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ABSTRACT. A sufficient condition for the energy of a point such that a local minimum of the
energy exists at every triangular lattice point is obtained. The condition is expressed as a certain
type of strong convexity condition of the function which defines the energy. New results related
to Riemann sum of a function with such the convexity and new inequalities related to sums on
triangular lattice points are also presented.
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1. I NTRODUCTION

In some scientific or engineering fields, we are sometimes required to give or measure well-
distributed objects in a space. From a purely mathematical point of view, these requirements
are satisfied by solving a question which asks whether the well-distributed points are given by
the minimization of a total energy of arbitrarily distributed points. In [7], assuming the well-
distributed points to be arranged as in a periodic sphere packing [10, pp.25], we have obtained
the minimum energy condition in a one-dimensional case; this condition is given as a certain
strong convexity condition of the function which defines the energy. A natural question arising
in this context is whether the one-dimensional condition can be theoretically extended to higher
dimensional spaces.

In this study, we consider the two-dimensional case by imposing two strong restrictions. The
first constraint restricts the packing structure to a hexagonal circle packing. Although general
circle packing structures are unknown [5, D1], the densest (ideal) circle packing is achieved by
the hexagonal circle packing [10] [11, Theorem 1.3 (Lagrange (1773), Thue (1910), L. Fejes
Tóth (1940), Segre and Mahler (1944))], which is equivalent to the structure with the center of
each circle placed on the triangular lattice points. The second constraint restricts the minimum
energy analyses to the point-based local minimum analysis, which addresses whether a small
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perturbation of a point increases the energy of the point. These restrictions are motivated by a
suggestion about the study of local minima for optimal configurations [5, F17].

Hence, we investigate the condition for the energy of a point such that each triangular lattice
point has a locally optimal configuration with respect to the energy.

2. DEFINITION

Definition 2.1. For a point setX ⊂ R2 andf : (0,∞) → R, let the energy of a pointx ∈ X be

J(X, x, f) =
∑

y∈X\{x}

f(‖x− y‖),

where‖ · ‖ is the Euclidean norm.

For ease of analysis, we use the above-mentioned definition for defining the energy that is
different from the energy in the one-dimensional case [7]. However, the obtained results in
this study are also valid for energies having the same form as that of the energy in the one-
dimensional case whenX is a finite set andf(0) is defined.

Definition 2.2. Let d > 0, v1 =
(

1
2
,
√

3
2

)
, andv2 =

(
1
2
,−

√
3

2

)
. Let one-sixth of the triangular

lattice pointsbe given by

(2.1) Λd =
{
d(iv1 + jv2) : i ∈ N, j = 0, . . . , i− 1

}
.

Let one-sixth of equally spaced points on equally spaced concentric circlesbe given by

(2.2) Ωd =
{
(id cos τij, id sin τij) : τij = π/3 · (1− j/i), i ∈ N, j = 0, . . . , i− 1

}
.

In addition, letthe triangular lattice pointsΛ∗
d andequally spaced points on equally spaced

concentric circlesΩ∗
d be the unions of the rotations ofΛd and Ωd, respectively, around the

origin by anglesπ
3
j for j = 0, . . . , 5.

Figure 2.1(a) and (b) illustratesΛd andΩd, respectively. From the definition ofΛ∗
d, it can be

easily checked thatΛ∗
d = {d(iv1 + jv2) : i, j ∈ Z} \ {0}.

d

dv1

dv2

(a)

d

(b)

Figure 2.1: Illustration of two point sets along with related parameters: (a)Λd and (b)Ωd.
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3. ANALYTICAL CONDITION FOR L OCAL M INIMUM ENERGY

In this section, we derive the analytical condition for the energyJ such that it has a local
minimum atv whenX consists of equally spaced points on each of the concentric circles with
arbitrary radii centered atv.

Proposition 3.1. Let n ∈ N. For i = 1, . . . , n, let ki ∈ N with ki ≥ 3, θi ∈ [0, 2π), and
0 < ri ≤ 1. For i = 1, . . . , n and j = 0, . . . , ki − 1, let τij = 2πj/ki + θi and vectors
uij = (ri cos τij, ri sin τij). Letv ∈ R2 and a point setX ⊂ R2 satisfying

(3.1) X ∩ {y ∈ R2 : |y| ≤ 1} =
n⋃

i=1

{uij : j = 0, . . . , ki − 1}.

Letf : (0,∞) → R belong to the classC2 andf(x) = 0 onx ≥ 1. If

(3.2)
∑
y∈X

[
f ′′(|y|) +

f ′(|y|)
|y|

]
=

n∑
i=1

ki

[
f ′′(ri) +

f ′(ri)

ri

]
> 0,

then the energyJ((v + X) ∪ {x},x, f) has a local minimum atx = v.

Proof. We analyze the derivative ofJ and the Hessian matrix of the derivative. Without loss
of generality, we may assumev = 0 andθi = 0 for eachi because these restrictions do not
influence the value ofJ . Then, the energy of a pointx is given by

J(X ∪ {x},x, f) =
∑
y∈X

f(|x− y|) =
n∑

i=1

ki−1∑
j=0

f(|x− uij|).

