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ABSTRACT. In this short note our aim is to establish some Griinbaum-type inequalities for the
complementary error function, the incomplete gamma function and for Mills’ ratio of the stan-
dard normal distribution, and of the gamma distribution, respectively.
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1. INTRODUCTION

The Bessel function of the first kind of order denoted usually by,,, is defined as a partic-
ular solution of the following second-order differential equation [18, p. 38]

2%y (@) + xy' () + (2* — p?)y(z) = 0.
In 1973 F.A. Grinbaum [12] established the following interesting inequality for the function
Jo, i.e.
1+ Jo(2) > Jo(z) + Jo(y),
wherez,y > 0 andz? = 22 + y2. In fact this result on the Bessel functidh arose first in the

context of a problem involving the Boltzmann equation, seél[10, 11]. In this case one needs an
inequality for the Legendre polynomials, which was proved_in [9]. The Bessel case is proved
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2 ARPAD BARICZ

in [12] by using the well known fact, see [17], that the spherical functions on a sphere (i.e. the
Legendre polynomials) approach the spherical functions on the plane (the Bessel functions) as
the radius approaches infinity.

In the same year R. Askey|[3] extended the above Grinbaum inequality for the function

Tu(x) = 2T (p+ 1)a ™" J, ()
by showing that

L+ Ju(2) =2 Tu(@) + Tu(y),

wherez, y, 1 > 0 andz? = 2% + y2. It is worth mentioning here that in 1975 and 1977 A. Mcd.
Mercer [14], [15] deduced and extended too the above inequality using a different approach. In
2005 A. Baricz and E. Neumah! [5] showed that the Griinbaum-type inequality

1+ Io(z) = Io(z) + Lo(y),
and the Askey-type inequality
(1.1) 1+ Z(2) 2 Zu(x) + Zu(y)

also holds for allz, y, u > 0 andz? = z* + y*, wherel, is the modified Bessel function of the
first kind of orderu, and

T, (x) =2"T(p+ 1)z, (x).
Recently, in 2005 H. Alzer ]2] asked “whether there exist other special functions which satisfy

inequalities of Griinbaum-type” and proved thatfoy, z positive real numbers such thett+

yi=z2%andn=1,2,...
n+1

An() = —— ()

we have the following Griinbaum-type inequality
T+ AL(2) > Ay(z) + An(y)

if and only if ¢ € (0, 1]. Moreover H. Alzer showed that the reverse of the above inequality is
true if and only if¢ < 0 orq > n+ 1. Herey denotes the digamma function, i.e. the logarithmic
derivative of the Euler gamma function.

In this paper our aim is to continue studieslin [5] and [2] by showing that in fact every nor-
malized power series with positive coefficients satisfies the Griinbaum-type inequality. More-
over we deduce some other Griinbaum-type inequalities for functions which frequently occur
in mathematical statistics: for the complementary error function, for the gamma distribution
function and finally for Mills’ ratio of the standard normal distribution.

2. GRUNBAUM -TYPE INEQUALITY FOR GENERAL POWER SERIES

Our first main result reads as follows.
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Lemma 2.1. Let us consider the functiofi : (a,00) — R, wherea > 0. If the functiong,
defined by

is increasing or{a, o), then for the functiort, defined by:(x) = f(z?), we have the following
Grunbaum-type inequality

(2.1) 1+ h(z) > h(x) + h(y),

wherez,y > a and 22 = 2% + y2. If the functiong is decreasing, then inequality (2.1) is

reversed.

Proof. Let us consider the functiom : (a,c0) — R, defined bya(x) = f(z) — 1. Then from
the hypothesis we have for all y > «a the following inequality

ar +y) :%era(x +y)+ %er(x(x +9)
=zg(z +y) +yg(x +y)
>xg(7) +yg(y) = a(z) + a(y),

i.e. the functionx is super-additive ofa, co). From this we immediately get that

L+ fr+y) > f(x) + f(y)

holds. Thus changing with 22 andy with 42 the inequality[(2.]) is proved. Similarly, when
g is decreasing, the functiom is sub-additive, which implies the converse of inequality](2.1).
With this the proof is complete. O

Theorem 2.2. Let us consider the power seriggr) = > . a,z", which has a radius of
convergence € [0, 00| and suppose that, € [0,1] anda, > 0 for all » > 1. Then for all
z,y,2 € [0, p) such that:* = 2% + y? the power series

h(z) = f(2?) = Zanx%

n>0

satisfies the inequality (3.1).

Proof. Let us consider the functiondefined as in Lemma 3.1. Then it is easy to see that

2’ g (2) =1 —ag+ Z(n — Dayz" >0,

n>1

i.e. the functiory is increasing or0, p]. Thus applying Lemmp 2.1 the result follows. O

The next result shows that the Askey-type inequdlity|(1.1) is valigifer(—1,0) too.

