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ABSTRACT. We order the space of complexx n matrices by the star partial orderirg'. So

A <* B means thaA*A = A*B and AA* = BA*. We find several characterizations for
A <* B in the case of normal matrices. As an application, we study Aow™ B relates to
A2 <* B2. The results can be extended to study haw<* B relates toA* <* B*, where

k > 2is an integer.
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1. INTRODUCTION

Throughout this paper, we consider the space of complex: matrices ¢ > 2). We order
it by the star partial ordering*. SOA <* B means thaA*A = A*B andAA* = BA*. Our
motivation rises from the following

Theorem 1.1 (Baksalary and Pukelsheim![1, Theorem.3]et A and B be Hermitian and
nonnegative definite. Thek? <* B? if and only if A <* B.

We cannot drop out the assumption on nonnegative definiteness.

() )

ThenA? <* B?, but notA <* B.

Example 1.1.Let
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We will study howA <* B relates toaA? <* B? in the case of normal matrices. We will see
(Theorenj 3.]1) that the “if” part of Theorem 1.1 remains valid. However, it is not valid for all

matrices.
1 1 1 1

ThenA <* B, but notA2 <* B2.

In Sectior] 2, we will give several characterizationshok* B. Thereatfter, in Sectidn 3, we
will apply some of them in discussing our problem. Finally, in Sedtion 4, we will complete our
paper with some remarks.

Example 1.2.Let

2. CHARACTERIZATIONS OF A <*B

Hartwig and Styan [([2, Theorem 2]) presented eleven characterizatiohs<of B for gen-
eral matrices. One of them uses singular value decompositions. In the case of normal matrices,
spectral decompositions are more accessible.

Theorem 2.1.Let A andB be normal matrices withh < rank A < rank B. Then the following
conditions are equivalent:

(a) A <* B.

(b) There is a unitary matribU such that

At (DO mpr_ (D O
UAU-(O o)’ UBU-(O E)

whereD is a nonsingular diagonal matrix anBl # O is a diagonal matrix.
(c) There is a unitary matriyU such that

ari_ (F O s (F O
UAU_<O O), UBU_<O G),

whereF is a nonsingular square matrix an@ # O.
(d) If a unitary matrixU satisfies

car (F O rs_ (F' O
UAU_(O o)’ UBU—(O G),

whereF is a nonsingular square matriE’ is a square matrix of the same dimension,
andG # O, thenF = F'.
(e) If a unitary matrixU satisfies

... (DO vore (DO
UAU(O o)’ UBU(O E)

whereD is a nonsingular diagonal matri¥)’ is a diagonal matrix of the same dimen-
sion, andE # O is a diagonal matrix, thedd = D'.
() If a unitary matrixU satisfies

N (D O
wav-(3 Q).
whereD is a nonsingular diagonal matrix, then
. (D O
U*BU = (O G) ,
whereG # O.
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(g) All eigenvectors corresponding to nonzero eigenvalues afe eigenvectors dB cor-
responding to the same eigenvalues.

The reason to assunie< rank A < rank B is to omit the trivial cased = O andA = B.

Proof. We prove this theorem in four parts.

Partl. (a)= (b) = (c)= (a).

(8)= (b). Assume (a). Then, by normality* andB commute and are therefore simultane-
ously diagonalizable (see, e.d., [3, Theorem 1.3.19]). ShemdA* have the same eigenvec-
tors (see, e.g.| [3, Problem 2.5.20]), alscand B are simultaneously diagonalizable. Hence
(recall the assumption on the ranks) there exists a unitary nidtexch that

* D O . D O
UAU_(O O)’ UBU_(O E)’
whereD is a nonsingular diagonal matrik)’ is a diagonal matrix of the same dimension, and
E # O is a diagonal matrix. NowvA*A = A*B impliesD*D = D*D’ and furtherD = D’.
Hence (b) is valid.
(b) = (c). Trivial.
(c) = (a). Direct calculation.

Part2. (a)= (d)= (e)= (a).
This is a trivial modification of Part 1.

