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ABSTRACT. A sufficient condition for the energy of a point such that a local minimum of the
energy exists at every triangular lattice point is obtained. The condition is expressed as a certain
type of strong convexity condition of the function which defines the energy. New results related
to Riemann sum of a function with such the convexity and new inequalities related to sums on
triangular lattice points are also presented.
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1. INTRODUCTION

In some scientific or engineering fields, we are sometimes required to give or measure well-
distributed objects in a space. From a purely mathematical point of view, these requirements
are satisfied by solving a question which asks whether the well-distributed points are given by
the minimization of a total energy of arbitrarily distributed points. [In [7], assuming the well-
distributed points to be arranged as in a periodic sphere packing [10, pp.25], we have obtained
the minimum energy condition in a one-dimensional case; this condition is given as a certain
strong convexity condition of the function which defines the energy. A natural question arising
in this context is whether the one-dimensional condition can be theoretically extended to higher
dimensional spaces.

In this study, we consider the two-dimensional case by imposing two strong restrictions. The
first constraint restricts the packing structure to a hexagonal circle packing. Although general
circle packing structures are unknown [5, D1], the densest (ideal) circle packing is achieved by
the hexagonal circle packing [10] [11, Theorem 1.3 (Lagrange (1773), Thue (1910), L. Fejes
Toth (1940), Segre and Mahler (1944))], which is equivalent to the structure with the center of
each circle placed on the triangular lattice points. The second constraint restricts the minimum
energy analyses to the point-based local minimum analysis, which addresses whether a small
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2 KANYA [SHIZAKA

perturbation of a point increases the energy of the point. These restrictions are motivated by a
suggestion about the study of local minima for optimal configurations [5, F17].

Hence, we investigate the condition for the energy of a point such that each triangular lattice
point has a locally optimal configuration with respect to the energy.

2. DEFINITION
Definition 2.1. For a point sef € R? andf : (0,00) — R, letthe energy of a point € X be
J(X,z, )= > fllz—yl),
yeX\{z}
where|| - || is the Euclidean norm.

For ease of analysis, we use the above-mentioned definition for defining the energy that is
different from the energy in the one-dimensional case [7]. However, the obtained results in
this study are also valid for energies having the same form as that of the energy in the one-
dimensional case whek is a finite set and(0) is defined.

Definition 2.2. Letd > 0, v, = (%, %) andv, = (%, —£> Let one-sixth of the triangular
lattice pointsbe given by

(2.1) Ag = {d(ivi + jva) i €N, j = yi—1}.

Let one-sixth of equally spaced points on equally spaced concentric celgs/en by

(2.2) Qq = {(idcos Ty, idsiny) : 75 =m/3- (1 —j/i),i € N,j=0,...,i—1}.

In addition, letthe triangular lattice points\}, andequally spaced points on equally spaced
concentric circles(?’; be the unions of the rotations of, and,, respectively, around the
origin by angles; j for j = 0,...,5.

Figure[2.1(a) and (b) illustrates; and(),, respectively. From the definition df}, it can be
easily checked that;, = {d(ivy + jv2) : 1,5 € Z} \ {0}.

VAYATATAY

(b)

Figure 2.1: lllustration of two point sets along with related parameters:Xa)and (b)2,.
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3. ANALYTICAL CONDITION FOR LOCAL MINIMUM ENERGY

In this section, we derive the analytical condition for the enefgguch that it has a local
minimum atv when X consists of equally spaced points on each of the concentric circles with
arbitrary radii centered at.

Proposition 3.1. Letn € N. Fori = 1,. , letk; e N with k; > 3, 6, € [0,27), and
0<rn <1 Fori=1,...,nandj = 0 ki — 1, let 7;; = 2mj/k; + 6; and vectors
w;; = (r; cos T, 1 SIN T ). Letv c R?and a p0|nt seIX C R? satisfying

(3.1) Xﬂ{yG]R{Q:|y|§1}:U{uij:j:0,...,k:i—1}.

i=1

Let f : (0,00) — R belong to the clas§”? and f(z) = 0 onz > 1. If

(3.2) Z{f”ﬂyb ’y’} Zk{ @%o

yex !
then the energy ((v + X) U {x}, x, f) has a local minimum at = v.
Proof. We analyze the derivative of and the Hessian matrix of the derivative. Without loss

of generality, we may assume = 0 andf; = 0 for each: because these restrictions do not
influence the value of. Then, the energy of a poistis given by

n ki—1
JXU{xhx ) => flx=yD =D fllx—uy)
yeX =1 j=0

From the assumptiorf, = f' = f” = 0onxz > 1. Thus,J is certainly twice differentiable with
respect tx.

First, we consideK J. Since the derivative dk| with respect toax is = m We get
n ki—1 —w.
VJ = ul) -
121: 32; Al |x —

Note that at the point = 0, we havelx — u;;| = |u;;| = r;. Here, form,p € Nwithm < p
and forn € R with cosn # 1, a general exponential sum formula hold<in

p—1 p—1
(3.3) Z(cos mn + isinmn) = Z elmn
m=0 =0

1—e® 1 —(cospn+ isinpn)

1—em 11— (cosny-+ising)

(In (3.3),: denotes the imaginary unit.) Substituting= j, p = k;, andn = 27 /k; in (3.3), we
obtainzg‘.’;_o1 u;; = 0 for eachi. Hence,VJ = 0 holds atx = 0. Thus,0 is a stationary point.

Next, we analyze the Hessian matrix'6f/ to determine whethef has a local minimum at
x = 0. Using the notationg = (z;, z2) andu;; = (u;;1, uij2), We get

u FUx=ug)] (@ — )’ | == f(1x — uyy)
PSS [y - L] Gt g Sl

i=1 j=0 J J — J
wherem = 1,2 and

(%g(%l N 8x18x2 N |X — uij|2

82J . azj i -1 |:f”<|x - uz.j’) B f/(|X _ uij|):| ' (171 — uijl)(l’g — Uz‘jQ)‘
0
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Note thatcosn # 1 from the assumptiok; > 3. Hence, by substituting: = j, p = k;, and
n = 4w /k; in (3.3), we obtain

ki—1 ki—1
E COS 275 = E sin 27;; = 0
Jj=0 Jj=0

for eachi. Hence, using double-angle formulas, fot 1, ..., n, we have
Z Wij1~ = Z Wij2~ = 5 Z Uij1Uijz = U.
J=0 J=0 Jj=0
i+ _ 02 _ 92 9%  _ 9%  _
From these equalities, at= 0, we haveaw = 507 Foitms = ugter — O and
n k-1 u n ki—1 f’
2]1
oY e - P e sy
i=1 5=0 i=1 j=0

-3 e %”] |

Hence, atk = 0, both the discriminant and the tergjli2 are positive from the assumption.
Thus,J has a local minimum at = 0. O

We can apply Propositign 3.1 tb; and2); because each set can satisfy the fdrm|(3.1) for
fixed k; = 6. Furthermore, we can usk; andQ, for the estimations of (3]2) because the
values of [(3.R) forX = A} and X = (2} are 6 times those obtained far = A; and X = Qy,
respectively. In particular, substituting= d—! in (2.2), onQ,, we obtain

(3.4) > {f”(|3’|) + %] = il {fﬂ (;) - %f, G)]

yEQd 1=1

<2l () ()]

Thus, the local minimum energy condition 0y is simplified into the positivity of the sum of a
single-variable function. Since it might be difficult to directly analyze|(3.2) with respet}.to
we would first analyze the right-hand side [of (3.4) for.

