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ABSTRACT. In this paper we give a variant of Jessen’s inequality for isotonic linear functionals.
Our results generalize some recent results of Gavrea. We also give comparison theorems for
generalized means.
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1. I NTRODUCTION

LetE be a nonempty set andL be a linear class of real valued functionsf : E → R having
the properties:
L1: f, g ∈ L⇒ (αf + βg) ∈ L for all α, β ∈ R;
L2: 1 ∈ L, i.e., if f(t) = 1 for t ∈ E, thenf ∈ L.

An isotonic linear functional is a functionalA : L→ R having properties:
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2 W.S. CHEUNG, A. MATKOVI Ć, AND J. PEČARIĆ

A1: A (αf + βg) = αA(f) + βA(g) for f, g ∈ L, α, β ∈ R (A is linear);
A2: f ∈ L, f(t) ≥ 0 onE ⇒ A(f) ≥ 0 (A is isotonic).
The following result is Jessen’s generalization of the well known Jensen’s inequality for

convex functions [3] (see also [5, p. 47]):

Theorem 1.1. LetL satisfy propertiesL1, L2 on a nonempty setE, and letϕ be a continuous
convex function on an intervalI ⊂ R. If A is an isotonic linear functional onL withA(1) = 1,
then for allg ∈ L such thatϕ (g) ∈ L we haveA(g) ∈ I and

ϕ(A (g)) ≤ A(ϕ (g)).

Similar to Jensen’s inequality, Jessen’s inequality has a converse [1] (see also [5, p. 98]):

Theorem 1.2. Let L satisfy propertiesL1, L2 on a nonempty setE, and letϕ be a convex
function on an intervalI = [m,M ] (−∞ < m < M <∞). If A is an isotonic linear functional
onL with A(1) = 1, then for allg ∈ L such thatϕ (g) ∈ L (so thatm ≤ g(t) ≤ M for all
t ∈ E), we have

A(ϕ (g)) ≤ M − A (g)

M −m
· ϕ(m) +

A (g)−m

M −m
· ϕ(M).

Recently I. Gavrea [2] has obtained the following result which is in connection with Mercer’s
variant of Jensen’s inequality [4]:

Theorem 1.3. LetA be an isotonic linear functional defined onC[a, b] such thatA(1) = 1.
Then for any convex functionϕ on [a, b],

ϕ(a+ b− a1) ≤ A(ψ)

≤ ϕ(a) + ϕ(b)− ϕ(a)
b− a1

b− a
− ϕ(b)

a1 − a

b− a
≤ ϕ(a) + ϕ(b)− A(ϕ),

whereψ(t) = ϕ(a+ b− t) anda1 = A(id).

Remark 1.4. Although it is not explicitly stated above, it is obvious that functionϕ needs to be
continuous on[a, b].

In Section 2 we give the main result of this paper which is an extension of Theorem 1.3 on a
linear classL satisfying propertiesL1, L2. In Section 3 we use that result to prove the mono-
tonicity property of generalized power means. We also consider in the same way generalized
means with respect to isotonic functionals.

2. M AIN RESULT

Theorem 2.1. Let L satisfy propertiesL1, L2 on a nonempty setE, and letϕ be a convex
function on an intervalI = [m,M ] (−∞ < m < M <∞). If A is an isotonic linear functional
on L with A(1) = 1, then for allg ∈ L such thatϕ (g) , ϕ (m+M − g) ∈ L (so thatm ≤
g(t) ≤M for all t ∈ E), we have the following variant of Jessen’s inequality

(2.1) ϕ (m+M − A (g)) ≤ ϕ (m) + ϕ (M)− A (ϕ (g)) .

In fact, to be more specific, we have the following series of inequalities

ϕ (m+M − A (g)) ≤ A (ϕ (m+M − g))

≤ M − A (g)

M −m
· ϕ(M) +

A (g)−m

M −m
· ϕ(m)(2.2)

≤ ϕ (m) + ϕ (M)− A (ϕ (g)) .
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If the functionϕ is concave, inequalities(2.1) and(2.2) are reversed.

Proof. Sinceϕ is continuous and convex, the same is also true for the function

ψ : [m,M ] → R

defined by
ψ(t) = ϕ(m+M − t) , t ∈ [m,M ] .

By Theorem 1.1,
ψ(A (g)) ≤ A(ψ (g)),

i.e.,
ϕ (m+M − A (g)) ≤ A (ϕ(m+M − g)) .

