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ABSTRACT. In this paper, we study the” boundedness of a class of parametric Marcinkiewicz
integral operators with rough kernels Ii{log™ L)(S™~'). Our result in this paper solves an
open problem left by the authors of ([6]).
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1. INTRODUCTION

Letn > 2 andS™~! be the unit sphere iR" equipped with the normalized Lebesgue measure
do. Suppose thdt is a homogeneous function of degree zer@®érhat satisfie§) € L' (S 1)
and

(1.1) / Q(z)do(x) = 0.
Sn—1

In 1960, Hormander [([9]) defined the parametric Marcinkiewicz functi§rof higher di-
mension by
2\ 2
dt) ,

wherep > 0. Itis clear that ifp = 1, thenyy, is the classical Marcinkiewicz integral op-
erator introduced by Stein[{[11]) which will be denoted py. WhenQ € Lip_(S™'),

[e.e]

(1.2) po f(x) = (/_Oo ’2‘”t/||<2tf(:v—y) ly| ™" Q(y)dy
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(0 < a < 1), Stein proved thaj, is bounded on/? for all 1 < p < 2. Subsequently,
Benedek-Calderon-Panzone proved fiteboundedness qig, for all 1 < p < oo under the
conditionQ) € C' (S"!) ([4]). Recently, under various conditions 6n the L? boundedness
of ugn and a more general class of operators of Marcinkiewicz type has been investigated (see
[1] — [2], [5], among others).

In ([Q]), Hérmander proved thaty, is bounded onl? for all 1 < p < oo, provided that
QeLip (S"), (0 <a<1)andp > 0.

A long standing open problem concerning the operatgris whether there are some”
results onug, similar to those onu, when() satisfies only some size conditions. In a recent
paper, Ding, Lu, and Yabuta ([6]) studied the operator

2\ 2
dt> ,

wherep is a complex numbeRe(p) = a > 0, andh is a radial function orR™ satisfying
h(|z]) € 1*°(L7)(RT), 1 < ¢ < oo, wherel*(L?)(R") is defined as follows: For < ¢ < oo,

1
- 27 dr q
(L) (RY) = {hi 12/l oo (Loyrry = sup (/ ()" —] <C
]GZ 27i—1 r

and forg = oo, 1°°(L>®)(RT) = L>*°(R™).
Ding, Lu, and Yabuta [([6]) proved the following:

—0o0

(1.3) pio f () = (/OO ’2’”/'@ Fl@—=y) [yl h(|y)Qy)dy

Theorem 1.1. Suppose thaf2 € L(log™ L)(S"~!) is a homogeneous function of degree zero
onR" satisfying[(1.1l) and:(|z|) € {>(L?)(RT) for somel < ¢ < co. If Re(p) = o > 0, then
|eanfll, < C/v/allfll,, whereC is independent gf and f.

The L? boundedness o/fcah for p # 2 was left open by the authors of {([6]). The main
purpose of this paper is to establish tieboundedness qf;z,h for p # 2. Our main result of
this paper is the following:

Theorem 1.2. Suppose tha® € L(log™ L)(S"~!) is a homogeneous function of degree zero
on R" satisfying [(1.1). Ifa(|z]) € I®(L)(RT), 1 < ¢ < oo, andRe(p) = a > 0, then
lenfll, < C/a|fl, forall 1 < p < oo, whereC is independent of and f.

Also, in this paper, we establish tli¢ boundedness of the related parametric maximal func-
tion. In fact, we have the following result:

Theorem 1.3.Suppose tha® € L(log® L)(S"!) is a homogeneous function of degree zero on
R™. If h(|z|) € I*°(L?)(R'), 1 < ¢ < oo, anda > 0, then

C
1ML, < —I1F11,
forall 1 < p < oo with a constant”’ independent of, where)/  is the operator defined by

@y Mg = {2 [ el e

teR
The method employed in this paper is based in part on ideas from [1], [2] and [3], among
others. A variation of this method can be applied to deal with more general integral opera-
tors of Marcinkiewicz type. An extensive discussion of more general operators will appear in
forthcoming papers.
Throughout the rest of the paper the lettewill stand for a constant but not necessarily the
same one in each occurrence.
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2. PREPARATION

Suppose: > 1. For a suitable family of measures= {r; : t € R} on R™ and a suitable
family of C* functions®, = {¢, : t € R} onR", define the family of operatorfA, ¢, s :
t,s € R} by

2.1) Armal)(2) = ( [ ran s P dt) y

o0

Also, define the operator* by
(2.2) (1)) = sup(|ne| « | £]) ().
The proof of our result will be based on the following lemma:

Lemma 2.1. Suppose that for some > 0, ¢ > 0, and > 0, we have
() ||| < pBfort € R,
(i) |7(6)] < p(2t|¢])*= for € € R™ andt € R;
(iii) [l (N)ll, < BIlfl|, for someg > 1;
(iv) The functionsp;, t € R satisfy the properties thap, is supported in{¢ € R" :

27 e < J¢| < 270D} and’d;gt (5)‘ < C, €| for any multi-index; € (NU(0))"

with constantg”. depend only on and the dimension of the underlying spde
Then forqi—ql <p< % there exists a constant, independent of, 3, B, s, ande such that

o(p)

(2.3) 1A sa(F)Il, < Cp(BB)2(BB™)F 2@ ==0wlsl 7|

forall f € LP(R"), wheref(p) = 2=LUL if p € (2, q{—ﬂ) andf(p) = EEE=21 if p ¢ <q%, 2).

