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Abstract

We order the space of complex n × n matrices by the star partial ordering ≤∗.
So A ≤∗ B means that A∗A = A∗B and AA∗ = BA∗. We find several
characterizations for A ≤∗ B in the case of normal matrices. As an application,
we study how A ≤∗ B relates to A2 ≤∗ B2. The results can be extended to
study how A ≤∗ B relates to Ak ≤∗ Bk, where k ≥ 2 is an integer.
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1. Introduction
Throughout this paper, we consider the space of complexn×n matrices (n ≥ 2).
We order it by the star partial ordering≤∗. SoA ≤∗ B means thatA∗A = A∗B
andAA∗ = BA∗. Our motivation rises from the following

Theorem 1.1 (Baksalary and Pukelsheim [1, Theorem 3]). Let A andB be
Hermitian and nonnegative definite. ThenA2 ≤∗ B2 if and only ifA ≤∗ B.

We cannot drop out the assumption on nonnegative definiteness.

Example 1.1.Let

A =

(
1 0
0 1

)
, B =

(
1 0
0 −1

)
.

ThenA2 ≤∗ B2, but notA ≤∗ B.

We will study howA ≤∗ B relates toA2 ≤∗ B2 in the case of normal
matrices. We will see (Theorem3.1) that the “if” part of Theorem1.1 remains
valid. However, it is not valid for all matrices.

Example 1.2.Let

A =

(
1 1
0 0

)
, B =

(
1 1
2 −2

)
.

ThenA ≤∗ B, but notA2 ≤∗ B2.

In Section2, we will give several characterizations ofA ≤∗ B. Thereafter,
in Section3, we will apply some of them in discussing our problem. Finally, in
Section4, we will complete our paper with some remarks.
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2. Characterizations ofA ≤∗ B
Hartwig and Styan ([2, Theorem 2]) presented eleven characterizations ofA ≤∗

B for general matrices. One of them uses singular value decompositions. In the
case of normal matrices, spectral decompositions are more accessible.

Theorem 2.1. Let A andB be normal matrices with1 ≤ rankA < rankB.
Then the following conditions are equivalent:

(a) A ≤∗ B.

(b) There is a unitary matrixU such that

U∗AU =

(
D O
O O

)
, U∗BU =

(
D O
O E

)
,

whereD is a nonsingular diagonal matrix andE 6= O is a diagonal ma-
trix.

(c) There is a unitary matrixU such that

U∗AU =

(
F O
O O

)
, U∗BU =

(
F O
O G

)
,

whereF is a nonsingular square matrix andG 6= O.

(d) If a unitary matrixU satisfies

U∗AU =

(
F O
O O

)
, U∗BU =

(
F′ O
O G

)
,

whereF is a nonsingular square matrix,F′ is a square matrix of the same
dimension, andG 6= O, thenF = F′.
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(e) If a unitary matrixU satisfies

U∗AU =

(
D O
O O

)
, U∗BU =

(
D′ O
O E

)
,

whereD is a nonsingular diagonal matrix,D′ is a diagonal matrix of the
same dimension, andE 6= O is a diagonal matrix, thenD = D′.

(f) If a unitary matrixU satisfies

U∗AU =

(
D O
O O

)
,

whereD is a nonsingular diagonal matrix, then

U∗BU =

(
D O
O G

)
,

whereG 6= O.

(g) All eigenvectors corresponding to nonzero eigenvalues ofA are eigenvec-
tors ofB corresponding to the same eigenvalues.

The reason to assume1 ≤ rankA < rankB is to omit the trivial cases
A = O andA = B.

Proof. We prove this theorem in four parts.

Part 1. (a)⇒ (b)⇒ (c)⇒ (a).
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(a)⇒ (b). Assume (a). Then, by normality,A∗ andB commute and are
therefore simultaneously diagonalizable (see, e.g., [3, Theorem 1.3.19]). Since
A andA∗ have the same eigenvectors (see, e.g., [3, Problem 2.5.20]), alsoA
andB are simultaneously diagonalizable. Hence (recall the assumption on the
ranks) there exists a unitary matrixU such that

U∗AU =

(
D O
O O

)
, U∗BU =

(
D′ O
O E

)
,

whereD is a nonsingular diagonal matrix,D′ is a diagonal matrix of the same
dimension, andE 6= O is a diagonal matrix. NowA∗A = A∗B implies
D∗D = D∗D′ and furtherD = D′. Hence (b) is valid.

(b)⇒ (c). Trivial.
(c)⇒ (a). Direct calculation.

Part 2. (a)⇒ (d)⇒ (e)⇒ (a).
This is a trivial modification of Part 1.

Part 3. (b)⇔ (f).
(b)⇒ (f). Assume (b). LetU be a unitary matrix satisfying

U∗AU =

(
D O
O O

)
.

By (b), there exists a unitary matrixV such that

V∗AV =

(
D′ O
O O

)
, V∗BV =

(
D′ O
O E

)
,
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whereD′ is a nonsingular diagonal matrix andE 6= O is a diagonal matrix.
Interchanging the columns ofV if necessary, we can assumeD′ = D.

