journal of inequalities in pure and
applied mathematics

http://jipam.vu.edu.au
issn: 1443-5756

Volume 10 (2009), Issue 1, Article 19, 8 pp. © 2009 Victoria University. All rights reserved.

GENERALIZED A-NEWTON INEQUALITIES REVISITED

JIANHONG XU

DEPARTMENT OF MATHEMATICS
SOUTHERNILLINOIS UNIVERSITY CARBONDALE
CARBONDALE, ILLINOIS 62901, U.S.A.

Xu@math.siu.edu

Received 23 October, 2008; accepted 10 February, 2009
Communicated by J.J. Koliha

ABSTRACT. We present in this work a new and shorter proof of the generalizdéwton in-
equalities for elementary symmetric functions defined on a self-conjugate set which lies es-
sentially in the open right half-plane. We also point out some interesting consequences of the
generalized\-Newton inequalities. In particular, we establish an improved complex version of
the arithmetic mean-geometric mean inequality along with the corresponding determinant-trace
inequality for positive stable matrices.
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1. INTRODUCTION

The elementary symmetric functions on a Set {zy,xs,...,z,} C C are defined to be
Eo(xl,.’lj'Q, c. ,an) =1land

Z . . . I IR o

1<j1 <o <--<jr<n *YJ1% )2 Jk

Ep(xy, 20, ..., 2p) = ; :
")

Throughout this paper, we simply write such functionszasEy, or E; if the setS is specified
or is clear from the context. In addition, we denotesby the cardinality ofS. We comment
that if S represents the spectrum of some mattixthen the elementary symmetric functions
can be formulated in terms of the principal minors/f The elementary symmetric functions
can also be interpreted as the normalized coefficients in the monic polynomial whose zeros are
given by S, counting multiplicities.

The celebrated Newton’s inequalities concern a quadratic type relationship among the el-
ementary symmetric functions, provided thtconsists of real numbers. Specifically, this
relationship can be expressed as follows: On.é&ny R with #S = n,

E;>FEy 1B, 1<k<n-1

k=1,2,...,n.

The author thanks an anonymous referee for the constructive comment regarding the reflection of the wedge across the imaginary axis,
which has lead to the addition of inequalities a(2.5).
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For background material with respect to Newton'’s inequalities, we refer the readertal[3, 8, 9]. In
[8,19], such inequalities are also extended to include higher order terms involving the elementary
symmetric functions.

In light of the circumstances as mentioned earlier, in whicktands for the spectrum of
a matrix or the zeros of a polynomial, it is natural to raise the question of whether Newton'’s
inequalities continue to hold in the complex domain, i.e.Sr C. In this scenario, the set
S is always assumed to be self-conjugate, meaning that the non-real eleménéppéar in
conjugate pairs. Such a condition Srensures that the elementary symmetric functions remain
real-valued.

Continuing with the question regarding Newton’s inequalities on a self-conjugate set, the
answer turns out to be, in general, negative. Nevertheless, it is shown in [6] that for any self-
conjugateS in the open right half-plane, possibly including zero elements, yith= n, there
exists som@ < A\ < 1 such that

Ef > AEy_1Epy, 1<k<n-—L

These inequalities are developed independentlylin [7] over a self-conjugate set representing the
spectrum of the Drazin inverse of a singuldrmatrix. In addition, they are termed in/[7] the
Newton-like inequalities. In order to avoid potential ambiguity, from now on, we shall refer
to such inequalities as theNewton inequalitiedl Obviously, the\-Newton inequalities reflect
a generalized quadratic type relationship among the elementary symmetric functions when it
comes to the complex domain.

The results of([6], [7] are further broadened!inl[11]. It is illustrated there that the following
generalized\-Newton inequalities are fulfilled under the same assumptions a5 in [6]:

Exby > AEp 1 Fip, 1<kE<I<n-1.

As pointed out in{[11], the above formulation includes thé&lewton, with/ = k, as well as
Newton’s, withl = £ and\ = 1, inequalities; moreover, it constitutes a stronger result in that it
does not follow from the\-Newton inequalities.

We mention that the notion of generalizéeNewton inequalities is also motivated by the
literature regarding log-concave, or second order Pdlya-frequency, sequerices [1, 10]. In fact,
a sequencd E.} consisting of nonnegative numbef3, is said to be log-concave i£? >
Ey_1Ey44 for all k. 1t is well-known that{ £} is log-concave iffE,E;, > Ey_,E;., for all
k < [, assuming tha{ £} } has no internal zeros. This shows the close connection, in the
special case wheh = 1, between the\-Newton and the generalizedNewton inequalities,
prompting us to look into the latter for the overall situation witk: \ < 1.

