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ABSTRACT. In this short note our aim is to establish some Grünbaum-type inequalities for the
complementary error function, the incomplete gamma function and for Mills’ ratio of the stan-
dard normal distribution, and of the gamma distribution, respectively.
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1. I NTRODUCTION

The Bessel function of the first kind of orderµ, denoted usually byJµ, is defined as a partic-

ular solution of the following second-order differential equation [18, p. 38]

x2y′′(x) + xy′(x) + (x2 − µ2)y(x) = 0.

In 1973 F.A. Grünbaum [12] established the following interesting inequality for the function

J0, i.e.

1 + J0(z) ≥ J0(x) + J0(y),

wherex, y ≥ 0 andz2 = x2 + y2. In fact this result on the Bessel functionJ0 arose first in the

context of a problem involving the Boltzmann equation, see [10, 11]. In this case one needs an

inequality for the Legendre polynomials, which was proved in [9]. The Bessel case is proved
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2 ÁRPÁD BARICZ

in [12] by using the well known fact, see [17], that the spherical functions on a sphere (i.e. the

Legendre polynomials) approach the spherical functions on the plane (the Bessel functions) as

the radius approaches infinity.

In the same year R. Askey [3] extended the above Grünbaum inequality for the function

Jµ(x) = 2µΓ(µ+ 1)x−µJµ(x)

by showing that

1 + Jµ(z) ≥ Jµ(x) + Jµ(y),

wherex, y, µ ≥ 0 andz2 = x2 + y2. It is worth mentioning here that in 1975 and 1977 A. Mcd.

Mercer [14], [15] deduced and extended too the above inequality using a different approach. In

2005 Á. Baricz and E. Neuman [5] showed that the Grünbaum-type inequality

1 + I0(z) ≥ I0(x) + I0(y),

and the Askey-type inequality

(1.1) 1 + Iµ(z) ≥ Iµ(x) + Iµ(y)

also holds for allx, y, µ ≥ 0 andz2 = x2 + y2, whereIµ is the modified Bessel function of the

first kind of orderµ, and

Iµ(x) = 2µΓ(µ+ 1)x−µIµ(x).

Recently, in 2005 H. Alzer [2] asked “whether there exist other special functions which satisfy

inequalities of Grünbaum-type” and proved that forx, y, z positive real numbers such thatxq +

yq = zq, andn = 1, 2, . . .

∆n(x) =
xn+1

n!
|ψ(n)(x)|

we have the following Grünbaum-type inequality

1 + ∆n(z) > ∆n(x) + ∆n(y)

if and only if q ∈ (0, 1]. Moreover H. Alzer showed that the reverse of the above inequality is

true if and only ifq < 0 or q ≥ n+1.Hereψ denotes the digamma function, i.e. the logarithmic

derivative of the Euler gamma function.

In this paper our aim is to continue studies in [5] and [2] by showing that in fact every nor-

malized power series with positive coefficients satisfies the Grünbaum-type inequality. More-

over we deduce some other Grünbaum-type inequalities for functions which frequently occur

in mathematical statistics: for the complementary error function, for the gamma distribution

function and finally for Mills’ ratio of the standard normal distribution.

2. GRÜNBAUM -TYPE I NEQUALITY FOR GENERAL POWER SERIES

Our first main result reads as follows.
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Lemma 2.1. Let us consider the functionf : (a,∞) → R, wherea ≥ 0. If the functiong,

defined by

g(x) =
f(x)− 1

x

is increasing on(a,∞), then for the functionh, defined byh(x) = f(x2), we have the following

Grünbaum-type inequality

(2.1) 1 + h(z) ≥ h(x) + h(y),

wherex, y ≥ a and z2 = x2 + y2. If the functiong is decreasing, then inequality (2.1) is

reversed.