4. RIEMANN SUM OF A FUNCTION WITH A CERTAIN STRONG CONVEXITY

In [7], for the minimum energy analysis in a one-dimensional case, we have proved a variant
of a result obtained by Bennett and James$on [1]. Here, in order to investigate a sufficient con-
dition such that the expressidn (8.4) may be greater @hare again adopt the same approach.

For a functionf on (0, 1], let.S,,(f) be the upper Riemann sum for the integfdﬁlf resulting
from division of [0, 1] into n equal subintervals:

25

Theorem 3A in[[1] states that if is increasing and either convex or concave, thgff) de-
creases withh. The same theorem has been independently proved by Kulang [9]. Further related
results have been presentedin [1, 3]. Here, we showsthdt) also decreases ffis increasing,

(f/(x?) /22)” is convex, andim, ., f'(z) = 0.
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Before presenting the result, we prove the following lemma.

Lemma 4.1. Leta < b be real numbers and : [a,b] — R. Letp > 1 be a real number. If
f >0, f is decreasing, and(z)? is convex, then

1
(@.1) [ e < P+ Lo

Equality holds iff any one of the following conditions is satisfied:
(@) p=1andf is linear on[a, b];
(b) f is constant ora, b); and
(c) f(x)Pislinear onfa,b] and f(b) = 0.

Proof. We show that in fact a stronger inequality

(4.2) Flza+ (1 —2)b) < zv f(a) + (1 - x) £(b)

holds, where) < z < 1. By integrating[(4.R) ovet € [0, 1], we can obtain (4]1).

If p = 1, then the result follows from the convexity ¢f

We assume that > 1. By using the substitutiop(z) = f(za + (1 — x)b), it is sufficient to
show

(4.3) g(@) < (1-a7) g(0) + 27 g(1)

9(
for g : [0,1] — R, whereg > 0 is increasing ang(z)” is convex.
First, consider the case whef0) = 0. Sinceg(x)? is convex,g(z)? < xzg(1)?, thus,

(4.4) g(x) < wrg(1)
on [0, 1]. Equality holds iffg(x)? is linear; this case corresponds to case (c).

Next, suppose that(0) = ¢ > 0. If we can show tha[tg( ) — cJP is convex, thery (4]3) follows
from substitutingy(z) — ¢ for g(z) in (4.4). Leth(z) = g(z)? andk(z) = [g(z) — ¢]*. Since a
convex function is dlfferentlable at all but at most countably many points, we may rely on the
differentiability of , and thereforg andk. Then,?/'(z) = pg(z)?~'¢'(x) and

p—1
K (z) = x—cp_l’x:h’x(l—i> .
() = plg(x) — g (x) = W(x) @)
Both //(z) and (1 — ¢/g(x))P~! are positive and increasing. Hendé(z) is increasing, as
required. Equality in[(4]3) holds iff

g(x)’ = [(1 = 2"7)g(0) + «'/Pg(1)]",

which gives

, _ —1

[9(2)") = (9(1) = 9(0)) [9(1) = 9(0) + 2~ Pg(0)]" .
Here, it follows thaiy(0) = ¢g(1) becauség(z)?]’ cannot be increasing far> 1if ¢(0) < g(1).
This equality condition corresponds to the condition in case (b). O

Theorem 4.2.Let f : (0, 1] — R be differentiable. Iff is increasing,(f’(:zc%)/x%)2 is convex,
andlim,_,; f'(z) = 0, thenS,,(f) decreases with.

Proof. From the assumptionf’ > 0 holds andf’(:c%)/:c% is decreasing. Without loss of
generality, we may assume thitl) = 0 and extendf = f’ = 0 onz > 1. For a real number

r>1,let
L] .
=2 (3)
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We show thatS,'(f) < 0 for r > 1, whereS,’(f) is the differential coefficient of,.( f) with
respect to-. The existence of,’(f) is confirmed by the differentiability of on (0, c0) and
f=f =0onz > 1. Infact, we have

S/ = U HOEHAO

The substitution: = ¢2 gives
b2 /
[, = [
a? t2

Thus, by applyingf’(z2) /2= to f in Lemm Wltl’p =2,for0 < a < b, we obtain
e <2 fl(a2) 1 f(02)

oy TS T T
Substitutingz = (£)* andb = (3%1)2 in (4.5), we get

T

Jj+1 J 2 254+1,,/(9 1 2(j+1)—1, (j+1
((2)-r()= 2200 () 4 22 ()

Summing oveyj = i,..., |r]| and usingf(1) = 0, we obtain

o () () 28 ()5 220

Thus, from[(4.B) ang”’ > 0, we obtain

(4.7) Z {f (%) +%f' G)] :i / (%) +%if/ (é)]

(4.5)

=1 =1 Jj=t
lrl . . [r] L]
1 2t — 1 1 1 1 J
> N A
61 4 ? f(r) GTZij (7")
i=1 i=1 j=i
il (i
67 4 1 r
=1
> 0.

Hence,S,’(f) < 0 holds. ThusS,(f) decreases with > 1.

From Lemml equality i ! (4.5) holds iff eithgr= 0 on [a, b] or (f’(x%)/x%)2 is linear
on [a,b] with f'(b2) = 0. Thus, from|(4 .) ann (4.75,'(f) = 0 holds iff either f’ = 0 on
[£,1] or (f’(x%)/xz) is linear on[2, 2] with f/(2) =0, mdlcating thatf’ = 0 on[2, 1]. Here,
the latter condition withy (1) # 0 can "hold only for one fixed. Hence, for any; > 1, S.(f)
strictly decreases with > r, iff f'>00n (0, -). O

Therefore,S, (f) decreases with if f is increasing and either
(i) fis convex or concave (from|[1, Theorem 3A]), or
(i) (f'(x2)/22)”is convex andim, ., f'(x) = 0 (from Theore).
Here, conditions (i) and (ii) are independent of each other, which can be observed in the
following examples. Lep > 0.
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Example 4.1.Let f(z) = —(1 — x)? and f'(z) = p(1 — z)?~'. Then,f is convex if0 < p <1
and concave i) > 1. Further,(f'(x2)/22)” is convex andim, ., f'(z) = 0 if p > 1.5,
Further, f’ (x%)/x% is convex ifp > 2.

Example 4.2.Let f(z) = —(1 — 2?)? and f'(z) = 2pz(1 — 2?)P~!. Then, f is convex if
0 < p < 1and neither convex nor concaveyif> 1. Further,(f'(z2)/x2)” is convex and
lim, ., f'(z) = 0if p > 1.5. Further,f’(z2) /=2 is convex ifp > 2.