From the assumption,f = f ′ = f ′′ = 0 onx ≥ 1. Thus,J is certainly twice differentiable with
respect tox.

First, we consider∇J . Since the derivative of|x| with respect tox is x
|x| , we get

∇J =
n∑

i=1

ki−1∑
j=0

f ′(|x− uij|) ·
x− uij

|x− uij|
.

Note that at the pointx = 0, we have|x − uij| = |uij| = ri. Here, form, p ∈ N with m < p
and forη ∈ R with cos η 6= 1, a general exponential sum formula holds inC:

p−1∑
m=0

(cos mη + i sin mη) =

p−1∑
m=0

eimη(3.3)

=
1− eipη

1− eiη
=

1− (cos pη + i sin pη)

1− (cos η + i sin η)
.

(In (3.3),i denotes the imaginary unit.) Substitutingm = j, p = ki, andη = 2π/ki in (3.3), we
obtain

∑ki−1
j=0 uij = 0 for eachi. Hence,∇J = 0 holds atx = 0. Thus,0 is a stationary point.

Next, we analyze the Hessian matrix of∇J to determine whetherJ has a local minimum at
x = 0. Using the notationsx = (x1, x2) anduij = (uij1, uij2), we get

∂2J

∂xm
2

=
n∑

i=1

ki−1∑
j=0

[
f ′′(|x− uij|)−

f ′(|x− uij|)
|x− uij|

]
· (xm − uijm)2

|x− uij|2
+

n∑
i=1

ki−1∑
j=0

f ′(|x− uij|)
|x− uij|

,

wherem = 1, 2 and

∂2J

∂x2∂x1

=
∂2J

∂x1∂x2

=
n∑

i=1

ki−1∑
j=0

[
f ′′(|x− uij|)−

f ′(|x− uij|)
|x− uij|

]
· (x1 − uij1)(x2 − uij2)

|x− uij|2
.
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Note thatcos η 6= 1 from the assumptionki ≥ 3. Hence, by substitutingm = j, p = ki, and
η = 4π/ki in (3.3), we obtain

ki−1∑
j=0

cos 2τij =

ki−1∑
j=0

sin 2τij = 0

for eachi. Hence, using double-angle formulas, fori = 1, . . . , n, we have
ki−1∑
j=0

uij1
2 =

ki−1∑
j=0

uij2
2 =

kiri
2

2
,

ki−1∑
j=0

uij1uij2 = 0.

From these equalities, atx = 0, we have∂2J
∂x1

2 = ∂2J
∂x2

2 , ∂2J
∂x1∂x2

= ∂2J
∂x2∂x1

= 0, and

∂2J

∂x1
2

=
n∑

i=1

ki−1∑
j=0

[
f ′′(ri)−

f ′(ri)

ri

]
· uij1

2

ri
2

+
n∑

i=1

ki−1∑
j=0

f ′(ri)

ri

=
n∑

i=1

ki

2

[
f ′′(ri) +

f ′(ri)

ri

]
.

Hence, atx = 0, both the discriminant and the term∂
2J

∂x1
2 are positive from the assumption.

Thus,J has a local minimum atx = 0. �

We can apply Proposition 3.1 toΛ∗
d andΩ∗

d because each set can satisfy the form (3.1) for
fixed ki = 6. Furthermore, we can useΛd andΩd for the estimations of (3.2) because the
values of (3.2) forX = Λ∗

d andX = Ω∗
d are 6 times those obtained forX = Λd andX = Ωd,

respectively. In particular, substitutingr = d−1 in (2.2), onΩd, we obtain∑
y∈Ωd

[
f ′′(|y|) +

f ′(|y|)
|y|

]
=

brc∑
i=1

i

[
f ′′
(

i

r

)
+

r

i
f ′
(

i

r

)]
(3.4)

= r

brc∑
i=1

[
f ′
(

i

r

)
+

i

r
f ′′
(

i

r

)]
.

Thus, the local minimum energy condition onΩd is simplified into the positivity of the sum of a
single-variable function. Since it might be difficult to directly analyze (3.2) with respect toΛd,
we would first analyze the right-hand side of (3.4) forΩd.

4. RIEMANN SUM OF A FUNCTION WITH A CERTAIN STRONG CONVEXITY

In [7], for the minimum energy analysis in a one-dimensional case, we have proved a variant
of a result obtained by Bennett and Jameson [1]. Here, in order to investigate a sufficient con-
dition such that the expression (3.4) may be greater than0, we again adopt the same approach.

For a functionf on (0, 1], letSn(f) be the upper Riemann sum for the integral
∫ 1

0
f resulting

from division of[0, 1] into n equal subintervals:

Sn(f) =
1

n

n∑
i=1

f

(
i

n

)
.