Proof. Let us consider the functionα : (a,∞) → R, defined byα(x) = f(x) − 1. Then from

the hypothesis we have for allx, y ≥ a the following inequality

α(x+ y) =
x

x+ y
α(x+ y) +

y

x+ y
α(x+ y)

=xg(x+ y) + yg(x+ y)

≥xg(x) + yg(y) = α(x) + α(y),

i.e. the functionα is super-additive on(a,∞). From this we immediately get that

1 + f(x+ y) ≥ f(x) + f(y)

holds. Thus changingx with x2 andy with y2 the inequality (2.1) is proved. Similarly, when

g is decreasing, the functionα is sub-additive, which implies the converse of inequality (2.1).

With this the proof is complete. �

Theorem 2.2. Let us consider the power seriesf(x) =
∑

n≥0 anx
n, which has a radius of

convergenceρ ∈ [0,∞] and suppose thata0 ∈ [0, 1] andan ≥ 0 for all n ≥ 1. Then for all

x, y, z ∈ [0, ρ) such thatz2 = x2 + y2 the power series

h(x) = f(x2) =
∑
n≥0

anx
2n

satisfies the inequality (2.1).

Proof. Let us consider the functiong defined as in Lemma 2.1. Then it is easy to see that

x2g′(x) = 1− a0 +
∑
n≥1

(n− 1)anx
n ≥ 0,

i.e. the functiong is increasing on[0, ρ]. Thus applying Lemma 2.1 the result follows. �

The next result shows that the Askey-type inequality (1.1) is valid forµ ∈ (−1, 0) too.

Corollary 2.3. For all x, y ≥ 0, z2 = x2 + y2 andµ > −1 we have the following inequality

1 + Iµ(z) ≥ Iµ(x) + Iµ(y).
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Proof. Since the modified Bessel function of the first kind forµ > −1 and for allx ∈ R is

defined by the formula [18, p. 77]

Iµ(x) =
∑
n≥0

1

n!Γ(µ+ n+ 1)

(x
2

)2n+µ

,

by definition we easily obtain

Iµ(x) =
∑
n≥0

anx
2n, where an =

1

22n

Γ(µ+ 1)

Γ(µ+ n+ 1)
.

Thus using Theorem 2.2 the asserted result follows. �

For a, b, c ∈ C and c 6= 0,−1,−2, . . . , the Gaussian hypergeometric series (function) is

defined by

2F1(a, b, c, x) :=
∑
n≥0

(a)n(b)n

(c)n

xn

n!
, |x| < 1,

where(a)0 = 1 and(a)n = a(a + 1) · · · (a + n − 1) is the Pochhammer symbol. Applying

Theorem 2.2 we have the following result for this function, which we state without proof.

Corollary 2.4. If a, b, c > 0 andx, y, z ∈ [0, 1) such thatz2 = x2 + y2, then

1 + 2F1(a, b, c, z
2) ≥ 2F1(a, b, c, x

2) + 2F1(a, b, c, y
2).

In particular the complete elliptic integral of the first kind, defined by

K(r) :=

∫ π/2

0

dθ√
1− r2 sin2 θ

=
π

2
F

(
1

2
,
1

2
, 1, r2

)
satisfies the following Grünbaum-type inequality

1 +
2

π
K(z) ≥ 2

π
K(x) +

2

π
K(y).

3. GRÜNBAUM -TYPE I NEQUALITY FOR M ILLS ’ R ATIO

Let

(3.1) Φ(x) :=
1√
2π

∫ x

−∞
e−t2/2 dt, erf(x) :=

2√
π

∫ x

0

e−t2 dt

and

(3.2) erfc(x) :=
2√
π

∫ ∞

x

e−t2 dt

denote, as usual, the distribution function [1, 26.2.2, p. 931] of the standard normal law, the

error function [1, 7.1.1, p. 297] and the complementary error function [1, 7.1.2, p. 297]. The tail

functionΦ : R → (0, 1) of the standard normal law is defined by the relationΦ(x) = 1−Φ(x).