Theorem 4.3.Letf: (0,1] — R. If f(x%)/x% is decreasing and convex arfdl) = 0, then

(4.8) /f )dw < = Zf() /f

Proof. Leta < b. The Hermite-Hadamard inequality for a convex functjogives

f<a+b> = bia/abf(f)dxéw_

2

By applying the convexity of (%) /z to this inequality, we obtain

(4.9) (b—a)fqa;br) . (GTM)_% < bfif)d““

Substitutingz = (£)? andb = (=:1)2 on the right-hand inequality ifi (4.9), we get

[ e < 4 B0 (L) L 2N (20,

n ) n 4n 1+1 n

n

Summing ovel = j,...,n — 1 and usingf > 0, foreachj = 1,...,n — 1, we obtain
! 1 i 1 2j—1,(j 1 2n-1

4.1 <= -) - = ) - = 1

(4.10) /jf(x)dx_n;f(n> s f(n> o f)

250

Hence, the left-hand inequality in (4.8) follows frojn (4.10) whiea 1. Next, we extend” = 0
onz > 1, which yields the convexity of (z2) /=2 on (0, 00). Then, substituting = 25 and
b= % on the left-hand inequality i.9), we get

) ) N =1 24 1
SO < e
n n n 275 T2
Summin ovet = 1,...,n, we obtain the right-hand inequality in"(4.8).
In (4 4.10), equalities hold ifff’(x2) /27 is linear on[Z, 1] and f (1) = 0, thatiis, f = 0 on
L1]. Hence equality on the left-hand |nequaI|ty4 8) holdsfif 0 on [X, 1]. Similarly,
equallty on the right-hand inequality in (4.8) holds ff= 0 on (0, 1]. O
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If fis decreasing off), 1] and f(1) = 0, then ) andfo1 f< s f (L) are trivial.
However, when we use a functighon [0, 1] in Theorenj 4.3, such an additional upper estima-
tion no longer holds. FO), if a stronger condition tfdt:z ) /=2 is convex is assumed

in Theorem 4.p, then in (4.7),

. Kdl .
1 1 (7

5. LocAL MINIMUM ENERGY CONDITION

holds for each.

We can obtain the local minimum energy condition f&f from the result obtained in the
previous section.

Proposition 5.1. Let0 < d < 1 andQ}; be defined by Definitign 3.2. Lete R? and a point
setX C R? satisfying
{xeX x| <1}={xeQ):|x| <1}

Let f : (0,00) — R belong to the clas§€? with f = 0onz > 1 and f” # 0onld, 1]. If fis
convex and either

(i) f’is concave or

iy (f” (:c%)/x%)2 is convex and either is strictly convex ph2d] or f(2d) # 0,
then the energy ((v + X) U {x}, x, f) has a local minimum at = v.
Proof. Letr = d—'. As stated after Propositidn 3.1, it is sufficient to show thaf (3.4) is greater

than0. In case (i),f” is decreasing. Moreover, there is an interval containgd,ifj in which
f" is strictly decreasing becaugé == 0 on[d, 1] and f”(1) = 0. Thus,

LT’J . . . L’I"J 1 LTJ .
!/ ? ? 1" ¢ " 1 1 .]
- - -l = - dr + — =) >0.
M) G =X | [ e ()
In case (ii), the result follows froni (4.7) and related arguments presented after that. [J

It is expected that a result similar to that of Proposifion 5.1 can be obtained for the triangular
lattice pointsA}; being similar in structure t&)}, thereby leading to the following theorem. In
the proof, two inequalities related to the triangular lattice points are required. The proofs of

these inequalities are given in Sectjgn 7. In the statement of Thg¢orém 5.2, a specific yalue of
is given. The meaning of the valgds explained in the proof of the theorem.

Theorem 5.2.Let0 < d < 1 and A}, be defined by Definiti.2. Letc R? and a point set
X C R?satisfying{x € X : |x| <1} = {x € Ay : |x| < 1}. Letf : (0,00) — R belong to
the classC? with f = 0onxz > 1 and f” # 0 on|[d, 1]. If f is convex and either

(i) f"is concave or

(ii) (f”(m%)/x%)p is convex fop = 2 (47 + 27v/3) = 17.048.. .,
then the energy ((v + X) U {x},x, f) has a local minimum at = v.

Proof. As stated in Section] 3, we can use the one-sixth versiof sitstead of the triangular
lattice points set\;. Thus, from Propositiop 3.1, it is sufficient to show that

- 5 [t £92] 50

a/.
i=1 v
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where the sequende;} is obtained by sorting the valyg| for all y € A, in increasing order.
More precisely, each; is defined by

a; = max{|y| :y € A, #{z € Ay : |z| < |y|} < i}.

The first 10 values of; ared, v/3d, 2d, \/7d, \/7d, 3d, v/12d, v/13d, v/13d and4d; these values
are illustrated in Figurg 7|1 in Sectiph 7.

First, we summarize the inequalities that are required for the proof. From Theorlem 7.1, which
will be stated later in Sectidr] 7, for all € N,

n

(5.2) D “’;ﬂ < on.

=1
In addition, from Theorern 7,3, for € N with n > 4,

(5.3) Z “";1 < Z 3a;.

i=1 i=1

Sincea,, increases with, for all n € N and any real number > 0, we have

n

Z 4 _an+12+ 1 _%2 <ian+12
— p+1 p+1 a |~ a;

=1

Thus, by substituting = 11(47 +27v/3) and from ), for alh € N, we obtain

2
anJrl
5.4 3a;,

where equality holds |fh = 3. Note that[(5.}) strictly holds for any (large)> 0 whenn # 3.
The specific value of is the upper bound af for satisfying [5.%#) whem = 3.

Next, we prove[(5]1) for cases of (i) and (ii) by using {5.2) dnd](5.4), respectively. From the
assumption, suppose that= f' = f" =0onxz > 1 andf” # 0 on a4, 1].

Case (i} Let f' be concave. Thery,” is decreasing. Thus, for< a < b,

/ f"(z)dx < (b—a)f"(a).

Substitutinge = a,; andb = a,4; and summing ovej = ¢,7 + 1, ..., we obtain

[e.9]

(5.5) flla) = = (a1 —a))f"(ay).

j=i
Thus, from[(5.2) and (5]5) and considering tifiét= 0 onz > 1, f” # 0 on|ay, 1], andf” is
decreasing, we obtain

Z[ w2 zfj_f"mi)—fj““; % f'(a )]

i=1 i=1 j=i v
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Case (jiy Letp = 2(47+27/3) and(f"(22) /x=)" be convex. Thenf” (x2) /7 is decreas-
ing sincef” > 0 and f”(1) = 0. Thus, in the same way as in the derivation[of|(4.5), from
Lemmd 4.1, fol < a < b, we obtain

1
1 b2 7 1 1 I b%
b=a 20+1) ez 2p+1)  p2
Substitutingz = a,;? andb = a;,,2 and summing ovef = i,i + 1,.. ., we have
e 2 2 [ 9 9
b Ajy1” — az= 1 a1’ —a? ,
(5.6) fla) >~ F(a;) — Flans).
(%) > 505y 2 )~ gy 2 S )

Thus, from|(5.4) and (56) and considering tfi4t= 0 onz > 1, f” # 0 on|ay, 1], andf”(z)/z
is decreasing, we obtain

[e.e]

2p 1)y [f"<ai> T

i=1

f%aﬁ]

a;

e~ 2,2 ", .
2(p+1)f//(ai)_pza]+1a' a; f (a])

a
j=i J

5>

1

o0

7

o0

= aji® —a;® f"(aj41)
a;

=i Aj+1

-3

1

3(p+1)f"(a;)

B (pZ ‘“;?2 +i _) | <f”c(:u) B f”(ai+1)>]

[e.9]

7

> 3(p + 1)2 [f”(ai) — (Z aj> . (fuc(ji> _ f”é?jl))] =0.