Proof. We start with the casg = 2. By Plancherel’s formula and the conditions (i)-(ii), we
obtain

(2.4) 1A asalHl, < 827271 £

forall f € L*(R™).
Next, setp, = 2¢’ and choose a non-negative functior L% (R") with [|v]|, = 1 such that

||AT,<I>,s,a<f)||12)0 - / / |T(zt * Opyg * f(x)‘Q v(x)dtdm
R” J —c0
Now it is easy to see that

(2.5) 1Ar00(F)llpy < VB s (D)l 17 @)1

whereg, ; is the operator

1

2

(26) £ueN0) = [ lown o) )

o0

By the condition (iv) and a well-known argument (see€l[12, p. 26-28)), it is easy to see that

(2.7) 18a,s(F)Ily < Coo [If ],
forall f € L*(R") with constant’,,, independent of ands. Thus, by[(2.5) and (2| 7), we have

(2.8) 1Ar@.5a ()L < CooV/ BB fl,, -
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By duality, we get

(2.9) 1A7.2,5.0(F)| oy < Cooy VBB 1 Fll gy -
Therefore, by interpolation betweén (2.4), {2.8), dnd|(2.9), we oljtaijp (2.3). This concludes the
proof of the lemma. O

Now we establish the following oscillatory estimates:

Lemma 2.2. Suppose thaf € L>(S""!) is a homogeneous function of degree zerdRin
satisfying [(1.]L) and(|z|) € (*(L?)(RT), 1 < ¢ < 2. Then for a complex number with
Re(p) = o > 0, we have

(2.10) \2 / ) |y|‘"+ph<|y|>dy\
y<2t

C 1-2/¢ 2/q —
< 2 [Pl oy ey 1€2011 QU 2 jel)

and

—at —i&y —n+p C t €
(2.11) ’ vz Q) [yl hllydy| < 2— 1Al o) 121 (2°1€])

y t
forall 0 < ¢ < min{1/2,a}. The constan€ is independent d?, «, andt.
Proof. For¢ € R™ andr € RT, letG(¢,r) = [y, e V' Q(y)do(y'). Then itis easy to see
that
@12) [oet [ ) bl a) dy‘ Zz o [ melieE et
ly|<2¢ ot—j—1

Using the assumption that< ¢ < 2, itis stralghtforward to show that the right hand side of
(2.12) is dominated by

(2.13) 2 (1 ly0 oy oy 112U 22 o ( /
2

t—j—1

2t=J

Q

G ) d)
Now, foré € R”, ¢/, 2’ € S* 71, 5 > 0, andt € R, set

ot=i
Li(6,y,2) = / e e W =1 gy
2

t—j—1

Then, we have

1

2t=J da
(2.14) ( / |G<»s,r>\2r-1dr) < el [ / o Tael& s oty do(2)

By integration by parts, we have

1
Py

(2.15) L&y 2N < @777HENE - (v = 2D
On the other hand, we have

(2.16) 16§, v/, 2")] < In2.

Thus, by combining (2.15) anfd (2]16), we get

(2.17) 1Le(&y, 2N < @777HENE - (v = 2))°
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for 0 < ¢ <min{1/2, a}. Therefore, by|(2.14) and (2.[17), we obtain that

1
Py

(2.18) </22_ \G(&T‘)\erdr> < QX CE— e,

t—j—1

where the constartt' is independent of2, j, andt. Moreover, since < 1/2, it can be shown

thatC' is also independent ef. Hence by[(2.1]2)[(2.13), and (2]18), we get (2.10).
Now we prove[(2.1]1). Using the cancellation propefrty|(1.1), it is clear that

2(In2)7

(2.19) ‘2“/'@ eI y) [y h(lyl)dy' < 1Rl oo ay ey 192115 2° €] -
y|< t

On the other hand, we have
(2.20) 22
(0%

got / e €0 y) |y|"“h<|y|>dy] <
ly|<2t

Thus, by interpolation betweep (2]19) and (2.20), we [get [2.11). This completes the proof of
LemmdZ.2. O

1l oy ey [1€211, -

3. ROUGH PARAMETRIC MAXIMAL FUNCTIONS

In this section we shall establish the boundedness of certain maximal functions which will be
needed to prove our main result.

Theorem 3.1. Suppose thaf € L>(S""!) is a homogeneous function of degree zerdRén
with [|Q], < 1 and |||, < 2 for somea > 1. Suppose also thdt(|z|) € [*(L9)(R"),
1 < g < oo and let)M, be the operator defined as in (1L.4). Then

aC
(3.1) 1M, < == 111,
forall 1 < p < oo with constantC' independent of, f, anda.