Now the ratio

(3.3) r(x) :=
Φ(x)

ϕ(x)
=

1− Φ(x)

Φ′(x)
= ex2/2

∫ ∞

x

e−t2/2 dt,

where

ϕ(x) :=
1√
2π
e−x2/2 denotes the density function,
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is known in the literature as Mills’ ratio [16, Sect. 2.26], while its reciprocal,1/r(x) =

ϕ(x)/Φ(x) is the so-called failure rate for the standard normal law. The Mills ratio is fre-

quently used in mathematical statistics and in difraction theory. Various lower and upper bounds

are known for this ratio [16, Sect. 2.26] and functions of the form (3.3) have been defined for

some other distributions. For example let us consider the incomplete gamma function [1, 6.5.2,

p. 260]

γ(p, x) =

∫ x

0

tp−1e−t dt,

wherep > 0 andx ≥ 0. This function plays also an important role in mathematical statistics,

i.e. the function [1, 6.5.1, p. 260]F (x) := γ(p, x)/Γ(p) is the so-called gamma distribution

function. The Mills ratio for the gamma distribution is defined as follows

R(x) :=
1− F (x)

F ′(x)
= exx1−pΓ(p, x),

where

Γ(p, x) = Γ(p)− γ(p, x) =

∫ ∞

x

tp−1e−t dt

and

Γ(p, 0) =

∫ ∞

0

tp−1e−t dt = Γ(p).

In the following theorem our aim is to deduce some Grünbaum-type inequalities for the

complementary error function, for the incomplete gamma function, and finally for the functions

r andR.

Theorem 3.1.Let us suppose thatz2 = x2 + y2. Then the following assertions are true:

a. For the complementary error function for allx, y ≥ 0 we have the following inequality

(3.4) 1 + erfc(z2) ≥ erfc(x2) + erfc(y2).

b. The Mills’ ratio of the standard normal distribution satisfies the next inequality

(3.5) 1 + r(z2) ≥ r(x2) + r(y2)

for all x, y ≥ 1. Moreover whenx, y ∈ [0, 1], the inequality (3.5) is reversed.

c. For a fixedp > 0, the functionf(x) := Γ(p, x)/Γ(p) satisfies the Grünbaum-type

inequality

(3.6) 1 + f(z2) ≥ f(x2) + f(y2),

wherex, y ≥ 0 andp ≤ 1 or x, y ≥ p − 1 ≥ 0. Whenp ≥ 1 andx, y ∈ [0, p − 1] the

inequality (3.6) is reversed.

d. For a fixedp > 0, the Mills’ ratio of the gamma distribution satisfies the following

inequality

(3.7) 1 +R(z2) ≥ R(x2) +R(y2),

wherep ≤ 1 andx, y ∈ [p, 1]. Moreover ifp ≥ 1, then for allx, y ∈ [1, p] the inequality

(3.7) is reversed.
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Proof. a. In view of Lemma 2.1 clearly it is enough to show that

x 7→ 1− erfc(x)

x
=

erf(x)

x

is decreasing on[0,∞), which was proved recently by the author [4]. For the reader’s conve-

nience we reproduce the proof here. Due to M. Gromov [7, p. 42] we know that iff1, f2 : R →
[0,∞) are integrable functions and the ratiof1/f2 is decreasing, then the function

x 7→
∫ x

0

f1(t) dt

/∫ x

0

f2(t) dt

is decreasing too. For allt ∈ R let us considerf1(t) = 2e−t2/
√
π andf2(t) = 1, then clearly

f1/f2 = f1 is decreasing on[0,∞) and consequently∫ x

0

2√
π
e−t2 dt

/∫ x

0

1 dt = erf(x)/x

is decreasing too in[0,∞).

b. Let us consider the functiong1 : (0,∞) → R, defined by

g1(x) =
r(x)− 1

x
.

Using the relationr′(x) = xr(x)− 1, it is easy to verify that

x2

x+ 1
g′1(x) = (x− 1)

[
r(x)− 1

x+ 1

]
.

On the other hand it is known that due to R.D. Gordon [8] for allx > 0 we have

(3.8) r(x) ≥ x

x2 + 1
,

and this lower bound was improved by Z.W. Birnbaum [6] and Y. Komatu [13] by showing that

for all x > 0, we have

(3.9) r(x) >
2√

x2 + 4 + x
.