Here, the second inequality certainly holds strictly because ih (5.4), strict inequality holds for
n # 3,andf”(a;)/a; — f"(az)/as > 0 holds fromf # 0 on|ay, 1]. O

In cases (i) and (ii), the assumption thfais convex can be omitted because the other condi-
tions yield f” > 0. Nevertheless, it is natural to assume this condition in case (ii).
Now, we address the (second) question presented in the introduction.

Remark 1. Let us consider the relation between Theofenm 5.2 and the one-dimensional re-
sult [7]. The one-dimensional result was as follows. Consider a finite poidk setR /Z with
the Euclidean distande- || defined by

|l —y|| = min{|lxr —y +¢|:e=—1,0,1}
and the energy oK defined by the average value 6f||x — y||) for z,y € X, wheref :
[0,1/2] — R. If f is convex, then among ath-point sets for fixedn > 1, the energy is
(globally) minimized by an equally spacedpoint set. Additionally, iff is convex,f’ (:c%) is
concave, andim, .1 f'(z) = 0, then among aln-point sets forl < m < n, the energy is
minimized by an eaually spacedpoint set.

It is easy to verify that the condition in Theorém|5.2 is stronger than these one-dimensional
conditions. Thus, in the two-dimensional case, even for the existence of a local minimum,
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the functionf should have a stronger convexity than the convexity which is defined by these
one-dimensional conditions.
As stated in Sectiof]2, in the two-dimensional case, by defining an affine transformation
g : R* — R? and the periodic spaggR?/Z?) with the Euclidean distandg- || defined by
Ix —y|| =min{|x —y +e1-9(1,0) +e2-g(0,1)] : e1,e5 = —1,0, 1},

we can also define the energy of a point as

(X, f) = |j<—| S F(lz = v,

yeX

whereX is a point set iny(R?/Z?) and|X| is the cardinality ofX. Then, Theorer 5|2 is also
valid for the energy only if | X| is finite andf(0) is defined.

6. EXAMPLES

Remark 2. If p > 0, f(z) > 0, andf(x)? is convex, thery(z)? is convex for ally > p. This is
because foy(x) = %7, g is increasing and convex g, co). Thus,

g(f(azx +by)") < glaf (@)’ +bf(y)?") < ag(f(x)?) + bg(f(y)?)
holds fora, b € [0,1] with a + b = 1.

Example 6.1.Forn € N, letw, (r) = 727" /T'(2 + 1) denote the volume of an n-dimensional
ball of radiusr. LetV,,(x) be the volume of the cross region of two identical n-dimensional
balls of unit diameter with their centers at distamdeom each other.

n—1

% 1 T2 ! 2 n—1
Vn(T):Qfé wn_1< Z—$2>d$:m/r(l—x)2dﬂf

By omitting the constant coefficient df,(r), we defineg,(r) = [ (1 — 22)"V/2dx for
0 <r <1 and further extend,,(r) = 0 for » > 1. Then, eacly,(z) on[0,1] forn =1,....,5
is given by

gl(a:) =1- z,
I 1 . 1 1 1
g2(x) = 58T T~ sin(2cos™ ) = 5 COsT T — §x\/1 — a2,
2 1
g3(x) = 37 + gxg,
(x) = 5 cos ' x ! sin(2cos ' x) + ! sin(4 cos™! )
gt =g 1 32
3 1 1
=3 cos ' — §x\/1 — 224 gx(sz —1)V1 —a?,
8 2 1
g5(z) = T + §£L‘3 - 3x5.

Forp > 0, let f,,,(z) = gn(x)P. Then,f,,(z) is convex for alln > 1 andp > 0.

Table[6.] shows the conditions required jdp satisfy the convexities in Propositipn 5.1 and
Theorem 5.p with respect 6, and f,,,,” under the restrictiorf,,, = f.,’ = f,,,’ =0onz =1
forn = 1,...,5. In the table, the values indicated with an asterisk are approximation values
obtained from the numerical analysis, while the others are exact values. In this example, among
cases (i) and (ii) in Propositign 5.1 or Theorem| 5.2, we may confirm that case (ii) is more valid
than the case (i) whem > 2. In particular, case (ii) is valid for afp > 1 if n > 4. In the case
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Table 6.1: Convexities with respect fg,” and f,,,” (* results obtained from numerical analysis).

' (2) fnp/(x%> (fnp”(zé)/l’%)17'048 (fnp”(xé)/x%)Q fnp,/(l'%)/x%

IS cONncaveg IS concave IS convex IS convex IS convex
n=1 p>2 p>2 p > 2.06% p > 2.5 p>3
n=2|p>244* p>§l p > 1.38% ng p>2
n=3|p>257" p>1 p > 1.03* p>1.25 p>1.5
n=4|p>264* p>1 p>1 p>1 p>1.2
n=>5p=>268| p>1 p>1 p>1 p=>1

of n = 3 andp = 1, the two-dimensional condition of Theor¢gm|5.2 is not satisfied, while the
one-dimensional condition mentioned in Remark 1 is satisfied.

7. INEQUALITIES RELATED TO SUMS ON TRIANGULAR LATTICE POINTS

In the rest of the paper, we focus on a variation of lattice point problems to grove (5.2) and
(5.3). In lattice point theory, the well-known Gauss’ (lattice point or circle) problem is the
problem of counting up the number of square lattice points which are inside a circle of radius
centered at the origin [6, F1]|[8]. Meanwhile, the lattice sum is the problem of determining the
sums of a variety of quantities on lattice points [2, Chap. 9]. Although it is not clearly defined,
the lattice sum usually targets infinite sums. Our problem may occupy an intermediate position
between the two problems because we will investigate a relation between certain lattice sums
of finite type and the number of triangular lattice points which are inside a circle.

Hereafter, the interval of the lattice is fixeddt= 1 because the inequalitigs (p.2) apd [5.3)
are not influenced by. These inequalities can be analyzed by an appropriate approximation of
a; onA; as follows.