The method in[[11] is, in essence, in line with that of [3]. It reveals how the elementary
symmetric functions change as the seis augmented by a real number or a conjugate pair.
Such an approach, therefore, may be useful for further investigating, for examplel\ewgton
inequalities involving higher order terms as studied_ir |6, 8] and other problems related to the
A-Newton inequalities as treated id [4, 7]. The prooflini[11], however, is quite lengthy.

As a follow-up to [11], we demonstrate in this work that the generalizdtewton inequali-
ties can be confirmed in a more elegant fashion without explicit knowledge of the variations in
the elementary symmetric functions due to the changesSn This new and briefer proof is
largely inspired byl[6, 18,19]. In addition to the proof, we derive some interesting implications
of the generalized-Newton inequalities. In particular, we strengthen a complex version of the
arithmetic mean-geometric mean inequality which appeais in [6]. The associated determinant-
trace inequality for positive stable matrices is also established.

!The author would like to thank Professor Charles R. Johnson for discussion on this terminology.
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2. MAIN RESULTS

We begin with some necessary preliminary results. The following conclusion can be found
in [8],19], whose proof is included here for completeness.

Lemma 2.1([8,[9]). Letp(z) be a monic polynomial of degreevhose zeros arey, z», . . ., z, €
C, counting multiplicities. Denote the zerospofz), the derivative op(x), byyi, va, - - ., Yn—1,
again counting multiplicities. Thenforall < k <n — 1,

Er(z1, 22, ..., x0) = Ex(y1, 92, -+, Yn_1)-

Proof. Denote thatry, = Ey(x1, zo, ..., z,) andEk = Ex(y1,92,---,Yn_1). Itis afamiliar fact
that

(2.1) p(x) = Z(—l)j (n) E;z" .
=0 J
From this, the monic polynomial associated wittiz) can be written as

n—1

x) = /() = Y (-1 (”) Byanit

n J

=0

On the other hand, we notice that, similar[to [2.1),

o) =S 1y (” - 1)ijwl_

. J

7=0
The conclusion now follows immediately from a comparison of the two expressiop&ifpmn
terms of £; and E;, respectively. O

The next result is a direct consequence of Lerimp 2.1.

Theorem 2.2. Suppose that(x) is a monic polynomial of degreewith zeroszy, xo, ..., z, €
C, counting multiplicities. For any < m < n, denote the zeros @f"(z), the (n — m)-th
derivative ofp(x), byyi, ve, . . . , ym, @lso counting multiplicities. Then for all < k& < m,
Ex(z1, 29, ..., 20) = Ex(y1, Y2, - -+, Ym)-

We also need the conclusion below, which is statedlin/[8, 9] for the case of real numbers. The
proof is straightforward and thus is omitted.
Lemma 2.3([8,[9]). Suppose that,,z,,...,z, € C are such thatz; # 0,1 < j < n. Set
z; = x; " forall j. Denote thatls, = Ej (21,3, ...,2,) and By = Ey(z1, 22, ..., 2,). Then
forany0 < k <n, E, = EnEn_k.

In the sequel, we assume thiat A < 1.

We are now ready to prove by induction that the generalizétbwton inequalities hold on

any self-conjugate st = {z1,x,...,z,} under the assumption that C 2, whereQ is a
wedge in the form([6, 11]

(2.2) Q= {z :larg z| < cos™! \/X} .

An immediate outcome of this assumption, i.8. C €, is thatFE, > 0 for any k. Before
proceeding, we also remark that this condition is equivalent to the following: For any nonzero
.’L‘j € S,

(2.3)

J. Inequal. Pure and Appl. Mathl0(1) (2009), Art. 19, 8 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

4 JANHONG XU

Similar to [11], we first verify the cases when= 2, 3. Seeing the fact that Newton’s
inequalities are satisfied wheneverC R, we only consider here the situation that at least one
nonzero conjugate pair is presentdnin what follows,a, b, andc are all real numbers.

Lemma 2.4. Suppose that = {a +bi} C 2, wherea > 0 andQ2 is given as in[(2]2). Then the
generalized\-Newton inequality holds oA, i.e.

E? > \EyE,.

Proof. Letp(z) = (x — z1)(x — x2) be the monic polynomial with zeras » = a £ bi. Clearly,
p(x) = 2? — 2azx + a® + b*. Next, by comparing with[ (2]1), we obtain that = a and
Ey = a? + b%. Hence
E? — AEyEy = a® — \a* +b*) > 0.
[

We comment that, although it seems simple, the foregoing proof indeed suggests several im-
portant issues. First, equalities are possible in the generalidéglvton inequalities. Second,
such inequalities may fail ofi when it contains nonzero purely imaginary conjugate pairs. And
finally, generally speaking, such inequalities may not holdig chosen to be greater than

Lemma 2.5. Suppose tha$ = {a + bi, ¢} C 2, wherea > 0 and( is given as in[(2.]2). Then
the generalized-Newton inequalities hold of, i.e.