Applying Theorem 1.2 toψ and then toϕ, we have

A (ϕ(m+M − g)) ≤ M − A (g)

M −m
· ψ (m) +

A (g)−m

M −m
· ψ (M)

=
M − A (g)

M −m
· ϕ (M) +

A (g)−m

M −m
· ϕ (m)

= ϕ (m) + ϕ (M)−
[
M − A (g)

M −m
· ϕ (m) +

A (g)−m

M −m
· ϕ (M)

]
≤ ϕ (m) + ϕ (M)− A (ϕ (g)) .

The last statement follows immediately from the facts that ifϕ is concave then−ϕ is convex,
and thatA is linear onL. �

Remark 2.2. In Theorem 2.1, takingL = C [a, b] andg = id (so thatm = a andM = b),
we obtain the results of Theorem 1.3. On the other hand, the results of Theorem 1.3 for the
functionalB defined onL by B(ϕ) = A(ϕ(g)), for which B(1) = 1 andB(id) = A(g),
become the results of Theorem 2.1. Hence, these results are equivalent.

Corollary 2.3. Let (Ω,A, µ) be a probability measure space, and letg : Ω → [m,M ]
(−∞ < m < M <∞) be a measurable function. Then for any continuous convex function
ϕ : [m,M ] → R,

ϕ

(
m+M −

∫
Ω

gdµ

)
≤

∫
Ω

ϕ (m+M − g) dµ

≤
M −

∫
Ω
gdµ

M −m
· ϕ (M) +

∫
Ω
gdµ−m

M −m
· ϕ (m)

≤ ϕ (m) + ϕ (M)−
∫

Ω

ϕ (g) dµ.

Proof. This is a special case of Theorem 2.1 for the functionalA defined on classL1 (µ) as
A(g) =

∫
Ω
gdµ. �

3. SOME APPLICATIONS

3.1. Generalized Power Means.Throughout this subsection we suppose that:

(i) L is a linear class having propertiesL1, L2 on a nonempty setE.
(ii) A is an isotonic linear functional onL such thatA(1) = 1.

(iii) g ∈ L is a function ofE to [m,M ] (−∞ < m < M <∞) such that all of the following
expressions are well defined.
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From (iii) it follows especially that0 < m < M <∞, and we define, for anyr, s ∈ R,

Q(r, g) :=


[mr +M r − A(gr)]

1
r , r 6= 0

mM

exp (A(log g))
, r = 0 ,

R(r, s, g) :=



[
A

(
[mr +M r − gr]

s
r

)] 1
s
, r 6= 0, s 6= 0

exp
(
A

(
log [mr +M r − A(gr)]

1
r

))
, r 6= 0, s = 0[

A
((

mM
g

)s)] 1
s

, r = 0, s 6= 0

exp

(
A

(
log

mM

g

))
, r = s = 0 ,

and

S(r, s, g) :=



[
Mr−A(gr)
Mr−mr ·M s + A(gr)−mr

Mr−mr ·ms
] 1

s
, r 6= 0, s 6= 0

exp
(
Mr−A(gr)
Mr−mr · logM + A(gr)−mr

Mr−mr · logm
)
, r 6= 0, s = 0[

logM−A(log g)
logM−logm

·M s + A(log g)−logm
logM−logm

·ms
] 1

s
, r = 0, s 6= 0

exp
(

logM−A(log g)
logM−logm

· logM + A(log g)−logm
logM−logm

· logm
)
, r = s = 0.

In [2] Gavrea proved the following result:
“ If r, s ∈ R such thatr ≤ s, then for every monotone positive functiong ∈ C [a, b] ,

Q̃(r, g) ≤ Q̃(s, g),

where

Q̃(r, g) =

 [gr (a) + gr (b)−M r (r, g)]
1
r r 6= 0

g(a)g(b)
exp(A(log g))

r = 0
,

andM (r, g) is power mean of orderr.”
The following is an extension to Gavrea’s result.

Theorem 3.1. If r, s ∈ R andr ≤ s, then

Q(r, g) ≤ Q(s, g).

Furthermore,

(3.1) Q(r, g) ≤ R (r, s, g) ≤ S (r, s, g) ≤ Q(s, g).

Proof. From above, we know that

0 < m ≤ g ≤M <∞ .

STEP 1: Assume0 < r ≤ s.
In this case, we have

0 < mr ≤ gr ≤M r <∞.

Applying Theorem 2.1 or more precisely inequality (2.2) to the continuous convex function

ϕ : (0,∞) → R
ϕ(x) = x

s
r , x ∈ (0,∞) ,
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we have

[mr +M r − A (gr)]
s
r ≤ A

(
(mr +M r − gr)

s
r

)
≤ M r − A (gr)

M r −mr
·M s +

A (gr)−mr

M r −mr
·ms

≤ ms +M s − A (gs) .