Let U =
(
U1 U2

)
be such a partition that

U∗AU =

(
U∗

1

U∗
2

)
A

(
U1 U2

)
=

(
U∗

1AU1 U∗
1AU2

U∗
2AU1 U∗

2AU2

)
=

(
D O
O O

)
.

Then, for the corresponding partitionV =
(
V1 V2

)
, we have

V∗AV =

(
V∗

1

V∗
2

)
A

(
V1 V2

)
=

(
V∗

1AV1 V∗
1AV2

V∗
2AV1 V∗

2AV2

)
=

(
D O
O O

)
and

V∗BV =

(
V∗

1

V∗
2

)
B

(
V1 V2

)
=

(
V∗

1BV1 V∗
1BV2

V∗
2BV1 V∗

2BV2

)
=

(
D O
O E

)
.

Noting that

A =
(
V1 V2

) (
D O
O O

) (
V∗

1

V∗
2

)
=

(
V1 V2

) (
DV∗

1

O

)
= V1DV∗

1,

we therefore have

U∗BU =

(
U∗

1

U∗
2

) (
V1 V2

) (
D O
O E

) (
V∗

1

V∗
2

) (
U1 U2

)
=

(
U∗

1

U∗
2

) (
V1 V2

) (
DV∗

1

EV∗
2

) (
U1 U2

)
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=

(
U∗

1V1 U∗
1V2

U∗
2V1 U∗

2V2

) (
DV∗

1U1 DV∗
1U2

EV∗
2U1 EV∗

2U2

)
=

(
U∗

1V1 O
O U∗

2V2

) (
DV∗

1U1 O
O EV∗

2U2

)
=

(
U∗

1V1DV∗
1U1 O

O U∗
2V2EV∗

2U2

)
=

(
U∗

1AU1 O
O U∗

2V2EV∗
2U2

)
=

(
D O
O U∗

2V2EV∗
2U2

)
,

and so (f) follows.
(f) ⇒ (b). Assume (f). LetU be a unitary matrix such that

U∗AU =

(
D O
O O

)
,

whereD is a nonsingular diagonal matrix. Then, by (f),

U∗BU =

(
D O
O G

)
,

whereG 6= O. SinceG is normal, there exists a unitary matrixW such that
E = W∗GW is a diagonal matrix. Let

V = U

(
I O
O W

)
.
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Then

V∗AV =

(
I O
O W∗

)
U∗AU

(
I O
O W

)
=

(
I O
O W∗

) (
D O
O O

) (
I O
O W

)
=

(
D O
O O

)
and

V∗BV =

(
I O
O W∗

)
U∗BU

(
I O
O W

)
=

(
I O
O W∗

) (
D O
O G

) (
I O
O W

)
=

(
D O
O E

)
.

Thus (b) follows.

Part 4. (b)⇔ (g).
This is an elementary fact.

Corollary 2.2. LetA andB be normal matrices. IfA ≤∗ B, thenAB = BA.

Proof. Apply (b).

The converse does not hold (even assumingrankA < rankB), see Exam-
ple2.1. The normality assumption cannot be dropped out, see Example2.2.

Example 2.1.Let

A =

(
2 0
0 0

)
, B =

(
1 0
0 1

)
.
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ThenAB = BA andrankA < rankB, butA ≤∗ B does not hold. However,
1
2
A ≤∗ B, which makes us look for a counterexample such thatcA ≤∗ B does

not hold for anyc 6= 0. It is easy to see that we must haven ≥ 3. The matrices

A =

2 0 0
0 3 0
0 0 0

 , B =

3 0 0
0 4 0
0 0 1


obviously have the required properties.

Example 2.2.Let

A =

(
0 1
0 0

)
, B =

(
0 1
1 0

)
.

ThenA ≤∗ B, butAB 6= BA.

http://jipam.vu.edu.au/
mailto:
mailto:jorma.merikoski@uta.fi
mailto:
mailto:xiaojiliu72@yahoo.com.cn
http://jipam.vu.edu.au/


On the Star Partial Ordering of
Normal Matrices

Jorma K. Merikoski and Xiaoji Liu

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 11 of 16

J. Ineq. Pure and Appl. Math. 7(1) Art. 17, 2006

http://jipam.vu.edu.au

3. Relationship betweenA ≤∗ B and A2 ≤∗ B2

We will see thatA ≤∗ B ⇒ A2 ≤∗ B2 for normal matrices, but the converse
needs an extra condition, which we first present using eigenvalues.

Theorem 3.1. Let A andB be normal matrices with1 ≤ rankA < rankB.
Then

(a) A ≤∗ B

is equivalent to the following:

(b) A2 ≤∗ B2

and if A and B have nonzero eigenvaluesα and respectivelyβ such thatα2

andβ2 are eigenvalues ofA2 and respectivelyB2 with a common eigenvector
x, thenα = β andx is a common eigenvector ofA andB.

