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ABSTRACT. R.C. Brown conjectured (in 2001) that the Opial-type inequality

4
∫ 1

0

|yy′| dx ≤
∫ 1

0

(y′)2 dx,

holds for all absolutely continuous functionsy : [0, 1] → R such thaty′ ∈ L2 and
∫ 1

0
y dx = 0.

This was subsequently proved by Denzler [3]. An alternative proof was given by Brown and
Plum [2]. Here we give a shorter proof.
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1. I NTRODUCTION

The classical Opial inequality asserts that

(1.1)
∫ b

a

|y(x)y′(x)| dx ≤ b− a

4

∫ b

a

y′2 dx

for functions that satisfyy(a) = y(b) = 0, andy′ ∈ L2. Equality holds if and only ify(x) is a
constant multiple of the piecewise linear functionŷ(x) = x − a in [a, m] andŷ(x) = b − x in
[m, b], wherem is the mid-point of the interval.

Beesack [1] observed that this result follows immediately from the half-interval inequality

(1.2)
∫ b

a

|y(x)y′(x)| dx ≤ b− a

2

∫ b

a

y′2 dx,

with the boundary conditiony(a) = 0 or y(b) = 0. Very short proofs of these results were
discovered later. Notably, the proofs due to C. L. Mallow and R. N. Pedeson are each less than
half a page long. See [3] and [2] for more references.

The author would like to thank R.C. Brown for suggesting the problem and for communicating the known results. Thanks also go to the

referee for a careful reading of the original manuscript, which results in the elimination of various inaccuracies, and an overall improvement in

the presentation of the arguments.
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Brown’s conjecture is inspired by these results. The two known proofs ([3] and [2]) are
comparable in length. A shorter proof (about half as long) is given in this paper. It is still
lengthy and technical. Hence, it will be of interest if an even shorter proof can be found.

If y′ were of a constant sign, the conjecture would just be a routine exercise in the calculus
of variations. The extremal would be a quadratic function. In reality, we can only assert that in
each subinterval in whichy′ remains of one sign, the extremal function is quadratic. In other
words, the extremal is a piecewise quadratic spline, but it is difficult to predict how many cusps
there are or where they appear.

Our approach is close in spirit to that of Denzler’s, and it helps to first describe his proof from
a high level. He starts out with an arbitrary function and goes through a sequence of steps, in
each of which the previous function is replaced by another, using techniques of normalization,
rearrangement, or some kind of “surgery.” The new function “better” satisfies the inequality (in
the sense that if one can establish the required inequality for the new function, then the same
inequality must hold for the original function), and possesses some additional properties. After
all the steps are carried out, he amasses enough properties for the final function to be able to
prove that (1.1) must hold and the proof is complete.

Using the method of contradiction helps to streamline our arguments. Suppose that (1.1)
is false for some function. We modify this function, in a number of steps. In each step, the
function is replaced by another which also violates the inequality, but the new function has some
additional properties. In the final step, we show that the newest function cannot satisfy the given
integral constraint and we have a contradiction. Some of the more technical computations in the
proof are done using the symbolic manipulation software Maple. The proof of the main result
presented in Section 2 is self-contained, but keep in mind that some of the ideas can be traced
back to [3] and [2].

Extremals are treated in Section 3.

2. PROOF OF THE M AIN RESULT

We use the notations

(2.1) E(y, [a, b]) =

∫ b

a

(y′(x))
2

dx,

(2.2) W (y, [a, b]) =

∫ b

a

|y(x)y′(x)| dx,

and

(2.3) K(y, [a, b]) = E(y, [a, b])− 4W (y, [a, b]).

When[a, b] is [0, 1], we simply writeE(y), W (y), andK(y). Applying Beesack’s inequality to
a function on an interval of length≤ 0.5, we haveK(y) ≥ 0. Likewise, Opial’s inequality for
an interval of length≤ 1 givesK(y) ≥ 0.

The Brown-Denzler-Plum result can be restated asK(y) ≥ 0 for all y that satisfies

(2.4)
∫ 1

0

y(x) dx = 0.

