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ABSTRACT. Inthis paper we give a variant of Jessen’s inequality for isotonic linear functionals.
Our results generalize some recent results of Gavrea. We also give comparison theorems for
generalized means.
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1. INTRODUCTION

Let £ be a nonempty set andbe a linear class of real valued functiofis £ — R having
the properties:

Ll: f,ge L= (af + fg) € Lforalla, 5 € R,

L2:1€ L,ie.iff(t)=1fort € E,thenf € L.
An isotonic linear functional is a functiona : . — R having properties:
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2 W.S. GHEUNG, A. MATKOVIC, AND J. PECARIC

Al A(af + Bg) = aA(f) + BA(g) for f,g € L, a, € R (A'is linear);

A2: fe L, f(t) > 00onE = A(f) > 0 (A is isotonic).

The following result is Jessen’s generalization of the well known Jensen’s inequality for
convex functions [3] (see also![5, p. 47]):

Theorem 1.1. Let L satisfy propertied.1, L2 on a nonempty set, and lety be a continuous
convex function on an intervdl C R. If A is an isotonic linear functional o with A(1) = 1,
then for allg € L such thaty (¢) € L we haveA(g) € I and

p(A(g) < Alp(9)).
Similar to Jensen’s inequality, Jessen’s inequality has a converse [1] (see also [5, p. 98]):

Theorem 1.2. Let L satisfy propertied.1, L2 on a nonempty selt, and lety be a convex
function on aninterval = [m, M| (—oco < m < M < o). If Ais anisotonic linear functional
on L with A(1) = 1, then for allg € L such thaty (¢g) € L (so thatm < ¢(t) < M for all
t € E), we have

Al (9) < MZAD gy 2D

Recently I. Gavrea [2] has obtained the following result which is in connection with Mercer’s
variant of Jensen’s inequality![4]:

Theorem 1.3.Let A be an isotonic linear functional defined @fq, b] such thatA(1) = 1.
Then for any convex functignon [a, b,

pla+b—a) <AY)
< pla) + p(b) — pla) T2 — () 2=
< p(a) +p(b) — Ap),
wherey(t) = ¢(a+ b —t) anda; = A(id).

Remark 1.4. Although it is not explicitly stated above, it is obvious that functipneeds to be
continuous orja, b].

In Sectiorf 2 we give the main result of this paper which is an extension of Th¢orem 1.3 on a
linear classL satisfying propertied.1, L2. In Sectior{ B we use that result to prove the mono-
tonicity property of generalized power means. We also consider in the same way generalized
means with respect to isotonic functionals.

2. MAIN RESULT

Theorem 2.1. Let L satisfy properties.1, L2 on a nonempty sel, and lety be a convex
function on an interval = [m, M| (—oo < m < M < oo). If Ais an isotonic linear functional
on L with A(1) = 1, then for allg € L such thaty (g), ¢ (m+ M — g) € L (so thatm <
g(t) < M forall t € E), we have the following variant of Jessen’s inequality

(2.1) p(m+M—A(g) <p(m)+e(M)—Ale(g)).

In fact, to be more specific, we have the following series of inequalities
p(m+M—A(g) <A(p(m+M—g))

M —A(g) Ag) —m
< - . el VA
<, PM)+ = —
<@ (m)+e(M)—-Alp(g)).

(2.2) - p(m)
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If the functiony is concave, inequalitie.1]) and (2.2)) are reversed.

Proof. Sincey is continuous and convex, the same is also true for the function

v m, M] — R
defined by
Y(t)=pm+M—1t), te[m,M].
By Theorem 1.11,
V(A (g) < Al (9)),
ie.,

p(m+M—A(g)) < A(p(m+ M —g)).
Applying Theoren 1.2 ta) and then tap, we have

Afg(m + M - g)) < LAy gy AW
=Sl e+ ST e
=g m) o (an) — |22 gy Ay

<p(m)+e(M)—A(p(g)).

The last statement follows immediately from the facts that i concave ther-p is convex,
and thatA is linear onL. O

Remark 2.2. In Theoren] 2.1, takind. = C'[a,b] andg = id (so thatm = a andM = b),

we obtain the results of Theorgm [1.3. On the other hand, the results of Thieofem 1.3 for the
functional B defined onL by B(y) = A(p(g)), for which B(1) = 1 and B(id) = A(g),
become the results of Theor¢m|2.1. Hence, these results are equivalent.