Proof. Assuming (a), we have

U∗AU =

(
D O
O O

)
, U∗BU =

(
D O
O E

)
as in (b) of Theorem2.1, and so

U∗A2U =

(
D2 O
O O

)
, U∗B2U =

(
D2 O
O E2

)
.

Hence, by Theorem2.1, the first part of (b) follows. The second part is trivial.
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Conversely, assume (b). Then

U∗A2U =

(
∆ O
O O

)
, U∗B2U =

(
∆ O
O Γ

)
,

whereU, ∆, andΓ are matrices obtained by applying (b) of Theorem2.1to A2

andB2. Let u1, . . . ,un be the column vectors ofU and denoter = rankA.
For i = 1, . . . , r, we haveA2ui = B2ui = δiui, where(δi) = diag ∆. So,

by the second part of (b), there exist complex numbersd1, . . . , dr such that, for
all i = 1, . . . , r, we haved2

i = δi andAui = Bui = δiui. LetD be the diagonal
matrix with (di) = diag D.

For i = r + 1, . . . , n, we haveB2ui = γi−rui, where(γj) = diag Γ. Take
complex numberse1, . . . , en−r satisfyinge2

i = γi for i = 1, . . . , n− r. LetE be
the diagonal matrix with(ei) = diag E. Then

U∗AU =

(
D O
O O

)
, U∗BU =

(
D O
O E

)
,

and (a) follows from Theorem2.1.

As an immediate corollary, we obtain a generalization of Theorem1.1.

Corollary 3.2. Let A and B be normal matrices whose all eigenvalues have
nonnegative real parts. ThenA2 ≤∗ B2 if and only ifA ≤∗ B.

Next, we present the extra condition using diagonalization.

Theorem 3.3. Let A andB be normal matrices with1 ≤ rankA < rankB.
Then

(a) A ≤∗ B
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is equivalent to the following:

(b) A2 ≤∗ B2

and if

U∗AU =

(
D O
O O

)
, U∗BU =

(
DH O
O E

)
,

whereU is a unitary matrix,D is a nonsingular diagonal matrix,H is a unitary
diagonal matrix, andE 6= O is a diagonal matrix, thenH = I.

(Note that the second part of (b) is weaker than (e) of Theorem2.1. Other-
wise Theorem3.3would be nonsense.)

Proof. For (a)⇒ the first part of (b), see the proof of Theorem3.1. For (a)⇒
the second part of (b), see (e) of Theorem2.1.

Conversely, assume (b). As in the proof of Theorem3.1, we have

U∗A2U =

(
∆ O
O O

)
, U∗B2U =

(
∆ O
O Γ

)
.

Hence

U∗AU =

(
D O
O O

)
, U∗BU =

(
D′ O
O E

)
,

whereD andD′ are diagonal matrices satisfyingD2 = (D′)2 = ∆ andE is a
diagonal matrix satisfyingE2 = Γ.

Denoting(di) = diag D, (d′i) = diag D′, r = rankA, we therefore have
d2

i = (d′i)
2 for all i = 1, . . . , r. Hence there are complex numbersh1, . . . , hr
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such that|h1| = · · · = |hr| = 1 andd′i = dihi for all i = 1, . . . , r. Let H be the
diagonal matrix with(hi) = diag H. ThenD′ = DH, and soD′ = D by the
second part of (b). Thus (b) of Theorem2.1is satisfied, and so (a) follows.
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4. Remarks
We complete our paper with four remarks.

Remark 1. Let k ≥ 2 be an integer. A natural further question is whether our
discussion can be extended to describe howA ≤∗ B relates toAk ≤∗ Bk.
As noted by Baksalary and Pukelsheim [1], Theorem1.1 can be generalized
in a similar way. In other words, for Hermitian nonnegative definite matrices,
Ak ≤∗ Bk if and only ifA ≤∗ B. It can be seen also that Theorems3.1and3.3
can be, with minor modifications, extended correspondingly.

Remark 2. Let A andB be arbitraryn × n matrices withrankA < rankB.
Hartwig and Styan ([2, Theorem 2]) proved thatA ≤∗ B if and only if there
are unitary matricesU andV such that

U∗AV =

(
Σ O
O O

)
, U∗BV =

(
Σ O
O Θ

)
,

whereΣ is a positive definite diagonal matrix andΘ 6= O is a nonnegative def-
inite diagonal matrix. This is analogous to (a)⇔ (b) of Theorem2.1. Actually
it can be seen that all the characterizations ofA ≤∗ B listed in Theorem2.1
have singular value analogies in the general case.

Remark 3. The singular values of a normal matrix are absolute values of its
eigenvalues (see e.g., [3, p. 417]). Hence it is relatively easy to see that if (and
only if) A andB are normal, thenU andV above can be chosen so thatU∗V
is a diagonal matrix.

Remark 4. For normal matrices, it can be shown that Theorems3.1 and 3.3
have singular value analogies. In the proof, it is crucial thatU∗V is a diagonal
matrix. So these results do not remain valid without the normality assumption.
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