Corollary 2.3. Forall z,y > 0, 2% = 2* + y* and . > —1 we have the following inequality

1+ 7,(2) 2 Zu(@) + Tu(y).
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Proof. Since the modified Bessel function of the first kind for- —1 and for allz € R is
defined by the formula [18, p. 77]
I

ule) = Z n!T(u i n+1) <g>2n+u’

n>0

by definition we easily obtain

I T(p+1)
Z,(z) = 227", where a, = ——————.
/J'(x) Za x ) a 2277, P(M+n+1)

n>0
Thus using Theorefn 2.2 the asserted result follows. O
Fora,b,c € Candc # 0,—1,-2,..., the Gaussian hypergeometric series (function) is
defined by
b n
2F1((l,b,C,$) ::me_v |ZE| <17

(c), n!
n>0 n
where(a), = 1 and(a), = a(a +1)---(a + n — 1) is the Pochhammer symbol. Applying
Theorenj 2. we have the following result for this function, which we state without proof.

Corollary 2.4. If a,b,c > 0 andz, y, z € [0,1) such thatz?> = 2 + 2, then
1+ QFI(CL7 b7 ¢, 22) Z QFI(av b7 ¢, 1'2) + 2F1(a7 b7 ) y2>
In particular the complete elliptic integral of the first kind, defined by
/2 df 11
K(r):= / % _Tp (—, -, 1,r2>
o V1-—r2sin?g 2 272
satisfies the following Grinbaum-type inequality
2 2 2
1+=K(z) > =K —K(y).
+2K(2) = ZK(2) + K(y)

3. GRUNBAUM -TYPE INEQUALITY FOR MILLS’ RATIO

Let
(3.1) O(x) = L /x e~/ dt erf(x) := 2 /l’ e dt
V2T J o 7 VT Jo
and
2 e
(3.2) erfe(z) == — et dt
VT )

denote, as usual, the distribution function [1, 26.2.2, p. 931] of the standard normal law, the
error functionl[1, 7.1.1, p. 297] and the complementary error fundtion [1, 7.1.2, p. 297]. The tail
function® : R — (0, 1) of the standard normal law is defined by the relatidn) = 1 — ®(z).

Now the ratio

(I)(ZL’) 1-— @(ZE) 2 & 42
3.3 r(x) = = :e‘”/Q/ e t/2 dy,
33) W= ow T e :
where ]
o(x) == _2671«2/2 denotes the density function
T
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is known in the literature as Mills’ ratid_[16, Sect. 2.26], while its reciprodal;(z) =
¢(z)/®(x) is the so-called failure rate for the standard normal law. The Mills ratio is fre-
guently used in mathematical statistics and in difraction theory. Various lower and upper bounds
are known for this ratio [16, Sect. 2.26] and functions of the fdrm| (3.3) have been defined for
some other distributions. For example let us consider the incomplete gamma function [1, 6.5.2,
p. 260]

V(p,x) = / tle™ dt,
0
wherep > 0 andx > 0. This function plays also an important role in mathematical statistics,

i.e. the functionl[l, 6.5.1, p. 26Q](z) := ~(p,x)/I'(p) is the so-called gamma distribution
function. The Mills ratio for the gamma distribution is defined as follows

L 1 - F(I) _ o x.1-p
R(l’) T F/(J?) =cx F(pa .1'),
where -
(pyx) = L)~ o) = [ 07l
and '

I'(p,0) = /00 tr~te7tdt = I'(p).

In the following theorem our aim isoto deduce some Griinbaum-type inequalities for the
complementary error function, for the incomplete gamma function, and finally for the functions
randR.

Theorem 3.1.Let us suppose that = 22 + y2. Then the following assertions are true:

a. For the complementary error function for all y > 0 we have the following inequality
(3.4) 1 + erfe(2?) > erfe(2?) + erfe(y?).

b. The Mills’ ratio of the standard normal distribution satisfies the next inequality
(3.5) 1+7(2%) > r(@®) +r(y?)