Theorem 3A in [1] states that iff is increasing and either convex or concave, thenSn(f) de-
creases withn. The same theorem has been independently proved by Kuang [9]. Further related
results have been presented in [1, 3]. Here, we show thatSn(f) also decreases iff is increasing,(
f ′
(
x

1
2

)/
x

1
2

)2
is convex, andlimx→1 f ′(x) = 0.

J. Inequal. Pure and Appl. Math., 9(3) (2008), Art. 66, 26 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


A L OCAL M INIMUM ENERGY CONDITION 5

Before presenting the result, we prove the following lemma.

Lemma 4.1. Let a < b be real numbers andf : [a, b] → R. Let p ≥ 1 be a real number. If
f ≥ 0, f is decreasing, andf(x)p is convex, then

(4.1)
1

b− a

∫ b

a

f(x)dx ≤ p

p + 1
f(a) +

1

p + 1
f(b).

Equality holds iff any one of the following conditions is satisfied:
(a) p = 1 andf is linear on[a, b];
(b) f is constant on[a, b]; and
(c) f(x)p is linear on[a, b] andf(b) = 0.

Proof. We show that in fact a stronger inequality

(4.2) f(xa + (1− x)b) ≤ x
1
p f(a) +

(
1− x

1
p

)
f(b)

holds, where0 ≤ x ≤ 1. By integrating (4.2) overx ∈ [0, 1], we can obtain (4.1).
If p = 1, then the result follows from the convexity off .
We assume thatp > 1. By using the substitutiong(x) = f(xa + (1− x)b), it is sufficient to

show

(4.3) g(x) ≤
(
1− x

1
p

)
g(0) + x

1
p g(1)

for g : [0, 1] → R, whereg ≥ 0 is increasing andg(x)p is convex.
First, consider the case wheng(0) = 0. Sinceg(x)p is convex,g(x)p ≤ xg(1)p, thus,

(4.4) g(x) ≤ x
1
p g(1)

on [0, 1]. Equality holds iffg(x)p is linear; this case corresponds to case (c).
Next, suppose thatg(0) = c > 0. If we can show that[g(x)−c]p is convex, then (4.3) follows

from substitutingg(x)− c for g(x) in (4.4). Leth(x) = g(x)p andk(x) = [g(x)− c]p. Since a
convex function is differentiable at all but at most countably many points, we may rely on the
differentiability ofh, and thereforeg andk. Then,h′(x) = pg(x)p−1g′(x) and

k′(x) = p[g(x)− c]p−1g′(x) = h′(x)

(
1− c

g(x)

)p−1

.

Both h′(x) and (1 − c/g(x))p−1 are positive and increasing. Hence,k′(x) is increasing, as
required. Equality in (4.3) holds iff

g(x)p = [(1− x1/p)g(0) + x1/pg(1)]p,

which gives
[g(x)p]′ = (g(1)− g(0))

[
g(1)− g(0) + x−1/pg(0)

]p−1
.

Here, it follows thatg(0) = g(1) because[g(x)p]′ cannot be increasing forp > 1 if g(0) < g(1).
This equality condition corresponds to the condition in case (b). �

Theorem 4.2.Letf : (0, 1] → R be differentiable. Iff is increasing,
(
f ′
(
x

1
2

)/
x

1
2

)2
is convex,

and limx→1 f ′(x) = 0, thenSn(f) decreases withn.

Proof. From the assumption,f ′ ≥ 0 holds andf ′
(
x

1
2

)
/x

1
2 is decreasing. Without loss of

generality, we may assume thatf(1) = 0 and extendf = f ′ = 0 on x ≥ 1. For a real number
r ≥ 1, let

Sr(f) =
1

r

brc∑
i=1

f

(
i

r

)
.

J. Inequal. Pure and Appl. Math., 9(3) (2008), Art. 66, 26 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/
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We show thatSr
′(f) ≤ 0 for r ≥ 1, whereSr

′(f) is the differential coefficient ofSr(f) with
respect tor. The existence ofSr

′(f) is confirmed by the differentiability off on (0,∞) and
f = f ′ = 0 onx ≥ 1. In fact, we have

Sr
′(f) = − 1

r2

brc∑
i=1

[
f

(
i

r

)
+

i

r
f ′
(

i

r

)]
.

The substitutionx = t
1
2 gives ∫ b

1
2

a
1
2

f ′(x)dx =

∫ b

a

f ′
(
t

1
2

)
2t

1
2

dt.

Thus, by applyingf ′
(
x

1
2

)/
x

1
2 to f in Lemma 4.1 withp = 2, for 0 < a < b, we obtain

(4.5)
1

b− a

∫ b
1
2

a
1
2

f ′(x)dx ≤ 2

6
·
f ′
(
a

1
2

)
a

1
2

+
1

6
·
f ′
(
b

1
2

)
b

1
2

.

Substitutinga =
(

j
r

)2
andb =

(
j+1

r

)2
in (4.5), we get

f

(
j + 1

r

)
− f

(
j

r

)
≤ 2

6r
· 2j + 1

j
f ′
(

j

r

)
+

1

6r
· 2(j + 1)− 1

j + 1
f ′
(

j + 1

r

)
.

