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Abstract

An improvement of the author’s result, proved in 1961, concerning necessary
and sufficient conditions for the compactness of an imbedding operator is given.

2000 Mathematics Subject Classification: 46B50, 46E30, 47B07.
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This paper is based on the talk given by the author within the “International
Conference of Mathematical Inequalities and their Applications, I”, December 06-
08, 2004, Victoria University, Melbourne, Australia [http://rgmia.vu.edu.au/
conference ]

Contents
1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Proof. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
References

http://jipam.vu.edu.au/
mailto:ramm@math.ksu.edu
http://jipam.vu.edu.au/
http://www.ams.org/msc/
http://rgmia.vu.edu.au/conference
http://rgmia.vu.edu.au/conference


Necessary and Sufficient
Condition for Compactness of

the Embedding Operator

A.G. Ramm

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 3 of 5

J. Ineq. Pure and Appl. Math. 6(5) Art. 130, 2005

http://jipam.vu.edu.au

1. Introduction
The basic result of this note is:

Theorem 1.1. Let X1 ⊂ X2 ⊂ X3 be Banach spaces,||u||1 ≥ ||u||2 ≥ ||u||3
(i.e., the norms are comparable) and if||un||3 → 0 asn →∞ andun is funda-
mental inX2, then||un||2 → 0, (i.e., the norms inX2 andX3 are compatible).
Under the above assumptions the embedding operatori : X1 → X2 is compact
if and only if the following two conditions are valid:

a) The embedding operatorj : X1 → X3 is compact,

and the following inequality holds:

b) ||u||2 ≤ s||u||1 + c(s)||u||3, ∀u ∈ X1, ∀s ∈ (0, 1), wherec(s) > 0 is a
constant.

This result is an improvement of the author’s old result, proved in 1961 (see
[1]), whereX2 was assumed to be a Hilbert space. The proof of Theorem1.1is
simpler than the one in [1].
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2. Proof
1. Assume that a) and b) hold and let us prove the compactness ofi. Let
S = {u : u ∈ X1, ||u||1 = 1} be the unit sphere inX1. Using assumption
a), select a sequenceun which converges inX3. We claim that this sequence
converges also inX2. Indeed, since||un||1 = 1, one uses assumption b) to get

||un − um||2 ≤ s||un − um||1 + c(s)||un − um||3 ≤ 2s + c(s)||un − um||3.
Let η > 0 be an arbitrary small given number. Chooses > 0 such that2s < 1

2
η,

and for a fixeds choosen andm so large thatc(s)||un − um||3 < 1
2
η. This

is possible because the sequenceun converges inX3. Consequently,||un −
um||2 ≤ η if n andm are sufficiently large. This means that the sequenceun

converges inX2. Thus, the embeddingi : X1 → X2 is compact. In the above
argument the compatibility of the norms was not used.

2. Assume now thati is compact. Let us prove that assumptions a) and b)
hold. Assumption a) holds because||u||2 ≥ ||u||3. Suppose that assumption b)
fails. Then there is a sequenceun and a numbers0 > 0 such that||un||1 = 1
and

(2.1) ||un||2 ≥ s0 + n||un||3.
If the embedding operatori is compact and||un||1 = 1, then one may assume
that the sequenceun converges inX2. Its limit cannot be equal to zero, because,
by (2.1), ||un||2 ≥ s0 > 0. The sequenceun converges inX3 because||un −
um||2 ≥ ||un − um||3, and its limit inX3 is not zero, because the norms inX3

and inX2 are compatible. Thus, (2.1) implies||un||3 = O
(

1
n

)
→ 0 asn →∞,

while limn→∞ ||un||3 > 0. This is a contradiction, which proves that b) holds.
Theorem1.1 is proved. �

http://jipam.vu.edu.au/
mailto:ramm@math.ksu.edu
http://jipam.vu.edu.au/


Necessary and Sufficient
Condition for Compactness of

the Embedding Operator

A.G. Ramm

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 5 of 5

J. Ineq. Pure and Appl. Math. 6(5) Art. 130, 2005

http://jipam.vu.edu.au

References
[1] A.G. RAMM, A necessary and sufficient condition for compactness of em-

bedding,Vestnik of Leningrad. Univ., Ser. Math., Mech., Astron., 1 (1963),
150–151.

http://jipam.vu.edu.au/
mailto:ramm@math.ksu.edu
http://jipam.vu.edu.au/

	Introduction
	Proof