Remark 3. Let {a;} be a sequence of the values|of for v € A; sorted in increasing order.
To obtain an approximation fdra; }, let us consider the case that there fateiangular lattice
points in a circle of radius > 1 centered at the origin. Then, the area of the cirele&, can
be approximated by the total areaiofdentical equilateral triangles of the are®/2. Here, if
r = a;, We havek = 6i. Thus, we have; ~ b;, where

o=

3 1
b =3+ 712 42,

Next, we considefb;}. Sincez 2 is decreasing,

L </l+1 dx < L
—dr < —.
(i+1)z Ji a2 i3

Considering that 2 is decreasing, and from the left-hand inequalit(?.l), we have

(7.1)

1 1 2
(7-2) T < 7 1 + L
12 (t+1)2 2
2 2
<2(i41)2 —2i2 — — 4+ =
(1+1)2 42
2 20i-1)
(i+1)2 iz
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Likewise, from the right-hand inequality in (7.1), we have

20i—1) 3
(7.3) 2(i +1)7 — (Z_l )<.—1-
22 12

Thus, summing each df (7.2) arid (7.3) multipliedilyver: = 1, ..., n, we obtain

n n

by, 3b;
Z bj1<2n<zb .

i=1 i=1 ntl

Hence, if we use the sequenfle} instead of the sequende; }, then [5.2) and (5]3) holds on
the basis of the local inequalities (neanﬁy obtained from the concavity af:.

For convenience, we also prepare the representation of the triangular lattice points by means
of number theory [4, pp.110]. LeY (n) denote the number of triangular lattice points placed at
distance\/n from the origin. LetN’(n) = N(n)/6. Then,N'(n) is specified by the following
values:

N'(3%) =1 for a >0,
N'(p*)=a+1 for p=1 (mod 3),
N((p*)=0 for p=2 (mod 3), aodd

N'(p*) =1 for p=2 (mod 3), aeven
wherep # 3 is prime. That is, by factorizing the natural numheinto prime factors by

(& c

n=3"p" @ g,
wherepy,...,pr =1 (mod 3) andgqy,...,q =2 (mod 3), we have
N'(n) = N'(3%) - N'(p") - - N'(p™) - N'(@*) - - - N'(q*).

For exampleN'(27) = N’(3%) =1, N’(39) = N'(3') - N’(13') = 2, andN'(49) = N'(7?) =
3. Figure 7.1 shows the distances of pointa\inu {0} from the origin fori < 9.

S/
o/

coey
o

o
O8N

Figure 7.1: Triangular lattice points\; U {0} along with their distances from the origin € 9).

0
0
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Theorem 7.1.Letr > 1. Then, for the triangular lattice points; defined by[(2]1),

1 2
(7.4) > [— -2l <o
x€ANB, |X| "
holds, whereB, = {x : |x| < r}. Moreover, [(7.}) is equivalent tp (5.2) and
n—1 1 9
7.5 — ——| N'(i
s 51 v

=1
for n > 1 with N'(n) # 0.
Before presenting the proof of Theorém|7.1, we prove the following lemma.
Lemma 7.2. Letk € N, € Rwithk <, andf < 0 be convex ok — 1,r|. Then,
[r]-1

S ) < /k " fyde

- _1
i=k 2

N

(7.6) S HO i -1+ [ e
i=k k=3

and

7.7 r—|r]+1 (w)g o z)dx.

7.7) o= [+ 1) (G L,

Next, again from the convexity gf and0 < T[’pﬁ; < 1, we have
2r=[rl4+1) , (r+]r] =2 [r] —r

f(rl=1) < r—[r]+2 f( 2 )+T—fr1+2f(r>'

T

Thus, considering < # <landf <0, we have

a8 o<-Ulm<o-panr (2 - -,

Then, the required inequality follows by summing {ip [7.6) (7.7) side by side and using
(7.8). Whenf # 0, equality holds iffr € N andf is linear. O

The proof of Theorem 7|1 comprises 9 steps. As illustrated in Figuje 7.2(a), dividing a
circular sector at distancefrom the origin into two regions4 (an equilateral triangle) ang&
(a circular segment), we shall proye (7.4) 4w B. By referring to the observations in Remark
[3, our approach to the proof is based on simple convexity and monotonicity. The point is to
use a mutual elimination between the two termg in|(7.4)BorFigure] 7.2(b) illustrates points
related toB, which will be explained in step 2 of the proof.

Proof of Theorem 7]1Step 1 (equivalence df (7.4),(p.2), and [7.5uppose thaf (5.2) is sat-
isfied. Forr > 1, choosen such that,,,; > r > a,. Then, considering that{A; N B,} = n,

we obtain
> I pnnpl- >y - Y o

M
a a a X
xEANBy ntl ntl 1 Y xeAnB, ]

)
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JAVAVAVAVAV
JAVAVAVAVAVAYAY
RSVAVAVAVAVAVAVAV.A
Y CAVAVAVAVAVAV AN

(b)

Figure 7.2: lllustration of (a) regions! and B and constants and s, and (b) points related t@3.

which gives [(7.4). Wher{ (7.4) holds, clear]y (7.5) holds. Suppose[that (7.5) is satisfied. For
eachn € N, letm = a,,? and select the maximur < n such thats, < a,;. Then, from
the definition ofa; and considering that." " N'(i) = k, we haveN’(m) # 0 and

n

2 _n—k n—l—k 2k 2N’(z

;Gnﬂ An+1 \/_ \/_ m

i 1
Eroflgr e

which gives|(5.R). Consequently, (5.9), (7.4), gnd](7.5) are all equivalent to each other.
In the following steps, we concentrate on the proof of inequdlity (7.4).
Step 2 (division intod and B). In (2.1), note that eack € A, is given byx = iv; + jv, for
somei € Nandj € {0,...,i — 1}, and|x| = [i2 — ij + j%]. Let
2

7.9 §=—=r.

(7.9) 7

Henceforth, for convenience, we will often usas well as". Fori € NN [r, s], let
) — 3(s2 — 42

(7.10) ky = (23 DY

Let

A={(i,j):i=1,...,[r]=1,j=0,...,i—1},
B=A{(,j):i=1[rl,....[s] =1, j = [ki],....i = [ki]}.
Then, we have
(7.11) {(i,j) i €N,j=0,....i—1L[i—ij+j%* <r}=AUB.
The proof of ) is given as follows. ife {1,...,[r] — 1}, then[i2 — ij + j2]2 < r holds
forall j € {0,...,i—1}. Ifi e {[r],...,[s] — 1}, then[i> — ij + j2]2 < r is equivalent to
P — 3252—22)<j<2+ 3(232—22)

J. Inequal. Pure and Appl. Math9(3) (2008), Art. 66, 26 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

16 KANYA ISHIZAKA

andk; —1 < |k;| <j <i— |k| =i—k;+1. Thus,[7.1]L) holds. Figufe 7.2(b) illustrates the
relationship betweeh; and the curved boundary &f.
Hence, from[(7.11), it follows that

(7.12) > {E_F} [il

xeA1NBy

14-1

- 2
Z[ wﬂ]é_;]

7=0
[s]—1i—|ki]

S E )

i=[r] j=|ki]

Step 3 (proof fos < 7). In the case ok < 7, B is equal to an empty set. Thus, we treat this

case independently. From the argument in step 1, considering th&@s < %57 = /36.75,
it is sufficient to verify [7.5) for cases whenhas the following values:

(7.13) 3,4,7,9,12,13,16, 19, 21,25, 27, 28, 31, 36, and37.

For example, when = 21, we have

[t
1 1 2 1 2 1 2 2

1
BRI R V. A Vv Vv RV VT

=4.7188...-5.2372... = —-0.32... <0.