Suppose that the result is false andK(ȳ) < 0 for someȳ. By a density argument, we can assume
without loss of generality that̄y has a finite number of local maxima and minima.

Lemma 2.1. Let r (s) be the smallest (largest) zero ofȳ(x). Then eitherr > 0.5 or s < 0.5.
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OPIAL INEQUALITY WITH A BOUNDARY CONDITION 3

Proof. Supposer ≤ 0.5 ≤ s. Beesack’s inequality for̄y over[0, r] and[s, 1] impliesK(ȳ, [0, r])
≥ 0 andK(ȳ, [s, 1]) ≥ 0. Likewise, Opial’s inequality for̄y over[r, s] impliesK(ȳ, [r, s]) ≥ 0.
These inequalities contradict the assumption thatK(ȳ) < 0. �

By reflectingȳ with respect tox = 1/2 and/or using−ȳ instead, if necessary, we can assume
without loss of generality that̄y satisfies

(P1) ȳ(s) = 0, ȳ(x) > 0 in (s, 1], with s < 0.5.

Note that for anyy that satisfies (P1),K(y, [0, s]) ≥ 0. If we scale downy on [0, s] (i.e.
replace it byλy on [0, s] with λ < 1), we reduce its contribution to the entireK(y). Likewise,
if we scale upy on [s, 1], we also decreaseK(y). This idea is used in the proof of Lemma 2.2,
and later in Lemmas 2.4 and 2.6.

Lemma 2.2. Suppose we have a functiony1 that satisfies
∫ 1

0
y1 dx < 0 (instead of (2.4)), (P1)

andK(y1) < 0. Then there exists ay2 satisfying (2.4) such thatK(y2) < K(y1) < 0.

Proof. By hypotheses

(2.5) −
(∫ 1

s

y1 dx

/∫ s

0

y1 dx

)
= λ < 1.

Let us takey2 = λy1 on [0, s] andy2 = y1 on [s, 1]. Then0 < K(y2, [0, s]) = λ2K(y1, [0, s]) <
K(y1, [0, s]). It follows thatK(y2) < K(y1). �

Lemma 2.3. We may assume thatȳ satisfies

(P2) ȳ(x) < 0 in [0, s) and is increasing.

Proof. If (P2) is not satisfied, replacēy in [0, s] by y1(x) such thaty′1(x) = |ȳ′(x)|, y1(s) = 0.
(The same idea was used by Mallow in [4].) In[s, 1], y1 = ȳ. Theny1 satisfies both (P1)
and (P2) and−y1(x) ≥ |ȳ(x)| in [0, s). It follows that

∫ 1

0
y1 dx < 0. It is easy to verify that

E(y1, [0, s]) = E(ȳ, [0, s]) andW (y1, [0, s]) > W (ȳ, [0, s]). As a consequenceK(y1) < 0. We
can now apply Lemma 2.2 to complete the proof, takingy2 to be the new̄y. �

Lemma 2.4.

(P3) −ȳ(0) < ȳ(1).

Proof. Suppose (P3) is false. Thenλ = |ȳ(1)/ȳ(0)| ≤ 1. By scaling down̄y in [0, s) to λȳ, we
get a new functiony2 such thatK(y2) ≤ K(ȳ), andy2(0) = −y2(1). By moving|y2| on [0, s] to
the right ofy2 on [s, 1], we get a function that satisfies the classical Opial boundary conditions.
It follows thatK(y2) ≥ 0, contradicting the assumption thatK(ȳ) < 0. �

Using a suitable scaling, we can assume that
∫ s

0
ȳ dx = −1. It follows from (P2) that

W (ȳ, [0, s]) = ȳ2(0)/2. Our next step alters̄y in [0, s] to minimizeK(ȳ, [0, s]), while pre-
serving

∫ s

0
ȳ dx (this guarantees that (2.4) is always satisfied). This is a classical variational

problem, namely, to minimize
∫ s

0
y′2 dx − 2y2(0) over the classK of nonpositive, absolutely

continuous, and monotonically increasing functionsy : [0, s) → (−∞, 0], such thaty(s) = 0,
and

∫ s

0
y dx = −1. The Euler equation for this problem has a very simple form, namely,

y′′ = constant. The optimizer must also satisfy the boundary conditiony′(0) = −2y(0). The
solution is a quadratic function. These facts have been used in both [3] and [2]. Straightforward
computation yields the following result. We include a direct proof.