E} > \EyE,, FE;>\E F;, and FE\E, > \EyFEs.
Proof. In a similar fashion as in the proof of Leminaj2.4, we find that

:2a+c E2_a2+62+2ac

FE -
1 3 ) 3 )

and Es = c(a® + b?).

Hence we arrive at:
a2
a? + b?
(a — c)? 2ab?c
+ >0,
9 3(a?+ %) —

E? — AEyE, > E? — EoF,

a2

a? + b?
[a*(a — ¢)* 4+ 2a°b° + dab’c + b'] >0,

EY — \E\F3 > E3 — E\Es

1
9
and

CL2

E1E2 - )\E()Eg Z E1E2 - mEoEg

1
=5 [2a(a — ¢)* 4 2ab® + b*c| > 0.
0

The proof of Lemma 2|5 indicates the possible failure of the generalizéewton inequali-
ties for the case whesi, except for its zero elements if present, does not lie entirely in the open
right half-plane. One such instance can be observed by considering the lower bound estimate
of By Es — AEyFEs5, assuming that andc are both negative. Thus the restriction tat 2 is
necessary to ensure the satisfaction of the generalizéelton inequalities.

Next, we turn to an inductive hypothesis: Suppose that the generalikisgvton inequalities
are realized on all self-conjugateC 2 such thattS < n — 1. The following result illustrates
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how this hypothesis guarantees that those inequalities continue to hold on any self-conjugate
S C Qwith #S = n.

Lemma 2.6. Suppose that the generalizéeNewton inequalities hold on any self-conjugate set
S C Qwith#S < n — 1, whereQ2 is given as |n) Then such inequalities are also satisfied
on any self-conjugate sétC 2 with #S = n. In other words, forany < k <1 <n —1,

EvEy > AEp 1B
holds onS.

Proof. LetS = {zy, 2o, ..., x,} be a self-conjugate set§h Denote that, = Ey(x1,x2, ..., z,).
Setp(z) = [[_, (z — ;), the monic polynomial of degreewith zeros as irf.

For arbitrary, but fixed]l < m < n — 1, we consider(z) = p™~™)(z), the (n — m)-
th derivative ofp(x). The zeros of;(z) form a self- -conjugate set = {y1,Y2, ., Ym } With
#S < n — 1. By the Gauss-Lucas theorefri [2], we see that . Hence the generalized
A-Newton inequalities hold oA, i.e. on IettlngEk Ex(y1,v2, - - -, Ym), We have that

EyEy > \Eg_1Eyy
forall1 < k£ <1 < m — 1. This, according to Theorem 2.2, verifies that forlakl £ <[ <
m — 1,

EyEy > AEp 1By
Sincel < m < n — 1is arbitrary, we conclude that the generalizetiewton inequalities are
satisfiedonS forall 1 <k <[l <n-—2.

It remains to show that for eadh< k < n — 1,
EkEn—l > )\Ek—lEn-

Obviously, this statement is true whéf), = 0. We assume, therefore, that, > 0, which
translates inta:;; # 0 for 1 < j < n. Setz; = xj_l for all j. Notice thatS = {21, 29,..., 2.}

is self-conjugate and, additionally, théitc 2. Denote that, = Ex(z1,22,...,2,). Then, by

Lemmd 2.8, R
Ek; = EnEn—k

for all k. We now observe that forany< k <n — 1, E,E,,_1 > \E,_ E, iff
E\E, > AEjs1 = AEgEj41.

Again, based on Theorgm 2.2 and the Gauss-Lucas theorem, the validity of this latter statement
can be justified whenevér< k£ < n — 2. Thus it is enough to establish that

E\IEn—l Z )\En

It is more convenient to write the aboveﬁsk > \. Note that

R En_ 1< 1<
Z Z wp A :5;%:5;%%.

By Cauchy’s mequahty, we obtaln that

This completes the proof. OJ
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With either Lemma 2]4 or Lemnjia 2.5, along with the fact that the stronger Newton’s inequal-
ities hold on sets of real numbers, it is clear that Lemhimp 2.6 serves as the final step towards an
inductive proof of the generalizedNewton inequalities. Our main conclusion can be stated as
follows.

Theorem 2.7. For any fixedd < A < 1, letQ be given as in[(2]2). Suppose thais a self-
conjugate set such that C Q and that#S = n. Then, foralll < k£ <[ < n —1, the
generalized\-Newton inequalities

(2.4) EvEp > AEp_1 B
hold onS.