Similarly, omitting detailed calculations, by substituting the value$ in (7.13) in the variable
on the left-hand side of (7.5), we obtain

—0.15,-0.42,-0.19, —0.50, —0.29, —0.42, —0.49, —0.32, —0.51,
—0.44,—-0.41,—-0.49, —0.54, —0.38, and — 0.45, respectively

Step 4 (estimation of (7.]12) related &). Henceforth, assume that> 7. For0 < z < i, let

2r —1
2

(7.14) hi(x) =In + [ — iz + 277

Then,
1

[i2 — iz + 222

hzl(ﬂf) =

Here,h;'(z) is strictly concave o0, i|, andh;’(x) = h;'(: — z) holds. Hence, we have

, 1
hi' (j 52 hi'(j +1)]
J=

Define a negative variablgn) as

(7.15) e(n) = hi'(j) —nln3.
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Then, as an estimation ¢f (7]12) related4pwe obtain

[r1-1 i-1 n i—1 [r1—1 i—1 [r1—1 i—1
U S S [XUEHED 9 SIS DD AU 9 B
i=1 j=0 i=1 j=0 i=n+1 j=0 i=1 j=
(Ir1=Dfr] )W

<e(n)+nn3+(r]—n—1)In3 -

— c(n) + (/] - ylma — LD

r

wheren is an arbitrary natural number with< n < [r]—1. Thus, in{7.1p), the negative value
e(n) can be regarded as an adjustment value. Sifeedecreases Wltln a largern gives a
better upper estimation i@lG). However, from [1, Theorem 3A], we can fin@;@# hi'(7)
increases tdn 3 with i. Thus,e(n) — ¢(n + 1) decreases t6 with n. Thus, even a smaift
may be rather effective. In the final estimation in step 9, we shall use the fixed:ya)ues the
largest allowed value for > 7 obtained from

[r] — :{\/75%—12 {\/757}—1:6.

Step 5 (estimation of (7.112) related Bfor j = |k;],....i — |k;] when[k;| < %). Thisis the
key part of the proof. Suppose thi;| < i. Sinceh;/(x) is strictly concave orf0, i], from
hi'(x) = hi'(i —z) and|k;| <i— |k;], we get

i— ki) 9
U S ORE

S| < (k) Rali = [Ra]) = hal(Lka)) = %(’i —2[ki] +1).
J=1ks]

On replacing| k; | with x, the value of the terms on the right-hand sidg of ([7.17) increases with

z because by using > 1, [i2 — iz + 22]2 < ‘2[@ < %r, and2z —i < x < s, its derivative
satisfies

4 2z — 1 2 4
h'(x) = 2k (2) + = =~ -
r 22—z + 2?2 [2—dx+a?z T

s( 2 )3 4 +4
2 \/§7~ \/gr r
4

Sinceh,’ is strictly concave, for any € R with 0 <t <i — 1, we have
(7.18) hi(i —t+ 1) — hi(i — t) + hi(t) — hi(t — 1) — [R'(t — 1) + B (1)]

_9 / (@) — (B — 1)+ b ()] > 0.
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From (7.17),[(7.18), and the increase in the value of the terms on the right-hand gide Jof (7.17),
we have

i—| ki / 9
(7.19) j% {hz () T]

< i (k) + hali — k) — ha(ks) — %(i ok 4 1)

< (ks — 1)+ hali — ks + 1) — ha(ki — 1) — %(@' ki 4 1).
From {7.10), we have

(720) [ =ik = 1)+ (ki = D)2 = [ =il — kit 1) + (= ki 1)°)2
N
—r =Y

and

(7.21) 2(k: —21> —i_ 20— ki; D-i 3(32 2l

Thus, we havéy;'(k; — 1) = r—! and

(7.22) Chi (k= 1) = 2= 2k 1) = -t = 2 (\/m - 1)

r roor
1 4vs?2 —42
r s i

In (7.23), the calculation-1/r+2/r = 1/r corresponds to the mutual elimination stated before
the proof. Thus, by substituting (7]22) and (7.14) in the right-hand side of| (7.19), and then by

using (7.20) and (7.21), the inequalify (7.19) is rewritten as

44/52 — 12

S

g 21 1
(7.23) > [hi (j) — ;} <~ +2n
J=|ki]
In fact, (7.28) also holds in the case|df | > £. This will be proved in step 7.
Step 6 (a function for further estimations [of (4.12) related®téor i = [r],..., [s| — 1). Inthis

step, we present some properties related to the variable term of the right-hand §ide]of (7.23).
For0 <z <s,let

s — /82 — 42

(7.24) fi(x) =2zxIn < _2evs - xz.
s — /82— a2 s
Then,
fi'(z) =2 - L
s— /52 — 22 S

is the variable term on the right-hand side@.23). Here%OK x < s,

" 2 T V2 — z2 2(22% — 5?)
fl(x):_lm_ x ]:swm

> 0.

S
Further, for all0 < z < s,

2 x 52 — g2 1 x?
"
) = — + + + > 0.
A(@) s [ 52 — 12 x? 52 — a2 (52—x2)§]
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Hence, f; is strictly convex on[\/ii, s}, and f," is strictly convex on0, s] and increasing on

[J5.5]. Sincefy'(s) = 0, fi'(x) < 0 also holds orf . s].

Step 7 (proof of (7.23) whelrk; | > 1). Suppose thak;| > 4. Since both k; | andi are natu-
ral numbers|k;| > 5+ holds, hence,

. 5 :
i 3;8 Z)+1=k’iZU€iJ2Z—£1-

Thus,i? > s* — 3. Sincef,’ is increasing or{\/%, s|, by substitutings = \/g(zil), we get

2 1 2
")+ —— > £ 22— | 4=
fl() \/§S_fl( 3) \/55
1
o S+7§ B 2
S—\/L3 \/gs
(w4 1)Inz —2(x —1)
= ) > 0,

where the last inequality holds by the convexity(of+ 1) In z. The left-hand side of (7.23) can
be naturally defined to be equal to 0 whign| > 5. Hence, ) holds for alle [r, s] N N.

Step 8 (estimation of two functional values defined in step\& derive two estimations fofi ().
The first estimation is made at= [r]—3. Sincef is strictly convex or{%, s| and the interval

[min{[7] — 3,7}, max{[r] — 3,7}] is contained in %, s], we have

1

(7.25) ﬁOﬂ-%)>ﬁ&HﬁﬂmOﬂ—r—§)

:rm3—r+an3_m<w1_r—%)

The second estimation is maderat s — % as follows:

1 2 (s — %)%

The proof of [7.2B) is given as follows. Let

wherex > 1. Then, we get
4(x* —1)2%* —4(z* — 22 + 1)s+ (2 +1) =0,
and thus,

_x4—x2+1—|—\/(334—x2+1)2—(x2—1)2(x4+1) xr 41

2(x2 — 1)2 C2(x2 - 1)2
This equality can be rewritten as follows:

1 1
1)\?2 2 +1 1)2 T
S—=| = —F—, s—= | = .
4 2(z2 - 1) 2 2 —1
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Hence, forr > 1, we can write

n(s-3)- 263" 25 3 )ato)

-1  2(2*-1)3
r+1 3z(xt+1)
Here, we obtainy/(z) < 0 for z > 1 from the following straightforward calculation.