Summing overj = i, . . . , brc and usingf(1) = 0, we obtain

(4.6) −f

(
i

r

)
≤ 1

r

brc∑
j=i

f ′
(

j

r

)
+

1

6r

brc∑
j=i

1

j
f ′
(

j

r

)
− 1

6r
· 2i− 1

i
f ′
(

i

r

)
.

Thus, from (4.6) andf ′ ≥ 0, we obtain

brc∑
i=1

[
f

(
i

r

)
+

i

r
f ′
(

i

r

)]
=

brc∑
i=1

f

(
i

r

)
+

1

r

brc∑
j=i

f ′
(

j

r

)(4.7)

≥ 1

6r

brc∑
i=1

2i− 1

i
f ′
(

i

r

)
− 1

6r

brc∑
i=1

brc∑
j=i

1

j
f ′
(

j

r

)

=
1

6r

brc∑
i=1

i− 1

i
f ′
(

i

r

)
≥ 0.

Hence,Sr
′(f) ≤ 0 holds. Thus,Sr(f) decreases withr ≥ 1.

From Lemma 4.1, equality in (4.5) holds iff eitherf ′ = 0 on [a, b] or
(
f ′
(
x

1
2

)/
x

1
2

)2
is linear

on [a, b] with f ′
(
b

1
2

)
= 0. Thus, from (4.6) and (4.7),Sr

′(f) = 0 holds iff eitherf ′ = 0 on

[1
r
, 1] or

(
f ′
(
x

1
2

)/
x

1
2

)2
is linear on[1

r
, 2

r
] with f ′(2

r
) = 0, indicating thatf ′ = 0 on [2

r
, 1]. Here,

the latter condition withf(1
r
) 6= 0 can hold only for one fixedr. Hence, for anyr1 ≥ 1, Sr(f)

strictly decreases withr ≥ r1 iff f ′ > 0 on
(
0, 1

r1

)
. �

Therefore,Sn(f) decreases withn if f is increasing and either
(i) f is convex or concave (from [1, Theorem 3A]), or

(ii)
(
f ′
(
x

1
2

)/
x

1
2

)2
is convex andlimx→1 f ′(x) = 0 (from Theorem 4.2).

Here, conditions (i) and (ii) are independent of each other, which can be observed in the
following examples. Letp > 0.
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Example 4.1.Let f(x) = −(1− x)p andf ′(x) = p(1− x)p−1. Then,f is convex if0 < p ≤ 1

and concave ifp ≥ 1. Further,
(
f ′
(
x

1
2

)/
x

1
2

)2
is convex andlimx→1 f ′(x) = 0 if p ≥ 1.5.

Further,f ′
(
x

1
2

)/
x

1
2 is convex ifp ≥ 2.

Example 4.2. Let f(x) = −(1 − x2)p andf ′(x) = 2px(1 − x2)p−1. Then,f is convex if
0 < p ≤ 1 and neither convex nor concave ifp > 1. Further,

(
f ′
(
x

1
2

)/
x

1
2

)2
is convex and

limx→1 f ′(x) = 0 if p ≥ 1.5. Further,f ′
(
x

1
2

)/
x

1
2 is convex ifp ≥ 2.

Theorem 4.3.Letf : (0, 1] → R. If f
(
x

1
2

)/
x

1
2 is decreasing and convex andf(1) = 0, then

(4.8)
∫ 1

1
n

f(x)dx ≤ 1

n

n∑
i=1

f

(
i

n

)
≤
∫ 1

0

f(x)dx.

Proof. Let a < b. The Hermite-Hadamard inequality for a convex functionf gives

f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

By applying the convexity off
(
x

1
2

)/
x

1
2 to this inequality, we obtain

(b− a)f

([
a + b

2

] 1
2

)
·
(

a + b

2

)− 1
2

≤
∫ b

a

f
(
x

1
2

)
x

1
2

dx(4.9)

≤ b− a

2

[
f
(
a

1
2

)
a

1
2

+
f
(
b

1
2

)
b

1
2

]
.

Substitutinga = ( i
n
)2 andb = ( i+1

n
)2 on the right-hand inequality in (4.9), we get∫ i+1

n

i
n

f(x)dx ≤ 1

4n
· 2i + 1

i
f

(
i

n

)
+

1

4n
· 2(i + 1)− 1

i + 1
f

(
i + 1

n

)
.

Summing overi = j, . . . , n− 1 and usingf ≥ 0, for eachj = 1, . . . , n− 1, we obtain∫ 1

j
n

f(x)dx ≤ 1

n

n∑
i=j

f

(
i

n

)
− 1

4n
· 2j − 1

j
f

(
j

n

)
− 1

4n
· 2n− 1

n
f(1)(4.10)

≤ 1

n

n∑
i=j

f

(
i

n

)
.