We comment that a similar conclusion follows from Theofenj 2.7 when the wedge-shaped
region is reflected across the imaginary axis. Specifically) far\ < 1, we consider

Q= {z:]argz—ﬂ gcosfl\/X}

and a self-conjugate sét = {zy,z,,...,2,} C Q. Let E; be the elementary symmetric

fgnctions onS and E;, be those onS = {=1, —Za,..., —z,}. It is observed in[[B] that
E), = (—=1)*E}. Hence, by applying Theor.7E;, we obtain that
(2.5) |EpEy| > N Ep_1 By

foralll <k<l<n-1.

As a final remark in this section, we mention that our results can also be interpreted in the
context that the sef is prescribed while\ is allowed to vary in0, 1]. In this alternative setting,
by (2.3), we see that the belstan be written as

ReQ.Tj
min R
0£x;€S |2

provided that the trivial case is excluded, i.e. thate S : x # 0} # 0.

)\max =

3. IMPLICATIONS
In this section, we discuss some interesting consequences of the genekalssdon in-
equalities.

First, we look at a complex counterpart of the arithmetic mean-geometric mean inequality. It
is illustrated in [6] that under the same assumptions as in Theorém 2.7,

n—1 1
Ei> X7 Ep.
In view of Theoren 27, this inequality can be improved as follows.

Theorem 3.1.For any fixed) < A < 1, letQ2 be as in[(2.R). Suppose théit= {1, zs,...,2,}
is a self-conjugate set such thatc 2. Then

n

(3.1) Ey >\ Ey,
i.e.

1

1 <& o (e )"
7j=1 7j=1
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Proof. For any fixedl < k£ < n — 1, we see from[(2]4) that
(EkEk)(EkEk+1) T (EkEnfl) > )\nik<Ek71Ek+1>(Ek71Ek+2) T (Ek—lEn);

which yields that
E]?_k—i_l > /\n_kE]?:fEn
In particular, on setting = 1, the above inequality reduces fo (3.1). O

It should be pointed out that from (2.4), we can also derive an expression involving two
consecutiver);’s. Specifically, fixing anyl < < n — 1, we obtain that

(B\E)(BLE) - (BiEy) > N (EoEr)(BLE) -+ - (Bio1 Eig)
and, consequently, that
1 1
(3.2) El > AW1E[]

foranyl < 1 < n — 1. Itis interesting to note that formula (3.2) prowdes another way of

showing |(3 ) on condition that; # 0. On lettingl = n — 1 and con&denng@k as defined in
the proof of Theorern 2|7, we have that

which yields that

and thus|(3]1) after replacing ' with z;.
We remark, however, that by takiig= 1,2,...,n — 1 in (3.2), it follows that
By > AbtEtri gD

which turns out to be not as tight gs (3.1) sidce 3 + - + 1 > ==L,
Finally, we apply Theorern 3.1 to positive stable matrices. For references, see, for example,

[5]. Obviously, given anyn x n matrix A, its spectrum is self-conjugaté;; = %trA, and

E, = det A, whereE), are defined on the spectrum df Recall that a matrix is said to be

positive stable when its spectrum is located in the open right half-plane. Therefore, Theorem

[3.7 can be rephrased in the following manner:

Theorem 3.2.Let A be ann x n positive stable matrix whose spectrurfd) C 2, where(2 is
defined as in(2]2). Then

1 n
(3.3) <—trA) > X" ldet A.
n

We comment that a special case|[of [3.3) witk= 1 applies tol/- and inversel/-matrices,
on which Newton’s inequalities are indeed fulfilled [4]. It should be pointed out, however,
that M- and inversel/-matrices form the only class of positive stable matrices with non-real
eigenvalues which is known in the literature to satisfy Newton's inequalities. Hen¢e (3.3) serves
as an overall result which applies to general positive stable matrices.
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4. CONCLUSIONS

Inspired by [6/ 8| O], we propose here a more elegant inductive proof of the generalized
Newton inequalities which are verified in [11]. We show that it is possible to confirm these in-
equalities without explicit formulations of the elementary symmetric functions being involved,
which is a noteworthy difference between the current work and [11].

As illustrated in[[11], the generalizedNewton inequalities are indeed in a stronger form as
compared with the.-Newton inequalities in [6,17]. We also explore here several useful results
which follow directly from the generalizet-Newton inequalities. In particular, we show that it
is possible to strengthen the complex version of the important arithmetic mean-geometric mean
inequality as in[[6].

Regarding potential future work, we mention herein a few topics: First, the generalized
Newton inequalities may be further improved by considering a subset of the Wedgcond,
it is an intriguing question as to fully characterize the case of equalities. Third, it remains to be
answered whether similar inequalities can be developed on a self-conjugate set which does not
lie entirely in the open right or left half-plane. Fourth, the generalixédewton inequalities
may be applied to, for example, other problems related to eigenvalues and even problems in
combinatorics. To sum up, we strongly believe that much work still needs to be done concerning
the generalized-Newton and associated inequalities.
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