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1. Introduction

Let C" be the space ai complex variables = (z1, 2o, . . ., z,) with the Euclidian
inner product(z,w) = 7, z;w; and the norm|z|| = \/(z,z). A domain( is
called a balanced domain @" if A\z € Q2 forall z € Q and\ € C with [A\| < 1.
The Minkowski functional of the balanced domdins
, z n
p(z)—lnf{t>0,¥€Q}, zeC".

Suppose thaf2 is a bounded convex balanced domaindn, andp(z) is the
Minkowski functional of(2. Thenp(-) is a norm ofC" such that
Q={zeC":p(z) <1}, p(rz) = [Ap(2)

for A € C, z € C" (see RQ)).
Letp, >1(j=1,2,...,n). Then

b= { ) €Sl <1

J=1

is a bounded convex balanced domain, and the Minkowski functiepalof D,
satisfies

n

(1.1) >

J=1

p(2)

1/
p(z) = (Z?Zl |zj|1’) " is the Minkowski functional of domain

B, = {zeC”:Z]zj|p< 1}, where p > 1.

j=1

2nd Order Differential Subordinations
of Holomorphic Mappings

Yu-Can Zhu and Ming-Sheng Liu
vol. 8, iss. 4, art. 104, 2007

Title Page
Contents
44 44
< >
Page 4 of 30
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au

Let Df(z) and D?f(z)(-,-) denote the first Fréchet derivative and the second
Fréchet derivative for a holomorphic mappilig 2 — C™ respectively. Then they
have the matrix representation

_ (9f;(z) 2 f;(2)
Df(z)_( 0z, )lgj,k§n7 by (Z 021,02 )1<‘k< ’

whereb = (by,bs,...,b,) € C". The mappingf : Q@ — C" is called locally
biholomorphic if the matrixD f (z) is nonsingular at each pointin .

The class of all holomorphic mappings: 2 — C" is denoted byH (2, C™).
Assumef,g € H(2,C"). Then we say that the mappingis subordinate tg,
written f < g or f(z) < g(z), if there exists a holomorphic mapping: Q@ — Q
with w(0) = 0 such thatf(z) = g(w(z)) for all z € Q. If g is a biholomorphic
mapping, thery(z) < g(z) if and only if f(©2) C ¢(Q) andf(0) = g(0).

In classical results of geometric function theory, differential subordinations pro-
vide some simple proofs. They play a key role in the study of some integral op-

erators, differential equations, and properties of subclasses of univalent functions,

etc. S.S. Miller and P.T. Mocanu et al. have obtained some deep results for differ-
ential subordinationsl, 11, 12, 13, 16, 14]. There is a excellent texDifferential
Subordinations Theory and Applicatigrisy S.S. Miller and P.T. Mocanu .

The geometric function theory of several complex variables has been studied by
many authors. Many important results for biholomorphic convex or starlike map-
pings inC™ have been obtained (seg B]). Some differential subordinations of
analytic functions in the complex plane are also extendéi'tps, 6, 8, 15, 22]. But
there are very few results on second order differential subordinations of holomorphic
mappings inC".

In this paper, we obtain some second order differential subordinations of holo-
morphic mappings on a bounded convex balanced domamC”". These results
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imply some first order differential subordinations of holomorphic mappings on a
bounded convex balanced dom&inn C”. When(2 is the unit disc in the complex
planeC, these results are just those of Miller and Mocanu et al. about differential
subordinations of analytic functions on the unit disc in the complex plane
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2. Main Results and Their Proofs

In the following, we always assume that the dormaiis a bounded convex balanced
domain inC™ andp(z) is the Minkowski functional of). Thenp(-) is a norm ofC"
such that

Q={zeC":p(z) <1}, p(Az) = [Alp(2)

for )\ c (C, = Cn 2nd Order Differential Subordinations

. . . of Holomorphic Mappings
In order to derive our main results, we need the following lemmas.