Hence, the left-hand inequality in (4.8) follows from (4.10) whenj = 1. Next, we extendf = 0

onx ≥ 1, which yields the convexity off
(
x

1
2

)/
x

1
2 on (0,∞). Then, substitutinga = i2−i

n2 and
b = i2+i

n2 on the left-hand inequality in (4.9), we get

2i

n2
f

(
i

n

)
·
(

i

n

)−1

≤
∫ i2+i

n2

i2−i

n2

f
(
x

1
2

)
x

1
2

dx.

Summing overi = 1, . . . , n, we obtain the right-hand inequality in (4.8).
In (4.10), equalities hold ifff ′

(
x

1
2

)/
x

1
2 is linear on

[
j
n
, 1
]

andf
(

j
n

)
= 0, that is,f = 0 on[

j
n
, 1
]
. Hence, equality on the left-hand inequality in (4.8) holds ifff = 0 on

[
1
n
, 1
]
. Similarly,

equality on the right-hand inequality in (4.8) holds ifff = 0 on (0, 1]. �
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If f is decreasing on[0, 1] andf(1) = 0, then (4.8) and
∫ 1

0
f ≤ 1

n

∑n−1
i=0 f

(
i
n

)
are trivial.

However, when we use a functionf on [0, 1] in Theorem 4.3, such an additional upper estima-
tion no longer holds. From (4.10), if a stronger condition thatf ′

(
x

1
2

)/
x

1
2 is convex is assumed

in Theorem 4.2, then in (4.7),

f

(
i

r

)
+

1

r

brc∑
j=i

f ′
(

j

r

)
≥ 0

holds for eachi.

5. L OCAL M INIMUM ENERGY CONDITION

We can obtain the local minimum energy condition forΩ∗
d from the result obtained in the

previous section.

Proposition 5.1. Let 0 < d ≤ 1 andΩ∗
d be defined by Definition 2.2. Letv ∈ R2 and a point

setX ⊂ R2 satisfying

{x ∈ X : |x| ≤ 1} = {x ∈ Ω∗
d : |x| ≤ 1}.

Let f : (0,∞) → R belong to the classC2 with f = 0 on x ≥ 1 andf ′′ 6≡ 0 on [d, 1]. If f is
convex and either

(i) f ′ is concave or
(ii)

(
f ′′
(
x

1
2

)/
x

1
2

)2
is convex and either is strictly convex on[d, 2d] or f(2d) 6= 0,

then the energyJ((v + X) ∪ {x},x, f) has a local minimum atx = v.

Proof. Let r = d−1. As stated after Proposition 3.1, it is sufficient to show that (3.4) is greater
than0. In case (i),f ′′ is decreasing. Moreover, there is an interval contained in[d, 1] in which
f ′′ is strictly decreasing becausef ′′ 6≡ 0 on [d, 1] andf ′′(1) = 0. Thus,

brc∑
i=1

[
f ′
(

i

r

)
+

i

r
f ′′
(

i

r

)]
=

brc∑
i=1

−∫ 1

i
r

f ′′(x)dx +
1

r

brc∑
j=i

f ′′
(

j

r

) > 0.

In case (ii), the result follows from (4.7) and related arguments presented after that. �

It is expected that a result similar to that of Proposition 5.1 can be obtained for the triangular
lattice pointsΛ∗

d being similar in structure toΩ∗
d, thereby leading to the following theorem. In

the proof, two inequalities related to the triangular lattice points are required. The proofs of
these inequalities are given in Section 7. In the statement of Theorem 5.2, a specific value ofp
is given. The meaning of the valuep is explained in the proof of the theorem.

Theorem 5.2. Let 0 < d ≤ 1 andΛ∗
d be defined by Definition 2.2. Letv ∈ R2 and a point set

X ⊂ R2 satisfying{x ∈ X : |x| ≤ 1} = {x ∈ Λ∗
d : |x| ≤ 1}. Letf : (0,∞) → R belong to

the classC2 with f = 0 onx ≥ 1 andf ′′ 6≡ 0 on [d, 1]. If f is convex and either

(i) f ′ is concave or
(ii)

(
f ′′
(
x

1
2

)/
x

1
2

)p
is convex forp = 2

11
(47 + 27

√
3) = 17.048 . . .,

then the energyJ((v + X) ∪ {x},x, f) has a local minimum atx = v.

Proof. As stated in Section 3, we can use the one-sixth version setΛd instead of the triangular
lattice points setΛ∗

d. Thus, from Proposition 3.1, it is sufficient to show that

(5.1)
∞∑
i=1

[
f ′′(ai) +

f ′(ai)

ai

]
> 0,
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where the sequence{ai} is obtained by sorting the value|y| for all y ∈ Λd in increasing order.
More precisely, eachai is defined by

ai = max
{
|y| : y ∈ Λd, #{z ∈ Λd : |z| < |y|} < i

}
.

The first 10 values ofai ared,
√

3d, 2d,
√

7d,
√

7d, 3d,
√

12d,
√

13d,
√

13d and4d; these values
are illustrated in Figure 7.1 in Section 7.