, 2 Axd(zt - 1) 43 206zt + 1) (z* —1)%  4(2* —1)?
g (r)=—+ 1 2 4 + 2( 4 2 B 4
T (z* +1) | 3z2(zt + 1) (z*+1)
2
- 3x2(zt +1)2
+ (52 + 1)(2® — 1)* — 62*(2” — 1)*(z* + 1)]
o 2($2 —1)(z — 1)3 5 3 2
T 3222t +1)? e,
Thus, sincey(1) = 0, we havey(z) < 0 for z > 1. Hence, [(7.26) holds.

Step 9 (total estimation df (7.]L2) fer> 7). Now we present the final estimation. From the as-
sumptions > 7, we have[s| > [r] > 7. Substituting: = 5 in (7.15), we define

11 1 2 1
eB)=1l4-+—F4=+-+—=+-

where

g(x) =2Inz —

[Bz(z* +1)* — 122°

2T B3t AT
oy LEt 53
VTE V12 V—_ J_
= —0.1378.
Sincef,' is convex on[ %, s], from Lemm' (7.25), anfl (7]26), we have
[s]—1 _5
(7.27) Z fi'(2) _/ fi'(z)dx
i=[r] rl-3
2(—3)°

<= —rm3+r—@n3—m(w}—r—%>

Finally, from (7.12),[(7.16)[(7.23), and (7]27), we obtain
[s]—1
3 E_E}<e(5)+(m—1)1n3—W_lm+( —IrD) + 3 A

xeA1NB i=[r]
1
([r]=r2 [s] 1 2(s —3)°
- —~In3-1
= r r 2 ns * 3s +<0)
2 2 (s—1)2
+——-—-In3-1+ 22— +¢(5
- \/§5 \/§ 2 3s ( )
2 2 2(7—1)2
+—--In3-1+ 2 +¢(5
V3 V3 2 3.7 (5)
= —0.1246
<0
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This concludes the proof of Theor¢m]7.1. O

In Gauss’s problem, let/(r) denote the number of triangular lattice points lying truly inside
a circle of radiusg- centered at the origin. Then, sinC&r) = 6)_ ., -z +1, from Theorem
[7.1, we obtain the relation between Gauss’s problem and the lattice sum of finite type, given as
follows:

P21
G(r)>3r Y §I+1<=3r§:]ig%+g.

xcA1NB,

If we assume that7(r) also contains the triangular lattice points that lie just on the circle, then
by redefiningB, = {x : |x| < r}, we obtain the same inequality.

Similarly, we obtain Theorefn 7.3. The logic of the proof is mainly same as that of the proof
of Theorenj 7]L. In the proof of Theor¢m|7.3, we omit the proofs for some increasing or convex
properties of functions, which can be proved similar to the manner followed in Th¢orgm 7.1.

Theorem 7.3.Letr > /7. Then, for the triangular lattice points; defined bl),

(7.28) > [’;1‘ - %|x|] <0

x€A1NB,

holds, whereB, = {x : |x| < r}. Moreover, [(7.2B) is equivalent tp (5.3) for> 4 and

n—1 1 3\/5 .

for n > 7 with N'(n) # 0.

Proof. By referring to Theorern 7]1, the proof of the equivalencé of (7.28)] (5.3)[and (7.29) can
be obtained in the same manner as that followed in (7.4), (5.2)[ and (7.5), and the estimation can

be carried out on each of the regioAsndB. In the following steps, we estimate the inequality

(7.29).

Step 1 (estimation of (7.28) related ). Lets > 7. For0 < x < 4, let h;(z) be defined by

(7.14) and
317

[ — iz + 27]2 +4

2r —1

2

1

or
== + [i? — iz + 272

Then,
I (z) = [i2 — iz + 2?]2.
Here,l, () is strictly convex o0, ], andl;’(z) = I;'(: — z) holds. Hence, we have
i—1 i—1 i

1G) + 16+ )] > / L ()

0

=1;(i) — 1;(0) = (% + gln:s)ﬂ
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Forl <n < [r] — 1, lete(n) be defined by{(7.15). Then, we obtain the estimationion

-1 i1 5
(7.30) > {hi,(j) - ;li’(j)]

i=1 j=0
n i—1 [r]-1 i—1 [r]1-1 -1 3
1/ - /
S WICED IDWAIED WP BT
i=1 j=0 i=n+1 j=0 i=1 j=0

[r]—1
3
In3 —n—1)In3 - —|=-4+=-In3
<e(n)+nlnd+([r] —n n ;—1 r2(2 n)

1
=¢e(n)+ ([r] —1)In3 — ﬂ(l + ;lln?)) 2[r]® = 3[r1* + [r]).
Step 2 (estimation of (7.P8) related Bfor j = |k;|,...,i — [k;]). Suppose thatk;| < i. Since
h;' is strictly concavel; is strictly convex, andk;| <i — |k;], we get
i—|ki] 3
731 Y [nG) - 50)

J=|ki]

hi'(Lki]) + ha(i = Lki]) = ha(Lki])
= S )+ i = L) — (LKD)

If |k;] on the right-hand side df (7.B1) is replaced wittthe value of the term on the right-hand
side of [7.31) increases with Moreover, again sincg’ is strictly convex, for any € R with
0<t<i-—1,wehave

(7.32) Lii—t+1)—LGE—t)+ L) —LE—1) = [L'(t—1)+1'(t)]
=2 /t l/(l’)dl’ - Ui/(t - 1) + lz/(t)] < 0.

From (7.31) and (7.32) and the increase in the value of the terms on the right-hand side] of (7.31),
we get

i— ki) 3

3 {hi’(j) _ ﬁl,;’(j)} < (ki — 1) + hali — i + 1) — ha(ki — 1)

J=|ki]

Ok — ) 44— Ry 4 1) — Lk — 1),

r2

Thus, from|(7.10), (7.20), (7.21), and the definitior,cdind/,’, we obtain

i—|ki]

. 3.,
(7.33) E [hz‘,(J) - ﬁli,<3)]
j=lki]
1 3vVs2—i2  3i? 1
\/_s — /82 —i? s S s — /8% —i?

