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ABSTRACT. The main aim of this paper is to prove that the maximal operatorσ∗ := sup
n
|σn| of

the Fejér means of the Vilenkin-Fourier series is not bounded from the Hardy spaceH1/2 to the
spaceL1/2.
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Let N+ denote the set of positive integers,N := N+ ∪ {0}. Letm := (m0,m1, . . . ) denote a
sequence of positive integers not less than2. Denote byZmk

:= {0, 1, . . . ,mk − 1} the additive
group of integers modulomk.

Define the groupGm as the complete direct product of the groupsZmj
, with the product of

the discrete topologies ofZmj
’s.
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The direct productµ of the measures

µk({j}) :=
1

mk

(j ∈ Zmk
)

is the Haar measure onGm with µ(Gm) = 1.
If the sequencem is bounded, thenGm is called a bounded Vilenkin group, else it is called an

unbounded one. The elements ofGm can be represented by sequencesx := (x0, x1, . . . , xj, . . . )
(xj ∈ Zmj

). It is easy to give a base for the neighborhoods ofGm :

I0(x) := Gm,

In(x) := {y ∈ Gm|y0 = x0, . . . , yn−1 = xn−1}

for x ∈ Gm, n ∈ N. DefineIn := In(0) for n ∈ N+.
If we define the so-called generalized number system based onm in the following way:

M0 := 1, Mk+1 := mkMk(k ∈ N),

then everyn ∈ N can be uniquely expressed asn =
∑∞

j=0 njMj, wherenj ∈ Zmj
(j ∈ N+)

and only a finite number ofnj ’s differ from zero. We use the following notations. Let (for
n > 0) |n| := max{k ∈ N : nk 6= 0} (that is,M|n| ≤ n < M|n|+1), n(k) =

∑∞
j=k njMj and

n(k) := n− n(k).
Denote byLp(Gm) the usual (one dimensional) Lebesgue spaces (‖ · ‖p the corresponding

norms)(1 ≤ p ≤ ∞).
Next, we introduce onGm an orthonormal system which is called the Vilenkin system. At first

define the complex valued functionsrk(x) : Gm → C, the generalized Rademacher functions
as

rk(x) := exp
2πıxk

mk

(ı2 = −1, x ∈ Gm, k ∈ N).

Now define the Vilenkin systemψ := (ψn : n ∈ N) onGm as:

ψn(x) :=
∞∏

k=0

rnk
k (x) (n ∈ N).

Specifically, we call this system the Walsh-Paley one ifm ≡ 2.
The Vilenkin system is orthonormal and complete inL1(Gm) [9].
Now, we introduce analogues of the usual definitions in Fourier-analysis. Iff ∈ L1(Gm) we

can establish the following definitions in the usual manner:

(Fourier coefficients) f̂(k) :=

∫
Gm

fψkdµ (k ∈ N),

(Partial sums) Snf :=
n−1∑
k=0

f̂(k)ψk (n ∈ N+, S0f := 0),

(Fejér means) σnf :=
1

n

n−1∑
k=0

Snf (n ∈ N+),

(Dirichlet kernels) Dn :=
n−1∑
k=0

ψk (n ∈ N+).
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Recall that

(1) DMn (x) =

{
Mn, if x ∈ In,

0, if x ∈ Gm\In.
The norm (or quasinorm) of the spaceLp (Gm) is defined by

‖f‖p :=

(∫
Gm

|f (x)|p µ (x)

) 1
p

(0 < p < +∞) .

The space weak-Lp (Gm) consists of all measurable functionsf for which

‖f‖weak−Lp(Gm) := sup
λ>0

λµ (|f | > λ)
1
p < +∞.

Theσ-algebra generated by the intervals{In (x) : (x) ∈ Gm}will be denoted byFn (n ∈ N) .
Denote byf =

(
f (n), n ∈ N

)
a martingale with respect to(Fn, n ∈ N) (for details see, e. g.

[10, 14]).
The maximal function of a martingalef is defined by

f ∗ = sup
n∈N

∣∣f (n)
∣∣ ,

respectively.
In casef ∈ L1 (Gm), the maximal functions are also be given by

f ∗ (x) = sup
n∈N

1

µ (In(x))

∣∣∣∣∫
In(x)

f (u)µ (u)

∣∣∣∣ .
For0 < p <∞ the Hardy martingale spacesHp(Gm) consist of all martingales for which

‖f‖Hp
:= ‖f ∗‖p <∞.

If f ∈ L1 (Gm) , then it is easy to show that the sequence(SMn (f) : n ∈ N) is a martingale.
If f is a martingale, that isf = (f (n) : n ∈ N), then the Vilenkin-Fourier coefficients must be
defined in a slightly different manner:

f̂ (i) = lim
k→∞

∫
Gm

f (k) (x)ψi (x)µ (x) .

The Vilenkin-Fourier coefficients off ∈ L1 (Gm) are the same as those of the martingale
(SMn (f) : n ∈ N) obtained fromf .

For a martingalef the maximal operators of the Fejér means are defined by

σ∗f (x) = sup
n∈N

|σn(f ;x)|.

In this one-dimensional case the weak type inequality

µ (σ∗f > λ) ≤ c

λ
‖f‖1 (λ > 0)

can be found in Zygmund [16] for the trigonometric series, in Schipp [6] for Walsh series and
in Pál, Simon [5] for bounded Vilenkin series. Again in one-dimension, Fujji [3] and Simon [8]
verified thatσ∗ is bounded fromH1 toL1. Weisz [11, 13] generalized this result and proved the
boundedness ofσ∗ from the martingale Hardy spaceHp to the spaceLp for p > 1/2. Simon [7]
gave a counterexample, which shows that this boundedness does not hold for0 < p < 1/2. In
the endpoint casep = 1/2 Weisz [15] proved thatσ∗ is bounded from the Hardy spaceH1/2 to
the space weak-L1/2. By interpolation it follows thatσ∗ is not bounded fromHp to the space
weak-Lp for all 0 < p < 1/2.
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Theorem 1. For any bounded Vilenkin system the maximal operatorσ∗ of the Fejér means is
not bounded from the Hardy spaceH1/2 to the spaceL1/2.

