 < p < 1/2.
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Theorem 1. For any bounded Vilenkin system the maximal operatoof the Fejér means is
not bounded from the Hardy spaéh , to the space., /.

The Fejér kernel of ordet of the Vilenkin-Fourier series is defined by

In order to prove the theorem we need the following lemmas.

Lemma 2 ([4]). Suppose that, t,n € Nandxz € [,\I;41. If t < s <|n|, then

(n(SH) + MS)‘KTL(S+1>+MS (ZL’) — n(s+1)Kn(s+1)
MMy () 1oy If 2 — mie, € I,
0, otherwise.

Lemma 3([2]). Let2 < A e N,k < s < Aandn’ := Moy + Mos_o + -+ + My + M.
Then
M2kM28

4

P | Ko (@) 2
for

S IQA(O,...,O,IL‘Qk 7é 0,0,...,0, 29 7é O,ZL‘25+1,...,ZL‘2A_1),
k=01,...,A—3  s=k+2k+3,.. A—1

Proof of Theorem]1Let A € N and
fA (l’) = DM2A+1 (l’) - D]VIQA (l’) .
In the sequel we are going to prove for the functjonthat

lo* fall1/2

> clog? A,
MFall,,, — 5

whereq = sup {mg, m1,...} and constant depends only org. This inequality obviously
would show the unboundednessoot
It is evident that

fali)=

- 1, ifi=DMyy,...,Moay1 — 1,
0, otherwise.

Then we can write

D;(x) — Dag, (z), ifi=Moa+1,..., Moasq — 1,
(2) Si(fasx) =< fal(z), if @ > Maay,

0, otherwise.

Since
fa () = sup|Sur, (fa;2)| = [fa (2)],

neN
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from (1) we get

(3) ||fA||H1/2 = ||f2||1/2 = HDM2A+1 - DMQAHl/g

2
1 1
= / Mgy +/ |Maay1 — Maal?
Ioa\I2a11 Ipagq

2

mog — 1. 1 (mgg—1)2 1

— —M2 + —M2
( Moy, 24 Moyiq 24

[N

< 22m2AM2’Al
< cMQ_Al.
Since
Dyiniys — Datyy = Uasy, D, k=1,2,..., My,

from (2) we obtain

(4) 0" fa(x) =sup o, (fa;x)| > |ows, (fa;2)]

neN

*
nj—1

= Z Si (fASQC)

o
Letq := sup{m; : i €}. Foreveryl = 1,..., [%l log, \/Z] — 1 (A is supposed to be large
enough) let; be the smallest natural numbers, for which

1 1
M2A\/Zﬁ < M22kl < MZA\/ZW

hold.
Denote
I;f ([B) = IQA (O, e ,O,.’L’Qk 7é 0,0, N ,O,.Z'QS 7é 0,.1‘25+1, e 7x2A—1)
and let
r e I (2)

Then from Lemma@]3 and(4) we obtain that

M, VA

> c——

* >
S T
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On the other hand,

logq m2k1+3—1 Moa_1—1 \4/2
||U fA||1/2 > cC Z Z . Z W” <I§f47kl+1 ([E))

T2p;4+3=0 z24-1=0
[% log,, \/Z]

4 Moky+3 -+~ MM2A-1
>cVA E !
=1

q* M4
[i log, ‘/Z]

1
lz:; QQIM%,H

[i 10gq \/Z]

> VA S
; qule

[ibgq \/‘Z] 1
S WA Y
=1 g2 \/MzA\/Zq—ALZ—HL
log A
> c O8q .
Vv Maa

Combining this with[(B) we obtain

||a*fA||1/2 - cloggA
Fallm, ~ o

Thus, the theorem is proved. O

MQA:cloggA—M)o as A — oo.
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