Yu-Can Zhu and Ming-Sheng Liu

Lemma 2.1. Suppose thap(z) is twice differentiable i — {0}, and letw € e 8 5, 4 G, 0, 20
H(Q,C") withw(z) # 0andw(0) = 0. If z, € Q — {0} satisfies

p(w(zo)) = | nax p(w(z)), Title Page
B Contents
then there exists a real numbep 1/2 such that % <
dp
2.1) <Dw<zO><zO>, a—§<w0>> — tp(un), «
Page 7 of 30
and Go Back
(22) Re <D2w<ZO>(307 20)7 %(w0)> Full Screen
n 52 n 52 Close
p 7 p
2 Re { ] 02,07 (w0)b;br = lz 02,0z l(wo)b bl} to(wo), journal of inequalities
J5t= Js
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Proof. Sincep(wy) = (r)n<a>(< )p( w(z)), then we haveu, # 0. Otherwise, there is
w(z) = 0, which contradicts the hypothesis of Lemma.
Letw(z) = (wi(2),wa(2), ..., wa(2)),7(t) = w(ez) =

Then we havey;(t) = w;(e"z) (j = 1,2,...,n),7(0) = w(z) = wy and

dy;(t) _ — dwj(ez0) 4 dy;(t) —~ [ w;(e'z) 0

wherezg = (29,29,...,29). SetL(t) = p(y(t)) (=7 < t < 7). Some straightfor-
ward calculations yield

dv ~dy;(2)
Z 82 ] Z 8z ]t
J J

= Jf

— 91 it il : —Z
2Tm [6 ~ azj (fy(t)) aZk; zk]

= —2Im <Dw(e 20)(e"z), gg( (t>)>a

" . ow; g = O "L 0w
L"(t) = —2Im |ie" =— (1) 8z: + e —p(v(t))z ’ zgz?]

(1 (), 72(8), -, (1))

2nd Order Differential Subordinations
of Holomorphic Mappings

Yu-Can Zhu and Ming-Sheng Liu
vol. 8, iss. 4, art. 104, 2007

Title Page
Contents
44 44
< >
Page 8 of 30
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au

Noting L(0) = max L(t),we havel’(0) = 0andL”(0) < 0. It follows that

—n<t<mw

23) i { D). ) ) =,

and

(2.4) Re <D2w(20)(20, 20), %(wo)> + Re <Dw(zo)(zo)a %(’WO)>

0 — —
J 02,07

n 2 2
+Re [Z PP )by — 2L (wo)bja] > 0.

=t 02,07

On the other hand, by Schwarz’s Lemmaldn [19], we have
plw(z)) _ pluw)

for 0 < p(2) < p(20).

o) = ple0)
-t (wirz0))  plw(rz)
_ plw(rz)) _ plw(rz
POy T o)
Theny(1) = 0123<X1 o(r) . It follows that
J(1) = tim £ =M 5

r—1- r—1 -

By a simple calculation, we obtain

/ _ :0<w0) 2 8_p
(1) = _M + @ Re <Dw(zo)(zo), py

<w0>> >0,
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If we let

t= @ Re <Dw(zo)(zo), %(w0)> ;

then we have > 1/2, therefore £.1) of LemmaZ2.1 holds, and %.2) follows from

(2.3 and @.4). This completes the proof. O
Remarkl. Sincep(tz) = tp(z) fort > 0, then forz € C* — {0}, we have
dp(tz) dp _ dp
2. == =2 = .
(2.5) p(2) it |, Z 0z; zZj + Z 0z, =% = 2Re( 2, 8,2(2)

For anyz € C" — {0}, we haqu(p(z)) = 1. Lettingw(z) = z in (2.1), we obtain
that there exists a real numher % such that

<z, %(z)> —tp(z) >0, zeC"—{0}.