First, we summarize the inequalities that are required for the proof. From Theorem 7.1, which
will be stated later in Section 7, for alln ∈ N,

(5.2)
n∑

i=1

an+1

ai

< 2n.

In addition, from Theorem 7.3, forn ∈ N with n ≥ 4,

(5.3)
n∑

i=1

an+1
2

ai

<
n∑

i=1

3ai.

Sincean increases withn, for all n ∈ N and any real numberp ≥ 0, we have
n∑

i=1

[
p

p + 1
· an+1

2

ai

+
1

p + 1
· an

2

ai

]
≤

n∑
i=1

an+1
2

ai

.

Thus, by substitutingp = 2
11

(47 + 27
√

3) and from (5.3), for alln ∈ N, we obtain

(5.4)
n∑

i=1

[
p

p + 1
· an+1

2

ai

+
1

p + 1
· an

2

ai

]
≤

n∑
i=1

3ai,

where equality holds iffn = 3. Note that (5.4) strictly holds for any (large)p ≥ 0 whenn 6= 3.
The specific value ofp is the upper bound ofp for satisfying (5.4) whenn = 3.

Next, we prove (5.1) for cases of (i) and (ii) by using (5.2) and (5.4), respectively. From the
assumption, suppose thatf = f ′ = f ′′ = 0 onx ≥ 1 andf ′′ 6≡ 0 on [a1, 1].

Case (i): Let f ′ be concave. Then,f ′′ is decreasing. Thus, for0 < a < b,∫ b

a

f ′′(x)dx ≤ (b− a)f ′′(a).

Substitutinga = aj andb = aj+1 and summing overj = i, i + 1, . . ., we obtain

(5.5) f ′(ai) ≥ −
∞∑
j=i

(aj+1 − aj)f
′′(aj).

Thus, from (5.2) and (5.5) and considering thatf ′′ = 0 on x ≥ 1, f ′′ 6≡ 0 on [a1, 1], andf ′′ is
decreasing, we obtain

∞∑
i=1

[
f ′′(ai) +

f ′(ai)

ai

]
≥

∞∑
i=1

[
f ′′(ai)−

∞∑
j=i

aj+1 − aj

ai

f ′′(aj)

]

=
∞∑
i=1

[
2f ′′(ai)−

i∑
j=1

ai+1

aj

(f ′′(ai)− f ′′(ai+1))

]

>

∞∑
i=1

[
2f ′′(ai)− 2i (f ′′(ai)− f ′′(ai+1))

]
= 0.
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Case (ii): Let p = 2
11

(47+27
√

3) and
(
f ′′
(
x

1
2

)/
x

1
2

)p
be convex. Then,f ′′

(
x

1
2

)/
x

1
2 is decreas-

ing sincef ′′ ≥ 0 andf ′′(1) = 0. Thus, in the same way as in the derivation of (4.5), from
Lemma 4.1, for0 < a < b, we obtain

1

b− a

∫ b
1
2

a
1
2

f ′′(x)dx ≤ p

2(p + 1)
·
f ′′
(
a

1
2

)
a

1
2

+
1

2(p + 1)
·
f ′′
(
b

1
2

)
b

1
2

.

Substitutinga = aj
2 andb = aj+1

2 and summing overj = i, i + 1, . . ., we have

(5.6) f ′(ai) ≥ − p

2(p + 1)

∞∑
j=i

aj+1
2 − aj

2

aj

f ′′(aj)−
1

2(p + 1)

∞∑
j=i

aj+1
2 − aj

2

aj+1

f ′′(aj+1).

Thus, from (5.4) and (5.6) and considering thatf ′′ = 0 onx ≥ 1, f ′′ 6≡ 0 on [a1, 1], andf ′′(x)/x
is decreasing, we obtain

2(p + 1)
∞∑
i=1

[
f ′′(ai) +

f ′(ai)

ai

]

≥
∞∑
i=1

[
2(p + 1)f ′′(ai)− p

∞∑
j=i

aj+1
2 − aj

2

ai

· f ′′(aj)

aj

−
∞∑
j=i

aj+1
2 − aj

2

ai

· f ′′(aj+1)

aj+1

]

=
∞∑
i=1

[
3(p + 1)f ′′(ai)

−

(
p

i∑
j=1

ai+1
2

aj

+
i∑

j=1

ai
2

aj

)
·
(

f ′′(ai)

ai

− f ′′(ai+1)

ai+1

)]

> 3(p + 1)
∞∑
i=1

[
f ′′(ai)−

(
i∑

j=1

aj

)
·
(

f ′′(ai)

ai

− f ′′(ai+1)

ai+1

)]
= 0.

Here, the second inequality certainly holds strictly because in (5.4), strict inequality holds for
n 6= 3, andf ′′(a1)/a1 − f ′′(a2)/a2 > 0 holds fromf 6≡ 0 on [a1, 1]. �

In cases (i) and (ii), the assumption thatf is convex can be omitted because the other condi-
tions yieldf ′′ ≥ 0. Nevertheless, it is natural to assume this condition in case (ii).

Now, we address the (second) question presented in the introduction.