If x ≥ 1, then using inequality (3.8) we easily get

x2

x+ 1
g′1(x) ≥ (x− 1)

[
x

x2 + 1
− 1

x+ 1

]
≥ 0,

i.e. the functiong1 is increasing on[1,∞). Now suppose thatx ∈ (0, 1]. From (3.9) it follows

thatg1 is decreasing on(0, 1], since

r(x)− 1

x+ 1
≥ 2√

x2 + 4 + x
− 1

x+ 1
> 0.

Finally using Lemma 2.1 again, the proof of this part is complete.

c. Sinceγ(p, x) + Γ(p, x) = Γ(p), it is enough to prove that the function

x 7→ 1− f(x)

x
=
F (x)

x
=

1

x

γ(p, x)

Γ(p)
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is decreasing on[0,∞) whenp ≤ 1 and is decreasing on[p−1,∞) whenp ≥ 1. Let us consider

the functionsf1(t) = tp−1e−t/Γ(p) andf2(t) = 1 for all t ∈ R. Since

tf ′1(t) = (p− 1− t)f1(t),

it follows that f1/f2 = f1 is decreasing on[0,∞) for p ≤ 1 and on[p − 1,∞) for p ≥ 1.

Consequently using again the result of M. Gromov [7, p. 42], the function

x 7→
∫ x

0

tp−1e−t

Γ(p)
dt

/∫ x

0

1 dt =
1

x

γ(p, x)

Γ(p)

is decreasing on the mentioned intervals. For the reversed inequality from Lemma 2.1 it is

enough to show that the function

x 7→ F (x)

x
=

1

x

γ(p, x)

Γ(p)

is increasing on[0, p− 1] whenp ≥ 1. Easy computation yields

x2 ∂

∂x

[
1

x

γ(p, x)

Γ(p)

]
=

1

Γ(p)

[
xpe−x − γ(p, x)

]
.

Now consider the functionf3 : [0,∞) → R, defined byf3(x) = xpe−x − γ(p, x). Since for

x ∈ [0, p − 1] we havef ′3(x) = (p − 1 − x)e−xxp−1 ≥ 0, it follows thatf3(x) ≥ f3(0) = 0,

thus the required result follows.

d. Let us consider the functiong2 : (0,∞) → R, defined by

g2(x) =
R(x)− 1

x
=

1− F (x)− F ′(x)

xF ′(x)
.

From simple computations we have

x2[F ′(x)]2g′2(x) = (1− x)[F ′(x)]2 + [F (x)− 1][F ′(x) + xF ′′(x)].

First observe that sinceF is the gamma distribution function, for allx ≥ 0 we haveF (x) ∈
[0, 1], i.e. F (x)− 1 ≤ 0. On the other hand

Γ(p)[F ′(x) + xF ′′(x)] = (p− x)e−xxp−1,

thus if we suppose that0 < p ≤ x ≤ 1, then we have that the functiong2 is increasing on[p, 1].

Moreover if1 ≤ x ≤ p, then clearly the functiong2 is decreasing on[1, p]. Using again Lemma

2.1 the inequality (3.7) and its reverse follows. �

Remark 3.2. Observe that the inequality (3.6) is equivalent to the inequality

1 +
Γ(p, z2)

Γ(p)
≥ Γ(p, x2)

Γ(p)
+

Γ(p, y2)

Γ(p)
,

wherez2 = x2 + y2 andx, y, p are as in partc of the above theorem. Using the relation [1,

6.5.17, p. 262]

Γ

(
1

2
, x2

)
= Γ

(
1

2

)
erfc(x) =

√
π erfc(x),
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we immediately get the following inequality:

1 + erfc(
√
x2 + y2) ≥ erfc(x) + erfc(y),

wherex, y ≥ 0. But this inequality is weaker than (3.4), because (3.4) is equivalent to the in-

equality1+erfc(x+ y) ≥ erfc(x)+erfc(y), and the complementary error function is decreasing

on [0,∞), i.e. for allx, y ≥ 0 we have thaterfc(x+ y) ≤ erfc
(√

x2 + y2
)
.
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