Hence it follows from £.5) that

) =2 (5 O ). seC - o)

Lemma 2.2 ([L0]). Letg(&) = a + bi€ + b&2 + -+ be analytic in|¢| < 1 with
g(&) £ 0. 1f & = ree® (0 < 7y < 1) andRe g(&) = min Re g(&), then

1€1<ro
26) g () < ~ 5t
and
(2.7) Re{&g" (&) + &g (&)} < 0.
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Lemma 2.3. Suppose that(z) is differentiable in2 — {0}. Leth : Q@ — C" be a
biholomorphic convex mapping witl{0) = 0. Then for every € Q2 — {0}, we have

'2 <Dh<z>-1h<z>,%<z>> o) < o2,

Proof. For each: € ) — {0}, we letg(¢) = (Dh(z)"'(h(z) — h(€2)), 2(2)) for
€] < 1. Theng(¢) is analytic in|¢] < 1 and

9(§) = <Dh(z)1h(z), %(2)> + b+

From the result in3, 7], we haveRe g(¢) > 0 for all || < 1. Hence we obtain

0=Reg(l) = mig}Reg(ﬁ)

By a simple calculation, we may obtain

/1) = = (D) D)), %<z>> -—(= %@ _ )

By (2.6), we have
—p(z)Rea + |a* <0,

wherea = { (Dh(2)~'h(z), 22(2) ). It follows that
0z

< p(2).

2{Dhe) ). 22421 ) - o)
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Lemma 2.4 ([23]). Suppose that(z) is twice differentiable if2 — {0}. If f : Q —
C™ is a biholomorphic convex mapping, then we have

2.
@9 Re{z;1 920

~ O _ dp
+ ;1 azlazmblbm — <Df(z) LD%f(2)(b,b), o >} >0

foreveryz = (21, 22,...,2,) € Q—{0}, b= (by,b2,...,b,) € C"with Re(b,%> =
0.

Lemma 2.5. Assume thap(z) is differentiable int2 — {0}. Then

2.9) o( >—2< §§<z>>, ceC (o),

and

(2.10)

dp
2 <w, a—'Z(z)>‘ < p(w), ze€C"—-{0}, weC"
Proof. From Remarki, we only need to prove’(10). Letz € C* — {0} and
Q, ={w e C": p(w) < p(z)}.
Then(, is a convex domain i, and%(z) is the normal vector o2, atz. For

everyz,w € C" with p(z) = 1, p(w) = 1, we haveRe <z —w, %(z)> > 0. It
follows that

(2.11) 2Re <w, %(z)> < 2Re <z %(z)> = p(z) = 1.

n\
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When<w, %(z)> = 0, itis obvious that?.10) holds.

When<w, %(z)> # 0, thenp(w) # 0. Usingﬁ to substitute for andﬁw)e—w
to substitute forw in (2.11), we obtain

'2Re <w, %(Z)N < p(w), zeC"—{0}, weCm,

wheref = arg <w,%(2)> and %g()\z) = %g(z) forall A € (0,+00) andz €
2 — {0}. This completes the proof. N

Lemma 2.6. Suppose that(z) is differentiable in2 — {0}, and leth : Q@ — C™ be
a biholomorphic convex mapping witl{0) = 0. Then for every: € Q — {0} and
vector{ € C™, the inequality

'2<Dm¢rwa,§ia>\s<1+pu»%thmr*@»

z

holds.

Proof. Without loss of generality, we may assume thas a biholomorphic convex
mapping or2. If not, then we can replade(z) by h,(z) = h(rz), where0 < r < 1.

For any fixedz € Q2 — {0}, from the proof of Theorem 2.1 ir5[ 9], there exist
z € 0Q andu € (0,1) such thati(z) = ph(z) and

1 —p(z)
I e

Letg(w) = h™[(1 — u)h(w) + ph(Z)]. Sinceh is a biholomorphic convex mapping
on 2, theng € H(Q,C") with ¢(©2) C Q2 andg(0) = z. For every¢ € C" — {0},
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we set

s =2{s(x-5).2x),

theny(\) is an analytic function in\| < 1. By Lemma2.5, we obtain

O] < p (g (A%)) <1

o) =) +2 (D900 (55 ) Doy >> At
<

forall |A\| < 1, and

p(§)