Corollary 2.3. Let (2,4, 1) be a probability measure space, and let: Q2 — [m, M]
(—oo <m < M < o) be a measurable function. Then for any continuous convex function
¢ [m, M] — R,

w(m+M—/ﬂgdu) S/QSO(erM—g)du

M — [, gdu Jo gdp —m
o M= Jogar L Jedtr—m
=" M-m M—m £

gw(m)JrsO(M)—/QsO(g)du-

Proof. This is a special case of Theor¢m]2.1 for the functiodalefined on clasg! (1) as
Alg) = Jq gdp- O

o (M) +

3. SOME APPLICATIONS

3.1. Generalized Power Means.Throughout this subsection we suppose that:

() Lisalinear class having propertiég, L2 on a nonempty sef.
(i) Ais an isotonic linear functional oh such thatA(1) = 1.
(iii)y ¢g € Lisafunction ofE to [m, M| (—oo < m < M < oo) such that all of the following
expressions are well defined.
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From (iii) it follows especially that < m < M < oo, and we define, for any, s € R,

"+ MT— A(g)]" , T #0

Q(ra g) = mM
T A1 N\ ) T - 0 )
exp (A(log g))
( 1
[A([m””%—M’"—g’"]?)]s, r#0,s#0
exp <A <log [m" + M" — A(gT)]%» , r#0,5s=0
R(r,s,g) :== o7l
A((5))] r=05#0
M
exp(A(logm )), r=s=20,
\ g
and
( 1
A g A ] r#0,s#0
exp(%-logM%—%-logm), r#0,s=0
S(r,s,g) == .
e M+ A ] r=0. 540
log M—A(log g) A(log g)—logm o
| exp <—1§g M_logfng log M + —log%]—loggm, -log m> ., r=s5=0.

In [2] Gavrea proved the following result:
“If r,s € R such thatr < s, then for every monotone positive functipe C'[a, 0],

Q(r, 9) < Q(s,9),

where )
- [9" (a) +g" (b) = M" (r,g)]" r#0
Qra)=9 oy
exp(A(log g)) o

and M (r, g) is power mean of order.”
The following is an extension to Gavrea'’s result.

Theorem 3.1.1f r,s € Randr < s, then
Q(r,g9) < Q(s, 9).
Furthermore,
(3.1) Q(r,9) < R(r,s,9) < S (r,5,9) <Q(s,9)
Proof. From above, we know that
O<m<g<M<oo.

STEP1: Assumé) < r < s.
In this case, we have
O0<m" <g" <M <o0.
Applying Theoreni 2]1 or more precisely inequalfty (2.2) to the continuous convex function
¢: (0,00) =R

go(x):xf, z € (0,00) ,
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we have

Sinces > r > 0, this gives

'+ M7 = A < [A (7 207 )]

or
Q(r,g) < R(r,s,9) <S8(r,8,9) <Q(s,9)

STEP2: Assumer < s < 0.
In this case we have
O<M <g"<m" <.
Applying Theorenj 2J1 or more precisely inequality {2.2) to the continuous concave function
(note that) < * < 1 here)
p: (0,00) =R
o(x) =z7, x¢€(0,00),
we have
M+ = A(g)]F = A (M +m" = g7)7)
m" —A(g") Alg") —M"
> S /A ¢ T C A
= M " * mr — Mr
> M°+m®— A(g°%).

MS

Sincer < s < 0, this gives

1
1 1

"+ M7= A < [A (74 07— g)F) |

1
M™—A(g") A(g") —m” s
<|l——" M4+ ——L .
_{ Mr —mr + M —mr m

< [m*+ M* = A(g°)]",

or
Qr,g) < R(r,s,9) < S(r,s5,9) <Q(s,9)

STEP3: Assumer < 0 < s.
In this case we have
O<M <g"<m" < .
Applying Theoren] 2]1 or more precisely inequality {2.2) to the continuous convex function
(note that’ < 0 here)
¢: (0,00) = R

S

o(x) =z, x€(0,00),
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we have

LM -Alg)

Sincer < 0 < s, this gives
"+ M= A < [A (40— g)7)]°

A Al A 1
Shw:%lw+%%37”ﬂ
< [m* + M* — A(g°)]"
or

Q(r,g) < R(r,s,9) <S5(r,s,9) <Q(s,9).

STEP4: Assumer < 0, s = 0.
In this case we have

O<M <g"<m" <oo.
Applying Theoreni 2]1 or more precisely inequallty (2.2) to the continuous convex function
e: (0,00) =R
p(x) =Llogz, x € (0,00),

we have

1 1
—log(M’"—i—m’"—A(gr))SA(—log(MTquT—g )
T r
"—A(g") 1 1
< m—m._logmr - Zlog M"
mr— M r r

1 1
< —log M" + —logm" — ( log g" )
r T
or
log Q(r, g) <log R(r,0,9) <log S (r,0,9) < logQ(0,g).