Sinces ≥ r > 0, this gives

[mr +M r − A(gr)]
1
r ≤

[
A

(
(mr +M r − gr)

s
r

)] 1
s

≤
[
M r − A (gr)

M r −mr
·M s +

A (gr)−mr

M r −mr
·ms

] 1
s

≤ [ms +M s − A (gs)]
1
s ,

or
Q(r, g) ≤ R (r, s, g) ≤ S (r, s, g) ≤ Q(s, g).

STEP 2: Assumer ≤ s < 0.
In this case we have

0 < M r ≤ gr ≤ mr <∞.

Applying Theorem 2.1 or more precisely inequality (2.2) to the continuous concave function
(note that0 < s

r
≤ 1 here)

ϕ : (0,∞) → R
ϕ(x) = x

s
r , x ∈ (0,∞) ,

we have

[M r +mr − A (gr)]
s
r ≥ A

(
(M r +mr − gr)

s
r

)
≥ mr − A (gr)

mr −M r
·ms +

A (gr)−M r

mr −M r
·M s

≥M s +ms − A (gs) .

Sincer ≤ s < 0, this gives

[mr +M r − A(gr)]
1
r ≤

[
A

(
(mr +M r − gr)

s
r

)] 1
s

≤
[
M r − A (gr)

M r −mr
·M s +

A (gr)−mr

M r −mr
·ms

] 1
s

≤ [ms +M s − A (gs)]
1
s ,

or
Q(r, g) ≤ R (r, s, g) ≤ S (r, s, g) ≤ Q(s, g).

STEP 3: Assumer < 0 < s.
In this case we have

0 < M r ≤ gr ≤ mr <∞.

Applying Theorem 2.1 or more precisely inequality (2.2) to the continuous convex function
(note thats

r
< 0 here)

ϕ : (0,∞) → R
ϕ(x) = x

s
r , x ∈ (0,∞) ,
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we have

[M r +mr − A (gr)]
s
r ≤ A

(
(M r +mr − gr)

s
r

)
≤ mr − A (gr)

mr −M r
·ms +

A (gr)−M r

mr −M r
·M s

≤M s +ms − A (gs) .

Sincer < 0 < s, this gives

[mr +M r − A(gr)]
1
r ≤

[
A

(
(mr +M r − gr)

s
r

)] 1
s

≤
[
M r − A (gr)

M r −mr
·M s +

A (gr)−mr

M r −mr
·ms

] 1
s

≤ [ms +M s − A (gs)]
1
s ,

or

Q(r, g) ≤ R (r, s, g) ≤ S (r, s, g) ≤ Q(s, g).

STEP 4: Assumer < 0, s = 0.
In this case we have

0 < M r ≤ gr ≤ mr <∞.

Applying Theorem 2.1 or more precisely inequality (2.2) to the continuous convex function

ϕ : (0,∞) → R
ϕ(x) = 1

r
log x , x ∈ (0,∞) ,

we have

1

r
log (M r +mr − A (gr)) ≤ A

(
1

r
log (M r +mr − gr)

)
≤ mr − A (gr)

mr −M r
· 1

r
logmr +

A (gr)−M r

mr −M r
· 1

r
logM r

≤ 1

r
logM r +

1

r
logmr − A

(
1

r
log gr

)
,

or

logQ(r, g) ≤ logR (r, 0, g) ≤ logS (r, 0, g) ≤ logQ(0, g).

Hence

Q(r, g) ≤ R (r, 0, g) ≤ S (r, 0, g) ≤ Q(0, g).

STEP 5: Assumer = 0, s > 0.
In this case we have

−∞ < logm ≤ log g ≤ logM <∞.

Applying Theorem 2.1 or more precisely inequality (2.2) to the continuous convex function

ϕ : R → (0,∞)

ϕ(x) = exp (sx) , x ∈ R ,
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we have

exp (s (logm+ logM − A (log g)))

≤ A (exp (s (logm+ logM − log g)))

≤ logM − A (log g)

logM − logm
· exp (s logM) +

A (log g)− logm

logM − logm
· exp (s logm)

≤ exp (s logm) + exp s (logM)− A (exp (s log g)) ,

or
Q(0, g)s ≤ R (0, s, g)s ≤ S (0, s, g)s ≤ Q(s, g)s.

Sinces > 0, we have

Q(0, g) ≤ R (0, s, g) ≤ S (0, s, g) ≤ Q(s, g).

This completes the proof of the theorem, since whenr = s = 0 we have

Q(0, g) = R (0, 0, g) = S (0, 0, g) .

�

Corollary 3.2. Let (Ω,A, µ) be a probability measure space, and letg : Ω → [m,M ]
(0 < m < M <∞) be a measurable function. LetA be defined asA (g) =

∫
Ω
gdµ. Then

for any continuous convex functionϕ : [m,M ] → R, and anyr, s ∈ R with r ≤ s, (3.1) holds.