From the classical result ii], we have|’(0)]

I

2( D) DRONE). 6 )| < 0= pPIe) < (14 () 0lE

forall{ € C*, z € Q — {0}.
Set( = Dh(O)( ), then¢ = Dh(0)~!¢ and

2 (i <z>>' < (14 p(2)*(DR(O) ().

which completes the proof.
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Theorem 2.7.Let f,g € H(§2,C") with f(0) = ¢(0), and letg be biholomorphic
convex onf). Suppose thap(z) is twice differentiable i — {0}. If f is not
subordinate tgy, then there exist pointg € Q2 — {0}, wy € 92 with 0 < p(z) <

1, p(wp) = 1 and there is a real number> 1/2 such that

1. f(20) = g(wo),

2. <Dg(w0)_1Df(zo)(zo), %(w0)> =t,and

3. Re <Dg(w0)71D2f(Zo)(ZO,ZO)u %(wo)> = L.

Proof. If f is not subordinate tg, then there exist pointg € Q — {0}, w, € 0%
with 0 < p(z0) < 1, p(wp) = 1 such thatf(z) = g(wy) and f(D,) C g(£2), where
D, ={z€C":p(z) <r}andr = p(z).

Let w(z) = ¢7'(f(2)). Thenw : D, — € is a holomorphic mapping with
w(z) # 0 andw(0) = 0 satisfyingf(z) = g(w(z)) for z € D,.. Hence

1 = p(wy) = max w(z)).
p(wo) p(z)gp(zo)p( (2))

By a simple calculation, we have

Duw(z0)(20) = Dg(wo) ' D f(20)(20),
Dg(wo) ™" D? f(20) (20, 20) = Dg(wo) " D*g(wo)(Dw(z0)(20), Dw(z0)(20))
+ DQUJ(ZO)(ZO, Zo).

From (2.1), there is a real number> 1/2 such that

( Do) L)) = tofun) = .
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So we obtain

Do(us) D (o)), L)) = 1.
( )

and

Re { Dg(un) D/ o) e 20). 22l )
= e ( Dyt Dg(an) Dt ). Do) ). o)
+Re<D2w(zo)(zo,Zo) g (w )>

> Re { Do(un) " Dg(u) (0, a), 22 (uy)
( i)

- 829 n a2p
R _ | B
o {szl 0207 (t0)a; =1 02,0z (wo)ajay )

wherea = DUJ(ZQ)(Z()) = (0,1, ag, ... ,an). If we letb = (bl, bg, ey bn) with
b; = ia;, then we have

Re <b,%(wo)> = Re {z <Dw(zo)(zo),%(wo)>} = Re{it} = 0.

From Lemma?.4, we obtain

Re { Dg(an) D1 2o e 20) S )
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> —t
- 2nd Order Differential Subordinations
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key role in studying some second order differential subordinations of holomorphic :
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< »

1. ¢(h(0),0,0,0) € €, and

2. ¥(a,8,7,2) ¢ Qufora = h(w), (Dh(w)~(8), F(w)) =,

Page 17 of 30
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Proof. If f is not subordinate t@, then by Theoren2.7, there exist pointg, €

Q — {0}, wp € 9Q with 0 < p(z9) < 1, p(wy) = 1 and there is a real number

t > 1/2 such that

Fea) =), { Dhtwn) Do), SEw) ) =,

and e
Re <Dh(w0)‘1D2 F(20) (20, 20), 8—5(w0)> > .