Hence
Q(r,g) < R(r,0,9) <S5(r,0,9) < Q(0,9).

STEPS5: Assumer =0, s > 0.
In this case we have

—o0 < logm <logg <log M < cc.
Applying Theoreni 2J1 or more precisely inequalfty (2.2) to the continuous convex function
@ : R — (0, 00)
p(x) =exp(sz) , z€R,
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we have
exp (s (logm + log M — A (log g)))
< A(exp (s (logm + log M —logg)))
< log M — A(log g)
log M — logm log M — logm
< exp (slogm) + exp s (log M) — A (exp (slogg)),

A(l —1
-exp (slog M) + (og 9) ~ logm

- exp (slogm)

or
Q(0,9)° < R(0,s,9)" < 5(0,5,9)" < Q(s,9)".
Sinces > 0, we have
Q(0,9) < R(0,5,9) < S(0,5,9) < Q(s,9).
This completes the proof of the theorem, since whens = 0 we have

Q(0,9) = R(0,0,9) = S(0,0,9).
O

Corollary 3.2. Let (2,4, 1) be a probability measure space, and let: 2 — [m, M]
(0 <m < M < o0) be a measurable function. Let be defined asi (g) = [, gdu. Then
for any continuous convex functign: [m, M| — R, and anyr, s € anh r <s, (3.1) holds.

3.2. Generalized Means. Let L satisfy propertied.1, L2 on a nonempty set, and let4 be an
isotonic linear functional od. with A(1) = 1. Let, x be continuous and strictly monotonic
functions on an interval = [m, M] (—oo < m < M < o0). Then for anyg € L such that

¥ (9),x(9),x (" (¥ (m) + ¢ (M) -1 (g)) € L (sothatn < g(t) < M forallt € E), we
define thegeneralized mean gfwith respect to the functional and the function) by (see for
example([5, p. 107])

My (9,A) = ¢~ (AW (9))) -
Observe thatit) (m) < ¢ (g) < ¢ (M) fort € E, then by the isotonic character 4f we have
v (m) < A(g)) < ¢( ), so that)/,, is well defined. We further define

My (g, A) = 7" (¥ (m) + ¥ (M) — A(¥ (g))) .
From the above observation we know that

Y (m) < (m)+¢(M)— A (g) < (M)
SO that]T@, is also well defined.

Theorem 3.3. Under the above hypotheses, we have
(i) if either y o ¢~! is convex and is strictly increasing, ory o ¢! is concave and, is
strictly decreasing, then

(3.2) My (g, A) < My (g, A).
In fact, to be more specific we have the following series of inequalities
M, (g, A)
(3.3) <X (AT @ (m) + o (M) = (9)))))
(VM) - AW (g)) AW(g) —v(m)
R G e R e o M)
S MX (97 A) ;
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(ii) if either y o yp~! is concave and is strictly increasing, ory o ¢'~! is convex and is
strictly decreasing, then the reverse inequalities hold.

Proof. Since is strictly monotonic and-co < m < ¢(t) < M < oo, we have—oco <

¥ (m) <(g) < ¢ (M) < oo, 0r—oc0 <1p (M) <1p(g) <9 (m) < o0
Suppose that o 1)~ is convex. Lettingy = x o ¢~! in Theoren 2.J1 we obtain

(xov™) (¥(m) + (M) — A(¥(g)))
A((xov™) @ (m) +v (M) - (g)))
_POD AW

=Ty (M) — ¢ (m) (M) — ¢ (m)
< (xou ™) (W (m))+ (xov ™) (W (M) —A((xov™) (W (g),
or
X (7T (@(m) + $(M) — A ((9))))
(3.4) <A(x (Y7 (@ (m) + ¥ (M) = (g))))
W (M) — w(g))- AWl —vm)
SN —vm XMTan—gm ™

< x(m)+x(M)—A(x(g9))-

If x o¢~! is concave we have the reverse of inequalified).

If x is strictly increasing, then the inverse functipn' is also strictly increasing, so thgt.4)
implies (3.3)). If x is strictly decreasing, then the inverse functiort is also strictly decreasing,
so in that case the reverse(Bf4) implies (3.3). Analogously, we get the reverse Bf3) in the
cases whely o)~ is convex and is strictly decreasing, oy o)~ is concave ang is strictly
increasing. O

Remark 3.4. If we let
g, r#0 g,  r#0
Y (g) = and x(g) = :
logg, r=0 logg, r=20
then Theorem 313 reduces to Theofenm 3.1.
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