for all z,y > 1. Moreover wherne, y € [0, 1], the inequality[(3.5) is reversed.
c. For a fixedp > 0, the functionf(z) := I'(p,x)/I'(p) satisfies the Grinbaum-type
inequality
(3.6) L+ f(2%) > f(a®) + f(y°),
wherez,y > 0andp < lorz,y > p—12> 0. Whenp > 1 andz,y € [0,p — 1] the
inequality [3.6) is reversed.
d. For a fixedp > 0, the Mills’ ratio of the gamma distribution satisfies the following
inequality
(3.7) 1+ R(2*) > R(z%) + R(y?),
wherep < 1 andz,y € [p, 1]. Moreover ifp > 1, then for allz, y € [1, p] the inequality
(3.71) is reversed.
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Proof. a. In view of Lemmg 2.1 clearly it is enough to show that
1 —erfe(z)  erf(x)
T - T
is decreasing off), co), which was proved recently by the author [4]. For the reader’s conve-
nience we reproduce the proof here. Due to M. Gromov [7, p. 42] we know tliatfif : R —
[0, 00) are integrable functions and the rafig f» is decreasing, then the function

xH/Oxfl(t)dt//jfg(t)dt

is decreasing too. For alle R let us considerf;(t) = 2¢*/\/z and f,(t) = 1, then clearly
fi/fe = f1 is decreasing of?), o) and consequently

/Oz %e‘ﬁ dt//oxldt = erf(z)/x

is decreasing too if0), o).

X —

b. Let us consider the functiop : (0,00) — R, defined by

r(z)—1

qi(r) = I .

Using the relation’(z) = zr(x) — 1, itis easy to verify that
2,

S = - |0 -

On the other hand it is known that due to R.D. Gordan [8] forralt 0 we have

(3.8) T@)inlr

and this lower bound was improved by Z.W. Birnbaum [6] and Y. Komatu [13] by showing that
forall z > 0, we have
2

3.9 r(r) > ———.
(3.9) (@) ?+4+x
If x > 1, then using inequality (3]8) we easily get
2
=, x 1
> —1 — >
$+1gl($)_(x )Lﬂ—l—l x—l—l]_o’

i.e. the functiory, is increasing orl, co). Now suppose that € (0,1]. From (3.9) it follows
thatg, is decreasing o0, 1], since

1 2 1
r(x) — > — >
(@) c+1" Va2t dtr w41

Finally using Lemma 2]1 again, the proof of this part is complete.

0.

c. Sincevy(p, x) + I'(p,z) = I'(p), it is enough to prove that the function
flz)  F(x) 15(p=)

1—
r x oz x T(p
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is decreasing oft), co) whenp < 1 and is decreasing dp—1, co) whenp > 1. Let us consider
the functionsf, (t) = t?~'e~*/T'(p) and f(t) = 1 for all t € R. Since

tfit) = (p—1-0)h(),

it follows that f,/f, = f; is decreasing of0, co) for p < 1 and on[p — 1,00) for p > 1.
Consequently using againthe result of M. Gromigv [7, p. 42], the function

pl—t
x»—> B dt// 1dt = 1fyp,))

is decreasing on the mentloned mtervals. For the reversed inequality from Lemma 2.1 it is
enough to show that the function

F(z) _ 1y(p.a)
r oz T(p)

is increasing ono0, p — 1] whenp > 1. Easy computation yields

20 [17p2)| _ 1 ¢ pe
¥ or [E I'(p) } " T(p) & 1.2

Now consider the functiorf; : [0,00) — R, defined byfs;(x) = 2Pe™* — ~(p, z). Since for
z € 0,p — 1] we havef(z) = (p — 1 — z)e “zP~1 > 0, it follows that f3(x) > f3(0) = 0,
thus the required result follows.

d. Let us consider the functiog : (0, 00) — R, defined by
R(z)—1 1-F(x)— F'(z)
x B o F'(z) '

92(x) =
From simple computations we have
2 [F' (@) ga(x) = (1 — 2)[F'(2)]" + [F(z) — 1[F'(z) + 2 F"(2)].

First observe that sincg is the gamma distribution function, for atl > 0 we haveF'(z) €
[0,1],i.e. F(x) — 1 < 0. On the other hand

L(p)F'(2) + 2F"(2)] = (p — ) 2",

thus if we suppose that< p < z < 1, then we have that the functign is increasing offp, 1].
Moreover ifl < x < p, then clearly the function, is decreasing ofi, p|. Using again Lemma
[2. the inequality[(3]7) and its reverse follows. O

Remark 3.2. Observe that the inequality (3.6) is equivalent to the inequality

Lp.2*)  Lp.a?)  Tlpy?)
I'(p) = T I(p) °
wherez? = 22 + y? andx, y, p are as in part of the above theorem. Using the relation [1,

6.5.17, p. 262]
r (%,:ﬁ) =T (%) erfe(r) = /merfe(x),

1+
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we immediately get the following inequality:

1 + erfe(y/x? 4+ y?) > erfe(x) + erfe(y),

wherez,y > 0. But this inequality is weaker thap (3.4), becatse|(3.4) is equivalent to the in-
equalityl +-erfc(z + y) > erfc(x)+erfe(y), and the complementary error function is decreasing
on[0,00), i.e. for allz,y > 0 we have thatrfc(z + y) < erfc (\/aﬂ + y2) :
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