Seta = f(z0), 3 = Df(20)(20), v = D*f(20) (20, 20), then according to the defini-
tion of ¥ (€2, h), we have

U(f(20), D f(20)(20), D*f(20)(20, 20), 20) &

which contradicts {.12). Hencef(z) < h(z), and the proof of Theorer.8 is
complete. n

Theorem 2.9.Let A > 0, h € H(£2,C"™) be biholomorphic convex with(0) = 0
and lety(z) € H(Q2,C") with¢(0) = 0. Suppose that(z) is twice differentiable
inQ — {0}, k > 4||Dh(0)~! i

Reg(a, z) > A+ [p(a, 2) = 1] = Relp(a, 2) = 1] + kp((2))

for all (a,2) € h(QQ) x Q, wherte is a domain ofC™ with A(Q2) C €, and
| Dh(0)7| = sup p(Dh(0)71()). If f € H(Q,C") with £(0) = 0 satisfies

p(&)
ADQf(Z)(Z, 2) + ([ (2),2) Df(2)(2) + o ([(2), 2)f (2) + P(2) < h(z),
thenf(z) < h(z).
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Proof. Without loss of generality, we may assume tli@ndg satisfy the conditions
of Theorem2.9on Q. If not, then we can replacg(z) by f,(z) = f(rz), ¥(z) by
¥r(2) = ¢¥(rz), andh(z) by h,.(z) = h(rz), where0 < r < 1. We would then prove
fr(2) < h.(2)forall0 < r < 1. By lettingr — 1~, we obtainf(z) < h(z).

Let

(e, 8,7, 2) = Ay + ¢(a, 2) B+ (o, 2)a + (),
and leta = h(w), <Dh “1(3), 2 (w )> — 1, Re <Dh(w)*1(v),%(w)> >
wherep(w) = 1,¢t > 1/2. Ifwe set
Y, 8,7, 2) = h(w) + ADh(w)(w),
then we have
Aw = ADh(w) ™! (7) + ¢(e, 2) Dh(w) ™' (B)
+ [p(e, 2) = 1]Dh(w) " h(w) + Dh(w) ™ (1(2)).

Since2 <w,%(w)> = p(w) = 1 from Remarkl, we obtain

(2.13) A=24 <Dh(w)1(’y), %(w)> +2¢(a, 2) <Dh(w)1(ﬁ), %(w)>
2lp(a2) = 11 { D) (w). Fw) ) + 2 Dhlw) (0(2), 22 (w) ).

z

By LemmaZ2.3, we have
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By LemmaZ.6, we obtain

Re\ > —2At + 2t Re ¢(a, 2) + Re[p(a, z) — 1]

— I, 2) — 1| — 4| DR(0) | p(46(2))
> (2t - 1){Jp(ev, 2) — 1| - Relip(a, 2) — 1]}
(2.14) + (k — 41 DR(0) " )p(e(2)) = 0.

Now we verify thaty(«, 3,7, 2z) ¢ h(£2). Suppose not, then there exists € (2
such that)(«, 3,7, z) = h(w;). From the result in3, 7, 18, 19], we have
- p
—ReA =2Re( Dh(w) " (h(w) — h(wy)), g(w) > 0,

which contradicts{.14), hencey(a, 3,v,2) ¢ h(2). By Theorem2.8, we obtain
f(z) < h(z), and the proof is complete. O

Corollary 2.10. LetA > 0,h € H(©2,C™) be biholomorphic convex with(0) = 0,
and lety(z) € H(Q,C") with ¢/(0) = 0. Suppose that > 4|[Dh(0)7|, p(z) is
twice differentiable if2 — {0}, and B(z), C(z) € H(12, C) satisfy

Re B(z) 2 A+ |C(2) — 1] = Re[C(z) — 1] + kp((2))
for all z € Q, where||DR(0)7Y|| = sup p(Dh(0)71(€)). If f € H(Q,C") with
f(0) = 0 satisfies "o
AD*f(2)(z,2) + B(z)Df (2)(2) + C(2) f(2) + ¥(2) < h(2),

thenf(z) < h(z).
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Corollary 2.11. Let A > 0,h € H(2,C") be biholomorphic convex. Suppose that
p(z) is twice differentiable if2 — {0}, and B(z) € H(Q2,C) with Re B(z) > A for
all z € Q. If f € H(2,C™) with f(0) = h(0) satisfies

AD*f(2)(z,2) + B(2)Df(2)(2) + f(2) < h(2),
thenf(z) < h(z).