In fact, {7.38) also holds in the case @a;j > £; this is similar to step 7 of Theorejm 7.1.
Next, we consider the properties of the right-hand sidé of {7.33)0For: < s, let
rV/s2—ax2 2P

— — —1n
S 52

T T

fa(z) = 2x1n

s — /82 — 2 s — /82 — a2
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Then,
o x 3Vs?2 —a?2 327 x
fo'(x) =2In DY -1 . —?ln Py a1

It can be verified thaf, is strictly convex on[\/%, s} and f,' is strictly convex on0, s| and

increasing orj 7. s|. Sincef,'(s) = 0, f,'(x) < 0 also holds or{ 7, s].
Moreover, we have,(z) < 2f(z), wheref; is defined by[(7.24). To obtain the proof of this
inequality, let

%7 Xz
Y s —/s2 — 2
wherey > 1 becaus® < z < s. Then, we can write
x 3rv/s2 — a2 P x
2fi1(z) — fao(x) = 2x1n — —1In
fi(x) = fa(z) e . L D s
—1

y y
=Iny—3 + 2 In
Y <y+1) 12 Y

_ Pyt 1) 3y — 1)

(y+1)2 (v2 +4y +1)2|
Here, assuming
3(z* — 1)
—Inz —
g(w) =Inz (22 + 4z +1)%
we get
x—1)4
J(z) = (z —1)

Cox(a? + 4+ 1)

Hence is increasing o > 1 with g(1) = 0. Thus,2f;(x) — fo(x) > 0for0 <z < s.
Considering that the functiof, is strictly convex on[ ;. s] and the intervalmin{[r] —

37} max{[r] — 3,r}] is contained inf 7. s], we have

(7.34) fo (M - %) > fa(r) + f5'(r) (W - %)

5 1 1 3 1
—2rm3—cr— (-Im3+2 ——_
" n3 5" (8 n3+ 2) (H] T 2)

In addition, fromf,(z) < 2f1(z) and [7.2p), we have

1 4 (s — %)%

Step 3 (total estimation df (7.28) fer> 21). Lets > 21. Sincef, is convex on[\/%, s|, from
Lemmd7.2,[(7.34), and (7.B5), we have

|—5.|_1 372

.36 > f0< [ R

i=[r] r-2

4(3—5)% 5 1 1 3 1

1=
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Thus, from [[7.1]1),[(7.30)] (7.83), ar{d (7 36), for 21, we obtain

(7.37)

where

4r2

3

[H - T—2|X|

In3— i(1 + §1n3) 2[r]1? =3[r? 4+ [r]) —

4

N

2fs] | (s 3)

<g(r)+e(5)+ . %5

2[r]

r

5 1 1 3
— §r1n3+§r+ <§1n3+ §>

Here, by using the substitution= [r] — r, we have

(m —r

1

2

)

In3
(7.38) g(r) = 12 S(—8r? = 3r — 18[r]a® + 18[r]a + 12¢° — 9a° — 3a)
T
1
+@(—87“2—7“—6[7"}042—1—4043—1-5042—0()
In3 9 In3 9 3 9
16r2(_8r —27‘)—1-@(—7“—18[7’104 + 18[r]|a + 12a° — 9a” — 3a)
1 3In3
+ @(—87“2 —r)+ 62 (—=6[r]a* — 2[r]a + 4a® + 5a® — a)
1 1 1 In3
=In3(--—-—]-2—-—— —[r](6a — 1)* + 240® + 6a* — 5
n(2 8r) T T 162 (T[1(6a =17+ 2407+ Ga” — 5a)
11 1 In3 ) s
§1n3(—§—§)— “ 1 5 (= (6 — 1)% + 240° 4 60° — ba)
11 1 I3 25
=1 —— - —2—-— —D{24|a—= =
n?’( 2 8r) PRI )( (O‘ 8) +8>
<In3 L1 2 L
T2 s ar’
where the first inequality holds sineej < —2123 = —0.206. .. and

= alda+3)(1 —«a) > 0.

Finally, from (7.37),[(7.3B), and(5) = —0.1378... ., for s > 21, we obtain

J. Inequal. Pure and Appl. Mat}9(3) (2008), Art. 66, 26 pp.

> |

x|

6[r]a’® + 2[r]a — 4a® — 5a® + a > 6a* + 2a — 4a® — 5o’ + «

x| o2
xcA1NB,
1
< 13(1+ ! ) 2 ! +(5)+4+ ! +4(8_%)2
2 44/3s 2v/3s V3 V/3s 3s
1 41 (7 1, \1 4(s—1)?
— 22— I3+ —+—(=—-In3) - +¢(5) + —21-
2n+\/§+\/§<2 4n>s+€()+ 3s
1 4 1 /7 1 1 4(21 — Ly2
<-2—-In3+—+—(=—-In3) = +¢(5) + —2
= 2n+\/§+\/§<2 4”)21+€<)+ 321
— —0.0016
<0
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Step 4 (proof fos < 21). For s < 21, it is straightforward to check the required inequality
(7.29) by carrying out direct calculations. Using the same argument as in step 1 of Thedrem 7.1
and considering that

= ﬁs < £21 — V/330.75,
it is sufficient to verify {(7.2) fon € N satlsfylng7 <n < 331andN'(n) # 0. Let

Table[7.1 shows the approximations of the calculated value$rgf From this result,[(7.29)
holds for eacty < n < 331 with N'(n) # 0.

This concludes the proof of Theor¢m]7.3. O
n|N | v n | N | v n | N | v n | N | v n |[N' | v n |[N' | v
1)1 — 48 | 1 |1.7]103| 2 |4.8|163| 2 [4.8|225| 1 |7.2|291| 2 |4.9
311 0 49 | 3 |13.0(108| 1 |29 169| 3 [ 24| 228| 2 |6.1|292| 2 |6.6
4 | 1| 47 || 52| 2 |6.3|109| 2 |3.7||171| 2 |5.2|229| 2 [8.0|300| 1 |3.3
7|2 |—-05 57| 2 |36|111| 2 |53|172| 2 |7.3|237| 2 |4.2]|301| 4 | 3.8
91|51 |61 227|112 2 |79|175]| 2 |7.6|241| 2 |3.8/304| 2 |6.3
12111 09 || 63| 2 |48 117 2 |59 181 2 |51(243| 1 {48307 2 |65
13| 2 | 35| 64| 182|121 1 |52|183| 2 |6.3|244| 2 |53|309| 2 |74
16| 1 | 43 || 67| 2 |6.2]/124| 2 |3.8(189| 2 |4.0(|247| 4 |56 313| 2 |6.9
19| 2 | 1.1 || 73| 2 |24 127| 2 |4.2]192| 1 |43 252| 2 |6.8|316| 2 |7.1
21| 2 | 48 || 75| 1 |4.3|129| 2 |56 193] 2 |49|256| 1 |6.2(324| 1 |4.0
25| 1| 31| 76| 2 |53|133| 4 (49| 196| 3 |52 259| 4 |5.2|325| 2 |4.4
271 1| 26| 79| 2 |57|139| 2 |55|199| 2 |[6.8]268| 2 |35|327| 2 |5.3
28| 2 | 43|81 |1 (74144 1 |3.8|201| 2 (79| 271| 2 [3.8]331| 2 |4.9
31| 2| 50 84 | 2 |56|147| 3 26| 208| 2 |4.8|273| 4 |4.8

36| 1| 1.7 || 91| 4 |1.1148| 2 |[6.6|211| 2 |5.1|277| 2 |6.7

371 2| 32 | 93| 2 |7.0|151| 2 [6.8| 217 4 |29|279| 2 |7.6

39| 2| 58 | 97| 2 |6.0||156| 2 |5.2|219| 2 |6.7|283| 2 |7.1

43| 2 | 4.4 ||100| 1 (6.4 157| 2 | 7.4 223| 2 |6.2]289| 1 |5.2

Table 7.1: List of values € N, N’(n), anduv(n) restricted tol < n < 331 andN’(n) # 0.
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