Part 3. (b) < (f).
(b) = (f). Assume (b). LelU be a unitary matrix satisfying

... (DO
vav- (3 9).

By (b), there exists a unitary matriX such that

v _ (DO my_ (DO
VAV(O o)’ VBV(O E)

whereD’ is a nonsingular diagonal matrix aiti# O is a diagonal matrix. Interchanging the
columns ofV if necessary, we can assu = D.
LetU = (U; U,) be such a partition that

A _ (UjAU, UAU,\ (D O
UAU—(U;)A(U1 U2)_(U§AU1 uiau,) ~lo o)

Then, for the corresponding partition = (V; V), we have

VAV — (Vl) AV) V) = <V1AV1 VIAV2> _ <D o)

\'% VAV, V3AV, O O
and
s (V3 _ (ViBV, ViBV,\ (D O
VBV = (V;)B(Vl Va) = (V;BV1 V;BV2> = (0 E)
Noting that
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we therefore have

UV, UMV,
UiV, UiV,

(

(

( ¢
:(Ulvl o)

(

(

DV:U; DVIU,
EV:U, EV;U,
DVIU, O
O EVIU,
UV, DV:U,; o)

o) U:V,EV;U,

7~ N 7 N\

UjAU, (@) (D (0]

0] UiVL,EVIU, )  \O UsV,EV;U, )’
and so (f) follows.

() = (b). Assume (f). LelU be a unitary matrix such that

... (DO
oau- (5 Q)

whereD is a nonsingular diagonal matrix. Then, by (f),

vrr (D O
UBU_(O G),

whereG # O. SinceG is normal, there exists a unitary matiW¥ such thatt = W*GW is

a diagonal matrix. Let
I O
vV=U (O W) .

Then
vav— (5 9)vau(d 9)
_(I O)(D O)(I O)_(D 0)
~\O0 W*/\0 O0/)\0 W) (0 O
and
VBV = ((I) V%) U'BU (é &.)
_(I O) D O)(I O)_(D O)
~\0 W*/\0 G/\O W/ \O E
Thus (b) follows.
Part 4. (b)< (Q).
This is an elementary fact. O
Corollary 2.2. Let A andB be normal matrices. IA <* B, thenAB = BA.
Proof. Apply (b). O

The converse does not hold (even assuming A < rank B), see Examplg 2/1. The nor-
mality assumption cannot be dropped out, see Example 2.2.
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Example 2.1.Let

Gy ey

ThenAB = BA andrank A < rank B, but A <* B does not hold. Howeve%A <* B,
which makes us look for a counterexample such t#at<* B does not hold for any # 0. It
is easy to see that we must have> 3. The matrices

200 3 00
A=10 3 0], B=1[(0 4 0
000 0 01

obviously have the required properties.

() ()

ThenA <* B, butAB # BA.

Example 2.2. Let

3. RELATIONSHIP BETWEEN A <* BAND A? <* B2

We will see thatA <* B = A? <* B? for normal matrices, but the converse needs an extra
condition, which we first present using eigenvalues.

Theorem 3.1. Let A and B be normal matrices with < rank A < rank B. Then

(@) A<*B
is equivalent to the following:
(b) A2 S* B2

and if A and B have nonzero eigenvaluesand respectivelys such thatn? and 32 are eigen-
values ofA? and respectively3? with a common eigenvectar, thena = 3 andx is a common
eigenvector oA andB.

Proof. Assuming|(f), we have

... (D O or. (D O
UAU_<O O), UBU_<O E>

as in (b) of Theorerh 2|1, and so

D2 O D2 O
* A 2 _ *R2 _
UAU_(O O)’ UBU_(O E2).
Hence, by Theorein 2.1, the first part of (b) follows. The second part is trivial.

Conversely, assumg|(b). Then

sa2rr (A O 2 (A O
UAU_(OO’ U'B°U = O T)

whereU, A, andT" are matrices obtained by applying (b) of Theofen) 2. Afoand B2. Let
uy,...,u, be the column vectors af and denote = rank A.