Corollary 2.12. Leth € H(2,C") be biholomorphic convex with(0) = 0. Sup-
pose thatp(z) is twice differentiable if2 — {0} and¢ : Q; — C is holomorphic
such thatRe ¢(h(z)) > 0forall z € Q. If f € H(Q,C") with f(0) = 0 satisfies

f(2) + o(f(2))Df(2)(2) < h(2),
thenf(z) < h(z).

Remark3. Whenn = 1, we haveD f(2)(z) = zf'(z) andD?f(2)(z, z) = 22 f"(2).
From Corollary?.10, we may obtain Theorem 2 ii§], Theorem 3.1a in15], The-
orem 1 for case 1 in12] and Theorem 1 inJ4]. From Corollary2.11, we may
obtain Corollary 2.1in13].

Example2.1 Let 3 > 0 andy € C with 2Re~ > 3. The unit ball inC" is denoted
by B={z¢€ C":|z| < 1}. If u € C" with |Ju|| = 1, thenh(z) = —— isa

1—(z,u)
biholomorphic convex mapping aB (see [L7]). By a simple calculation, we have

(2.15) Re {ﬁ<ﬁu> +7]
_ Req|l — (z,u)” + B[Re(z, u) — [{z,u)|*]

1= {z,u)?
S Bl = (zw)* + 2B[Re(z, u) — [z, w)]’]
- 2|1 = (z,u)|?
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B0 = Iz w))

>0
211 = (z,u)f?

forall z € B. If f € H(B,C") with f(0) = 0, then by Corollary?.12, we have

DI = :

O IR TR Rt A b vy

Example2.2 Let A > 0,5 > 0 andy € C with Rey > 3/2 + A, u € C" with
|ul| = 1. If f € H(B,C") with f(0) = 0, then by Theorem.9, Corollary?.11and
(2.19, we have

f(z) +

2 _{mu) R
ADIRE {61—<z,u> +7} Df(z)(2) + f(2)
T =T
and
AD?S(2) (2 21O (2), u DS+ () < T = 1) < T

Let p(z) be differentiable irf2 — {0}. For M > 0, we define¥ (/) to be the
class of mapg) : C* x C" x C" x ) — C" that satisfy the following conditions:

1. p(¥(0,0,0,0)) < M and

2. p(W(a, 8,7, 2)) > M forall p(a) = M, 2 <6, %(a)> — M,
2 Re <7,%<a)> > (2 — )M, and t > 1,
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Theorem 2.13.Lety € ¥(M). If w € H(Q,C") with w(0) = 0 satisfies
(2.16) p(¥(w(2), Dw(z)(2), D*w(2)(z,2),2)) < M
forall z € 2 — {0}, thenp(w(z)) < M for z € Q.

Proof. Suppose that the conclusion of Theorém3is false. Then there exists a
pointzg € 2 — {0} such thaip(w(z)) = M andp(w(z)) < M for p(z) < p(zp). It
implieswy = w(zy) # 0.

Let —
o€ =2 (-2 ) L),

Thenyp(¢) is an analytic function in¢| < 1. By LemmaZ2.5, we have

w61 < 2 (o (5256) w0 (w0 (5256 ) < plutan)

for all |¢] < p(z), and

¢eC.

p(a0) =2 (wlan). ) ) = plool) = o [4(O)]

1€1<p(20)

By a simple calculation, we have

plan)¢ (o) = 2{ D)) ) ).

plan)¢ (o) = 2 { Dt 20, 52000) ).
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Using Lemma A in LQ (also see 15, p. 19]), there exists a real number 1 such
that

2 Duteo) o) Llan)) =001

2Re <D2w(zo)(z0, zo),%(wo)> > (12 —t)M.
By the definition ofy, we have
p((w(2), Dw(z0)(20), D*w(20)(20, 20), 20)) > M,

which contradicts®.16). Hencep(w(z)) < M for z € 2, and the proof is complete.