Lemma 2.5. We may assume that, in[0, s],

(P4) ȳ(x) =
3(s− x)(2sx− s− x)

s3(2− s)
.
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Proof. The expression appears complicated, but all we need to know aboutȳ for the proof are
the following facts (indeed, these facts are sufficient to recover the expression forȳ): it is a
quadratic function inx, ȳ(s) = 0,

∫ s

0
ȳ dx = −1, andȳ′(0) = −2ȳ(0).

Let y(x) ∈ K be another function. Denoteφ = y − ȳ. Integrating over[0, s], we have

K(y, [0, s]) = K(ȳ, [0, s]) + K(φ, [0, s]) +

∫ s

0

2φ′(x)ȳ′(x) dx− 4φ(0)ȳ(0)(2.6)

= K(ȳ, [0, s]) + K(φ, [0, s])

≥ K(ȳ, [0, s]).

The last two terms on the right-hand side of (2.6) cancel out after we apply integration by parts
and use the facts that̄y′′ is a constant,

∫ s

0
φ dx = 0 and ȳ′(0) = −2ȳ(0). The last inequality

follows fromK(φ, [0, s]) ≥ 0 (Beesack’s inequality for intervals of length< 0.5). �

Unfortunately, we cannot minimizeK(ȳ, [s, 1]) in a similar way, because we do not have the
a priori knowledge that̄y is monotonic in[s, 1] and the variational technique fails.

By assumption, we can divide[s, 1] into a finite number of subintervals with points

(2.7) s = s0 < s1 < s2 < · · · < sn = 1

such that each even(odd)-indexedsi is a local minimum (maximum), so that in each subinterval
[si−1, si], ȳ is monotonic. For convenience, we call the pointssi (i = 1, . . . , n− 1) cusps of the
functionȳ. By (P4),ȳ(0) = −3/s(2− s). From the set of local minima, we select the subset of
those points at which̄y is less than|ȳ(0)|:
(2.8) M = {si : i = 1, 3, . . . , at whichȳ(si) < |ȳ(0)|} .

It has only a finite number of points. We will construct a procedure that replacesȳ by a new
function with the property that the number of points in the corresponding setM is reduced by
at least one. Thus, after a finite number of steps, the setM for the newest function is empty.
This leads to the next lemma.

Lemma 2.6. We may assume that

(P5) ȳ(si) ≥ |ȳ(0)| at each local minimumsi.

This implies that̄y(x) ≥ |ȳ(0)| for all x > s1.

Proof. The following technique of arranging the functionȳ to decreaseK(ȳ) is borrowed from
Denzler [3]. Supposeρ is the first local minimum inM. At this point; ȳ(ρ) < |ȳ(0)|. Take
the largest neighborhood(α, β) 3 ρ such that̄y(x) ≤ ȳ(α) = ȳ(β) for all x ∈ (α, β), and
ȳ(α) ≤ |ȳ(0)|. Following Denzler, we remove the graph ofȳ over the interval(α, β) (pushing
the graph over[0, α] to the right to close up the gap) and splice its negative copy (i.e. reflect it
with respect to thex-axis) into the graph ofy to the left ofα, at the point wherēy(x) = −ȳ(α).
In this way, we get a new functionz that has a zeroσ > s, K(z) = K(ȳ),

∫ σ

0
z dx < −1 and∫ 1

σ
z dx < 1.
We scale downz over [0, σ] (we use the same notationz to denote new functions) to make∫ σ

0
z dx = −1, and this decreasesK(z) (same argument as in the proof of Lemma 2.2). Over

[σ, 1], we scale upz to make
∫ 1

σ
z dx = 1, so that the newz again satisfies (2.4). This also

decreasesK(z). Finally, we use Lemma 2.5 to changez over [0, σ] to further decreaseK(z).
From (P4),z(0) = −3/σ(2− σ). Sinceσ > s, |z(0)| < |ȳ(0)|. It follows easily from this and
the fact thatz is scaled up from (a portion of)̄y in [σ, 1] that the setM corresponding toz has
strictly (at leastρ is not in the new set) fewer points than the originalM corresponding tōy. As
usual, we rename the new functionz to beȳ for the next step. �
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OPIAL INEQUALITY WITH A BOUNDARY CONDITION 5

Now we assume that (P5) holds. By our construction,s1 is either the first cusp of̄y or 1 (if ȳ
has no cusp).