Remark 1. Let us consider the relation between Theorem 5.2 and the one-dimensional re-
sult [7]. The one-dimensional result was as follows. Consider a finite point setX ⊂ R/Z with
the Euclidean distance‖ · ‖ defined by

‖x− y‖ = min{|x− y + e| : e = −1, 0, 1}
and the energy ofX defined by the average value off(‖x − y‖) for x, y ∈ X, wheref :
[0, 1/2] → R. If f is convex, then among allm-point sets for fixedm ≥ 1, the energy is
(globally) minimized by an equally spacedm-point set. Additionally, iff is convex,f ′

(
x

1
2

)
is

concave, andlimx→ 1
2
f ′(x) = 0, then among allm-point sets for1 ≤ m ≤ n, the energy is

minimized by an equally spacedn-point set.
It is easy to verify that the condition in Theorem 5.2 is stronger than these one-dimensional

conditions. Thus, in the two-dimensional case, even for the existence of a local minimum,
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the functionf should have a stronger convexity than the convexity which is defined by these
one-dimensional conditions.

As stated in Section 2, in the two-dimensional case, by defining an affine transformation
g : R2 → R2 and the periodic spaceg(R2/Z2) with the Euclidean distance‖ · ‖ defined by

‖x− y‖ = min{|x− y + e1 · g(1, 0) + e2 · g(0, 1)| : e1, e2 = −1, 0, 1},

we can also define the energy of a point as

I(X, x, f) =
1

|X|
∑
y∈X

f
(
‖x− y‖

)
,

whereX is a point set ing(R2/Z2) and|X| is the cardinality ofX. Then, Theorem 5.2 is also
valid for the energyI only if |X| is finite andf(0) is defined.

6. EXAMPLES

Remark 2. If p > 0, f(x) ≥ 0, andf(x)p is convex, thenf(x)q is convex for allq ≥ p. This is
because forg(x) = xq/p, g is increasing and convex on[0,∞). Thus,

g(f(ax + by)p) ≤ g(af(x)p + bf(y)p) ≤ ag(f(x)p) + bg(f(y)p)

holds fora, b ∈ [0, 1] with a + b = 1.

Example 6.1. Forn ∈ N, let ωn(r) = π
n
2 rn
/
Γ(n

2
+ 1) denote the volume of an n-dimensional

ball of radiusr. Let Vn(x) be the volume of the cross region of two identical n-dimensional
balls of unit diameter with their centers at distancer from each other.

Vn(r) = 2

∫ 1
2

r
2

ωn−1

(√
1

4
− x2

)
dx =

π
n−1

2

2n−1Γ
(

n+1
2

) ∫ 1

r

(1− x2)
n−1

2 dx.

By omitting the constant coefficient ofVn(r), we definegn(r) =
∫ 1

r
(1 − x2)(n−1)/2dx for

0 ≤ r ≤ 1 and further extendgn(r) = 0 for r > 1. Then, eachgn(x) on [0, 1] for n = 1, . . . , 5
is given by

g1(x) = 1− x,

g2(x) =
1

2
cos−1 x− 1

4
sin(2 cos−1 x) =

1

2
cos−1 x− 1

2
x
√

1− x2,

g3(x) =
2

3
− x +

1

3
x3,

g4(x) =
3

8
cos−1 x− 1

4
sin(2 cos−1 x) +

1

32
sin(4 cos−1 x)

=
3

8
cos−1 x− 1

2
x
√

1− x2 +
1

8
x(2x2 − 1)

√
1− x2,

g5(x) =
8

15
− x +

2

3
x3 − 1

5
x5.

Forp > 0, let fnp(x) = gn(x)p. Then,fnp(x) is convex for alln ≥ 1 andp > 0.
Table 6.1 shows the conditions required forp to satisfy the convexities in Proposition 5.1 and

Theorem 5.2 with respect tofnp
′ andfnp

′′ under the restrictionfnp = fnp
′ = fnp

′′ = 0 onx = 1
for n = 1, . . . , 5. In the table, the values indicated with an asterisk are approximation values
obtained from the numerical analysis, while the others are exact values. In this example, among
cases (i) and (ii) in Proposition 5.1 or Theorem 5.2, we may confirm that case (ii) is more valid
than the case (i) whenn ≥ 2. In particular, case (ii) is valid for allp ≥ 1 if n ≥ 4. In the case
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Table 6.1: Convexities with respect tofnp
′ andfnp

′′ (* results obtained from numerical analysis).

fnp
′(x) fnp

′(x
1
2 ) (fnp

′′(x
1
2 )/x

1
2 )17.048 (fnp

′′(x
1
2 )/x

1
2 )2 fnp

′′(x
1
2 )/x

1
2

is concave is concave is convex is convex is convex
n = 1 p > 2 p > 2 p ≥ 2.06∗ p ≥ 2.5 p ≥ 3

n = 2 p ≥ 2.44∗ p > 4
3

p ≥ 1.38∗ p ≥ 5
3

p ≥ 2

n = 3 p ≥ 2.57∗ p > 1 p ≥ 1.03∗ p ≥ 1.25 p ≥ 1.5

n = 4 p ≥ 2.64∗ p ≥ 1 p ≥ 1 p ≥ 1 p ≥ 1.2

n = 5 p ≥ 2.68∗ p ≥ 1 p ≥ 1 p ≥ 1 p ≥ 1

of n = 3 andp = 1, the two-dimensional condition of Theorem 5.2 is not satisfied, while the
one-dimensional condition mentioned in Remark 1 is satisfied.