Proof. Sincel*>(L")(RT) C [*°(L%)(R*") wheneverg, < ¢, it suffices to assume that <
g < 2. By a similar argument as in([2]), choose a collectionCéf functions®, = {¢; :
t € R} onR" that satisfies the following propertieg; is supported if¢ € R? : 2-(+he <
€| < 2-(t=Day, ‘%(g)‘ < C |¢|""" for any multi-indexy € (NU{0})" with constants”,
depending only on the underlying dimension anénd
(3.2) D i) =1

jezZ
Fort € R, let{o; : t € R} be the family of measures d&" defined via the Fourier transform
by

33) @ =2 [ e i)l ) dy
Then it is easy to see that i
(3.4) M, f(z) = sttelﬂg{latl | f(@)]}-

Now choosep € S(R™) such thatp(n) = 1 for || < %, andg(n) = 0 for |5| > 1. Let

21
{m : t € R} be the family of measures @ defined via the Fourier transform by

(3.5) #(€) = 64(€) — 3(2€)6,(0).
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Then by Lemma 2]2, the choice of the definitions ob;, 7;, and the assumptions @, we
have

CQla

«

(3.6) 7(6)] < (2"len

for somel,c > 0. Moreover, it is easy to see that

37) Il < <
Therefore by interpolation betwegn (38.6) ahd|(3.7), we get
C e

(3.8) () < (2[5

Now by (3.2), and the definitions of, andr;, it is easy to see that

(3.9) M, f(x) <2vaY  Avoja(f)(@) + Ca ' MH(f)(),
JEZ

(3.10) T(f)(x) S2vVa)  Arwgalf)(@) + Ca”  MH(f) (@),
JEZ

whereM H stands for the Hardy-Littlewood maximal function &ft, 7* the maximal function
that corresponds tfr; : ¢t € R}, andA, ¢ . is the operator defined by (2.1).
By (3.8), it is easy to see that

(3.11) 1A 5a(Flly < C27Vla™t| £,

forall f € L?(R"). Therefore, by[(3.10) anfl (3]L1) we have

(3.12) I (A, < Calal|fll,

Thus by [3.7),[(3/8)[ (3.11), (3.12), and Lemmd 2.1 wjitk 2, we get

(3.13) 1A 0N, < Ca'Vallfll,

for p € (3,4). Hence, by interpolation between (311) and (B.13), we obtain
(3.14) 1Areja(HIl, < Cat Va2l £,

for p € (3,4). Hence by[(3.10) andl (3.114), we get

(3.15) I, < Ca”lallfl,

for p € (3,4). Next, by repeating the above argument wjth: 5 + ¢ (¢ — 0*), we get that

(3.16) 1A a(FIl, < Catva2==lil||f||,

(3.17) I (Hll, < Ca"allfl,

forp € (g, 8). Now the result follows by successive applications of the above argument. This
completes the proof. O
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4. PROOFS OF THE MAIN RESULTS

Proof of Theorerfi I]2Suppose tha® € L(log™ L)(S"') andh(|z|) € (L) (RT),1 < ¢ <
co. A key element in proving our results is decomposing the functiaas follows (for more
information seel[3]): For a natural number let E_ be the set of points’ € S"~! which
satisfy2”" < |Q (/)] < 2v*2. Also, we letE, be the set of points’ € S"~' which satisfy
()] < 2%. Setb, = Qx, . SetD = {w: [|b, ||, > 27°"} and define the sequence of

functions{€2, },cpu0y PY
( / bw(:c)da(a;)v>
Sn—1

(41 Q) =bo(x) + 3 by (x) - /S  bo()do(r) ~ Y

w¢D w¢D
and forw € D,

.2 0.(0) = (0l (0o = [ n(@aot)).
Then, itis easy to see that far€ DU {0}, 2, satisfies[(1]1),

(4.3) 12,0, <C, Q. < 021,

(4.4) Qa)= ) 6.9,

weDU{0}
wheref, = 1, andd,, = Hb ||, if we D.
Forw e DU{0}, let ug, , be the operator defined as .1 3) withreplaced by2 . Then
by (4.4), we have

(4.5) i) wf (@ Z 0 MQw nf (@

wEDU{O}

Now, forw € DU {0}, letr,, = {7, : t € R} be the family of measures @ defined via the
Fourier transform by

(@6) il =277 [ )l ()

and let®,,.» = {¢; : t € R} be a collection o> functions onR" defined as in the proof
of Theoren]{ 3. Let\,, .. w2 J € Z be the operators given by (2.1). Then by a simple
change of variable we obtain

(4.7) M?)w,hf<m) < Vvw+2 Z Ary @pragjur2(f) ().
jEZ
Thus by Lemma 2]2, the properties@f, Theoren@l and Lemma 2.1, we get
(w42
8 oo, afll, < 2%,

forall 1 < p < oc.
Therefore, forl < p < oo, by (4.7) and[(48), we get

p C
lonfll, <=1 > (w+20, £,

weDU{0}

Q

< < 19 gog o 11,

Hence the proof is complete. O
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Proof of Theorer 1]3A proof of Theorenj 13 can be obtained using the decomposftioh (4.4)
and Theorer 3]1. We omit the details O
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