Lemma 2.7. We may assume that

(P6) the expression for̄y(x) in (P4) can be extended tox ∈ [0, s1].

Proof. Assume the contrary. Sincēy is increasing in[0, s1], we can use the variational technique
to replacēy in [0, s1] by a quadratic functionz to minimizeK, while preserving the integral of
z over [0, s1] (this guarantees that the integral condition (2.4) is preserved). Nowz may have a
zero different froms, and

∫ s

0
z dx may no longer be−1. It is easy to see that after renaming the

new zero tos and applying a proper scaling, the new function satisfies (P6). �

If ȳ satisfies (P6), and hence (P4), then
∫ s

0
ȳ dx = −1. We claim that (P5) and (P6) imply

that
∫ 1

s
ȳ dx > 1, as long ass ∈ (0, 1/2). This contradicts (2.4) and is the final step we need to

complete the proof of the main result.
Let τ > s be the point at which̄y(τ) = |ȳ(0)| = 3/s(2 − s). (It follows from Lemma 2.7

thatτ < s1.) Substituting this into the expression in (P4) and solving forτ , we get

(2.9) τ =
s(
√

s2 − 4s + 2− s)

1− 2s
.

There are actually two roots, but the other root is discarded because it is negative.
(P5) implies that̄y(x) > |ȳ(0)| for x > τ . Hence,

(2.10)
∫ 1

s

ȳ(x) dx ≥
∫ τ

s

ȳ(x) dx + (1− τ)|ȳ(0)|.

With the help of the symbolic manipulation software Maple, the above inequality becomes

(2.11)
∫ 1

s

ȳ(x) dx ≥ 3− 10s + 9s2 − 2s4 − (4s− 8s2 + 2s3)R

s(2− s)(1− 2s)2
,

whereR =
√

s2 − 4s + 2. We have our desired contradiction if we can show that the difference
between the numerator and the denominator of the above fraction is nonnegative fors ∈ [0, 1/2].
After simplification, this difference is the functionf(s) in our final lemma.

Lemma 2.8. For s ∈ [0, 1/2],

(2.12) f(s) = (3− 12s + 18s2 − 12s3 + 2s4)− (4s− 8s2 + 2s3)R ≥ 0.

Proof. Sincef(0) = 3 andf(1/2) = 0, if we can show thatf has no other zeros thans = 1/2
in [0, 1/2], then (2.12) holds. To solve forf(s) = 0, we move all the terms not involvingR to
one side of the equation, square both sides, and then simplify. We end up with a polynomial
equation that can be factored as

(2.13) (4s2 − 18s + 9)(1− 2s)3 = 0.

The only real solution to this equation in[0, 1/2] is s = 1/2. �

3. EXTREMALS

Let ŷ be an extremal. ThenK(ŷ) = 0. We want to show that̂y is linear and̂y(0.5) = 0.
With slight modifications, all the arguments in Section 2 can be applied toŷ. First, Lemma 2.1

and (P1) hold for̂y with the modification thats ≤ 0.5, instead of the strict inequalitys < 0.5.
Lemmas 2.3, 2.4, and 2.5, together with (P2), (P3) and (P4), are true with the understanding
thats may be equal to0.5, and< in Lemma 2.4 is replaced by≤. Lemma 2.8 and (P6) need no
changes. The contradiction derived in Lemma 2.8 is now interpreted to mean thats cannot be
< 0.5. Hence we conclude thats = 0.5. Using (P4) and (P6), we see thatŷ must be linear.
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