3.2. Generalized Means.LetL satisfy propertiesL1,L2 on a nonempty setE, and letA be an
isotonic linear functional onL with A(1) = 1. Let ψ, χ be continuous and strictly monotonic
functions on an intervalI = [m,M ] (−∞ < m < M <∞). Then for anyg ∈ L such that
ψ (g) , χ (g) , χ (ψ−1 (ψ (m) + ψ (M)− ψ (g))) ∈ L (so thatm ≤ g(t) ≤M for all t ∈ E), we
define thegeneralized mean ofg with respect to the functionalA and the functionψ by (see for
example [5, p. 107])

Mψ (g, A) = ψ−1 (A (ψ (g))) .

Observe that ifψ (m) ≤ ψ (g) ≤ ψ (M) for t ∈ E, then by the isotonic character ofA, we have
ψ (m) ≤ A (ψ (g)) ≤ ψ (M), so thatMψ is well defined. We further define

M̃ψ (g, A) = ψ−1 (ψ (m) + ψ (M)− A (ψ (g))) .

From the above observation we know that

ψ (m) ≤ ψ (m) + ψ (M)− A (ψ (g)) ≤ ψ (M)

so thatM̃ψ is also well defined.

Theorem 3.3.Under the above hypotheses, we have

(i) if eitherχ ◦ ψ−1 is convex andχ is strictly increasing, orχ ◦ ψ−1 is concave andχ is
strictly decreasing, then

(3.2) M̃ψ (g, A) ≤ M̃χ (g, A) .

In fact, to be more specific we have the following series of inequalities

M̃ψ (g, A)

≤ χ−1
(
A

(
χ

(
ψ−1 (ψ (m) + ψ (M)− ψ (g))

)))
(3.3)

≤ χ−1

(
ψ (M)− A (ψ (g))

ψ (M)− ψ (m)
· χ (M) +

A (ψ (g))− ψ (m)

ψ (M)− ψ (m)
· χ (m)

)
≤ M̃χ (g, A) ;
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(ii) if eitherχ ◦ ψ−1 is concave andχ is strictly increasing, orχ ◦ ψ−1 is convex andχ is
strictly decreasing, then the reverse inequalities hold.

Proof. Sinceψ is strictly monotonic and−∞ < m ≤ g(t) ≤ M < ∞, we have−∞ <
ψ (m) ≤ ψ(g) ≤ ψ (M) <∞, or−∞ < ψ (M) ≤ ψ(g) ≤ ψ (m) <∞.

Suppose thatχ ◦ ψ−1 is convex. Lettingϕ = χ ◦ ψ−1 in Theorem 2.1 we obtain(
χ ◦ ψ−1

)
(ψ(m) + ψ(M)− A (ψ(g)))

≤ A
((
χ ◦ ψ−1

)
(ψ (m) + ψ (M)− ψ (g))

)
≤ ψ (M)− A (ψ (g))

ψ (M)− ψ (m)
·
(
χ ◦ ψ−1

)
(ψ (M)) +

A (ψ (g))− ψ (m)

ψ (M)− ψ (m)
·
(
χ ◦ ψ−1

)
(ψ (m))

≤
(
χ ◦ ψ−1

)
(ψ (m)) +

(
χ ◦ ψ−1

)
(ψ (M))− A

((
χ ◦ ψ−1

)
(ψ (g))

)
,

or

χ
(
ψ−1 (ψ(m) + ψ(M)− A (ψ(g)))

)
≤ A

(
χ

(
ψ−1 (ψ (m) + ψ (M)− ψ (g))

))
(3.4)

≤ ψ (M)− A (ψ (g))

ψ (M)− ψ (m)
· χ (M) +

A (ψ (g))− ψ (m)

ψ (M)− ψ (m)
· χ (m)

≤ χ (m) + χ (M)− A (χ (g)) .

If χ ◦ ψ−1 is concave we have the reverse of inequalities(3.4).
If χ is strictly increasing, then the inverse functionχ−1 is also strictly increasing, so that(3.4)

implies(3.3). If χ is strictly decreasing, then the inverse functionχ−1 is also strictly decreasing,
so in that case the reverse of(3.4) implies(3.3). Analogously, we get the reverse of(3.3) in the
cases whenχ◦ψ−1 is convex andχ is strictly decreasing, orχ◦ψ−1 is concave andχ is strictly
increasing. �

Remark 3.4. If we let

ψ (g) =

{
gr, r 6= 0

log g, r = 0
and χ (g) =

{
gs, r 6= 0

log g, r = 0
,

then Theorem 3.3 reduces to Theorem 3.1.
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