The Fejér kernel of ordern of the Vilenkin-Fourier series is defined by

Kn (x) :=
1

n

n−1∑
k=0

Dk (x) .

In order to prove the theorem we need the following lemmas.

Lemma 2 ([4]). Suppose thats, t, n ∈ N andx ∈ It\It+1. If t ≤ s ≤ |n|, then

(n(s+1) +Ms)Kn(s+1)+Ms
(x)− n(s+1)Kn(s+1)

=

{
MtMsψn(s+1)(x) 1

1−rt(x)
, if x− xtet ∈ Is,

0, otherwise.

Lemma 3 ([2]). Let 2 < A ∈ N+, k ≤ s < A andn∗A := M2A + M2A−2 + · · · + M2 + M0.
Then

n∗A−1

∣∣∣Kn∗A−1
(x)
∣∣∣ ≥ M2kM2s

4

for

x ∈ I2A(0, . . . , 0, x2k 6= 0, 0, . . . , 0, x2s 6= 0, x2s+1, . . . , x2A−1),

k = 0, 1, . . . , A− 3, s = k + 2, k + 3, . . . , A− 1.

Proof of Theorem 1.LetA ∈ N+ and

fA (x) := DM2A+1
(x)−DM2A

(x) .

In the sequel we are going to prove for the functionfA that

‖σ∗fA‖1/2

‖fA‖H1/2

≥ c log2
q A,

whereq = sup {m0,m1, . . . } and constantc depends only onq. This inequality obviously
would show the unboundedness ofσ∗.

It is evident that

f̂A (i) =

{
1, if i = M2A, . . . ,M2A+1 − 1,

0, otherwise.

Then we can write

(2) Si (fA;x) =


Di (x)−DM2A

(x) , if i = M2A + 1, . . . ,M2A+1 − 1,

fA (x) , if i ≥M2A+1,

0, otherwise.

Since

f ∗A (x) = sup
n∈N

|SMn (fA;x)| = |fA (x)| ,
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from (1) we get

‖fA‖H1/2
= ‖f ∗A‖1/2 =

∥∥DM2A+1
−DM2A

∥∥
1/2

(3)

=

(∫
I2A\I2A+1

M
1
2
2A +

∫
I2A+1

|M2A+1 −M2A|
1
2

)2

=

(
m2A − 1

M2A+1

M
1
2
2A +

(m2A − 1)
1
2

M2A+1

M
1
2
2A

)2

≤ 22m2AM
−1
2A

≤ cM−1
2A .

Since

Dk+M2A
−DM2A

= ψM2A
Dk, k = 1, 2, . . . ,M2A,

from (2) we obtain

σ∗fA (x) = sup
n∈N

|σn (fA;x)| ≥
∣∣σn∗A

(fA;x)
∣∣(4)

=
1

n∗A

∣∣∣∣∣∣
n∗A−1∑
i=0

Si (fA;x)

∣∣∣∣∣∣
=

1

n∗A

∣∣∣∣∣∣
n∗A−1∑

i=M2A+1

(Di (x)−DM2A
(x))

∣∣∣∣∣∣
=

1

n∗A

∣∣∣∣∣∣
n∗A−1−1∑

i=1

(Di+M2A
(x)−DM2A

(x))

∣∣∣∣∣∣
=
n∗A−1

n∗A

∣∣∣Kn∗A−1
(x)
∣∣∣ .

Let q := sup{mi : i ∈}. For everyl = 1, . . . ,
[

1
4
logq

√
A
]
− 1 (A is supposed to be large

enough) letkl be the smallest natural numbers, for which

M2A

√
A

1

q4l
≤M2

2kl
< M2A

√
A

1

q4l−4

hold.
Denote

Ik,s
2A (x) := I2A (0, . . . , 0, x2k 6= 0, 0, . . . , 0, x2s 6= 0, x2s+1, . . . , x2A−1)

and let

x ∈ Ikl,kl+1
2A (z)

Then from Lemma 3 and (4) we obtain that

σ∗fA (x) ≥ c
M2

2kl

M2A

≥ c

√
A

q4l
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On the other hand,√
‖σ∗fA‖1/2 ≥ c

[ 1
4

logq

√
A]∑

l=1

m2kl+3−1∑
x2kl+3=0

· · ·
m2A−1−1∑
x2A−1=0

4
√
A

q2l
µ
(
Ikl,kl+1
2A (x)

)

≥ c
4
√
A

[ 1
4

logq

√
A]∑

l=1

m2kl+3 · · ·m2A−1

q2lM2A

= c
4
√
A

[ 1
4

logq

√
A]∑

l=1

1

q2lM2kl+2

≥ c
4
√
A

[ 1
4

logq

√
A]∑

l=1

1

q2lM2kl

≥ c
4
√
A

[ 1
4

logq

√
A]∑

l=1

1

q2l

√
M2A

√
Aq−4l+4

≥ c
logq A√
M2A

.

Combining this with (3) we obtain

‖σ∗fA‖1/2

‖fA‖H1/2

≥
c log2

q A

M2A

M2A = c log2
q A→∞ as A→∞.

Thus, the theorem is proved. �
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