]

Theorem 2.14.Letp(z) be differentiable if2—{0}. Suppose that(z), B(z),C(z) €
H(Q,C) with A(z) # 0 for all z € Q satisfy

e% max q — S eC(Z) o)
(2.17) R AC) > { 1, |A(2)] R A(2) * |A(2)] }7
or
1. C(2) 1 ple(2)
(2.18) A(z) - |A(2)] - |A(2)] !
o meCE) 1 plel2) eﬁ -
and L= R TG A = A <!

forall z € Q. If w(z) € H(Q2,C") with w(0) = 0 satisfies
p(A(2)D*w(2)(z, 2) + B(2) Dw(2)(2) + C(2)w(z) + ¢(2)) < 1
forall z € Q, thenp(w(z)) < 1for z € €.

2nd Order Differential Subordinations
of Holomorphic Mappings

Yu-Can Zhu and Ming-Sheng Liu
vol. 8, iss. 4, art. 104, 2007

Title Page
Contents
44 44
< >
Page 24 of 30
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au

Proof. Let
(e, 8,7, 2) = A(z)y + B(2)B + C(2)a + ¢(2),

wherep(a) = 1, 2 <ﬁ, %(a)> =t,2Re <7, %(a)> > (t* —t) andt > 1. From
(2.9 and @.10, we have

oot 5.7.2) 2 [2 (a0 7. L )
= lateriz (2. ) + Base 2 (5.

+ C(2)e 2 <a, %(a}> +2¢7 <so<z), %(a%

2 B(2) Ct) ple()
= 14G)] {t o [Re A(z) - 1] TRAE T AR }

wheref = arg A(z). Let

Lt)=t +t [Re iéi; — 1] + Re igz; p|(90(z))

fort > 1. Then we have

L'(t) = 2t + Re ig; ~1

If Re % > —1forz € Q, thenL/(t) > Re fgj + 1> 0. Hence we obtain

min L) = L1 = Re BG) L g C)  ple(z)) 1
(o) = 1(1) = Re 5 + e S8 - AFE) 5
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It follows that p(v(a, 3,7, 2)) > 1
If Re ﬁg < —1for z € Q, then

fg{lL(t)—L(% (1—R§<(§))

L BE) N C6) ()
4<R A(2) 1) TR T AR
1

/\
\_/

Az
It also follows thatp (v («, 5,7, 2)) >
Hence we have) € W(1). From Theoremz 13 we obtainp(w(z)) < 1 for
z € (. O]

Remark4. Settingn = 1, p(z) =0, A(z) = AandC(z) = 1 — B(z) in Theorem
2.14, we get Theorem 4 inlf3].

Corollary 2.15. Suppose thaB(z) € H(B,C) and A > 0 satisfyRe B(z) > 0 for
all z € B. Ifw(z) € H(B,C™) with w(0) = 0 satisfy

|AD?*w(2)(2, z) + B(2)Dw(2)(2) + w(z)|| < 1
forall z € B, then|lw(z)|| < 1for z € B.

Example2.3. Let k& andn; be positive integers and let= («q, as, ..., o) € C™.
We definea® = (af, af,... o). Supposed;, Ay, ..., A,, € H(B,C) (n; > 2)
satisfy

ReA1 > Z|Ak
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for = € B, whereB is the unit ball inC". If w(z) = (wi(z),wa(2),. ..
H(B,C™) with w(0) = 0 satisfies

2
8 UJU awu
Z Z (92]821 Z <1

v=1 |j,l=1 j=1 k=

forall z € B, then}_"" | |w,(z)]* < 1forall z € B
In fact, if we let

U, B,7,2) =7+ B+ ) Aw(z)a”
k=1
for |la| =1, (3,a) = t, Re(y,a) > t* — t andt > 1, then we have

[, B,y 2) Il = [ {7, @) + (B, @) + Au(2 +2Ak (o*, a)

>t2+R€A1 Z‘Ak |>1

> Re{{7,0) + (8,0) + A1z

Hencey € (1) for p(z) = \/m According to Theoren?.13 we have
S |we(2)]? < 1forall z € B.
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