Fori =1,...,r, we haveA?u; = B?u; = d,u;, where(§;) = diag A. So, by the second part
of (b), there exist complex numbeds, . . ., d, such that, forali = 1,...,r, we haved? = §;
andAu; = Bu; = §;u;. LetD be the diagonal matrix witfd;) = diag D.
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Fori=r+1,...,n, we haveB?*u; = v,_,u;, where(y;) = diag I'. Take complex numbers
€1, ..., e, satisfyinge? = ; fori = 1,...,n — r. LetE be the diagonal matrix witke;) =
diag E. Then

. (D O . (D O
UAU-(O O)’ UBU-(O E)’
and (a) follows from Theorein 7.1. O

As an immediate corollary, we obtain a generalization of Thegrein 1.1.

Corollary 3.2. Let A and B be normal matrices whose all eigenvalues have nonnegative real
parts. ThenA? <* B2 if and only if A <* B.

Next, we present the extra condition using diagonalization.
Theorem 3.3.Let A andB be normal matrices with < rank A < rank B. Then
(a) A<'B
is equivalent to the following:
(b) A2 <* B2
and if

. (DO ayr_ (DH O
UAU-(O O), UBU—<O E)

whereU is a unitary matrix,D is a nonsingular diagonal matrixtl is a unitary diagonal
matrix, andE # O is a diagonal matrix, thedd = 1.

(Note that the second part of (b) is weaker than (e) of Theprem 2.1. Otherwise Theofem 3.3
would be nonsense.)

Proof. For (a)=- the first part of (b), see the proof of Theorem|3.1. Forajhe second part
of (b), see (e) of Theorem 2.1.
Conversely, assume (b). As in the proof of Theofem 3.1, we have

cian (A O voee (A O
UAU_<OO, UBU= (g )

Hence

. D O . D' O
UAU_(O O)’ UBU_(O E)’

whereD andD’ are diagonal matrices satisfyidgf = (D’)? = A andE is a diagonal matrix
satisfyingE? = T..

Denoting(d;) = diagD, (d) = diagD’, r = rank A, we therefore have? = (d})? for all
i = 1,...,r. Hence there are complex numbérs. .., h,. such thath,| = --- = |h,| = 1
andd, = d;h; foralli = 1,...,r. Let H be the diagonal matrix witlih;) = diagH. Then
D’ = DH, and saD’ = D by the second part of (b). Thus (b) of Theoren] 2.1 is satisfied, and
so (a) follows. O
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4. REMARKS
We complete our paper with four remarks.

Remark 4.1. Let £ > 2 be an integer. A natural further question is whether our discussion
can be extended to describe hdw<* B relates toA* <* B*. As noted by Baksalary and
Pukelsheim([1], Theorem 1.1 can be generalized in a similar way. In other words, for Hermitian
nonnegative definite matriced* <* B if and only if A <* B. It can be seen also that
Theorems$ 3]1 ar]d 3.3 can be, with minor modifications, extended correspondingly.

Remark 4.2. Let A andB be arbitraryn x n matrices withrank A < rank B. Hartwig and
Styan ([2, Theorem 2]) proved that <* B if and only if there are unitary matricds andV

such that o o
NS > S >
UAV-(O O)’ UBV—(O @),

whereX: is a positive definite diagonal matrix aitd = O is a nonnegative definite diagonal
matrix. This is analogous to (a (b) of Theorenj 2]1. Actually it can be seen that all the
characterizations oA <* B listed in Theorem 2|1 have singular value analogies in the general
case.

Remark 4.3. The singular values of a normal matrix are absolute values of its eigenvalues (see
e.g., [3, p. 417]). Hence it is relatively easy to see that if (and onkxi§ndB are normal, then
U andV above can be chosen so thatV is a diagonal matrix.

Remark 4.4. For normal matrices, it can be shown that Theorems 3.1 and 3.3 have singular
value analogies. In the proof, it is crucial tHatV is a diagonal matrix. So these results do not
remain valid without the normality assumption.
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