7. I NEQUALITIES RELATED TO SUMS ON TRIANGULAR L ATTICE POINTS

In the rest of the paper, we focus on a variation of lattice point problems to prove (5.2) and
(5.3). In lattice point theory, the well-known Gauss’ (lattice point or circle) problem is the
problem of counting up the number of square lattice points which are inside a circle of radiusr
centered at the origin [6, F1] [8]. Meanwhile, the lattice sum is the problem of determining the
sums of a variety of quantities on lattice points [2, Chap. 9]. Although it is not clearly defined,
the lattice sum usually targets infinite sums. Our problem may occupy an intermediate position
between the two problems because we will investigate a relation between certain lattice sums
of finite type and the number of triangular lattice points which are inside a circle.

Hereafter, the interval of the lattice is fixed atd = 1 because the inequalities (5.2) and (5.3)
are not influenced byd. These inequalities can be analyzed by an appropriate approximation of
ai onΛ1 as follows.

Remark 3. Let {ai} be a sequence of the values of|v| for v ∈ Λ1 sorted in increasing order.
To obtain an approximation for{ai}, let us consider the case that there arek triangular lattice
points in a circle of radiusr > 1 centered at the origin. Then, the area of the circle,πr2, can
be approximated by the total area ofk identical equilateral triangles of the area

√
3/2. Here, if

r = ai, we havek = 6i. Thus, we haveai ≈ bi, where

bi = 3
3
4 · π−

1
2 · i

1
2 .

Next, we consider{bi}. Sincex−
1
2 is decreasing,

(7.1)
1

(i + 1)
1
2

<

∫ i+1

i

1

x
1
2

dx <
1

i
1
2

.

Considering thatx−
1
2 is decreasing, and from the left-hand inequality in (7.1), we have

1

i
1
2

< − 1

(i + 1)
1
2

+
2

i
1
2

(7.2)

< 2(i + 1)
1
2 − 2i

1
2 − 2

(i + 1)
1
2

+
2

i
1
2

=
2i

(i + 1)
1
2

− 2(i− 1)

i
1
2

.

J. Inequal. Pure and Appl. Math., 9(3) (2008), Art. 66, 26 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


A L OCAL M INIMUM ENERGY CONDITION 13

Likewise, from the right-hand inequality in (7.1), we have

(7.3) 2(i + 1)
1
2 − 2(i− 1)

i
1
2

<
3

i
1
2

.

Thus, summing each of (7.2) and (7.3) multiplied byi overi = 1, . . . , n, we obtain
n∑

i=1

bn+1

bi

< 2n <
n∑

i=1

3bi

bn+1

.

Hence, if we use the sequence{bi} instead of the sequence{ai}, then (5.2) and (5.3) holds on
the basis of the local inequalities (nearbyi

1
2 ) obtained from the concavity ofx

1
2 .

For convenience, we also prepare the representation of the triangular lattice points by means
of number theory [4, pp.110]. LetN(n) denote the number of triangular lattice points placed at
distance

√
n from the origin. LetN ′(n) = N(n)/6. Then,N ′(n) is specified by the following

values: 
N ′(3a) = 1 for a ≥ 0,

N ′(pa) = a + 1 for p ≡ 1 (mod 3),

N ′(pa) = 0 for p ≡ 2 (mod 3), a odd,

N ′(pa) = 1 for p ≡ 2 (mod 3), a even,

wherep 6= 3 is prime. That is, by factorizing the natural numbern into prime factors by

n = 3a · p1
b1 · · · pk

bk · q1
c1 · · · ql

cl ,

wherep1, . . . , pk ≡ 1 (mod 3) andq1, . . . , ql ≡ 2 (mod 3), we have

N ′(n) = N ′(3a) ·N ′(p1
b1) · · ·N ′(pk

bk) ·N ′(q1
c1) · · ·N ′(ql

cl).

For example,N ′(27) = N ′(33) = 1, N ′(39) = N ′(31) ·N ′(131) = 2, andN ′(49) = N ′(72) =
3. Figure 7.1 shows the distances of points inΛ1 ∪ {0} from the origin fori ≤ 9.

0

1
√

3
√

7
√

13
√

21
√

31
√

43
√

57
√

73

2
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7
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√
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28
√

39
√

52
√

67

3
√

13
√

19
√

27
√

37
√

49
√

63

4
√

21
√

28
√

37
√

48
√

61

5
√

31
√

39
√

49
√

61

6
√

43
√

52
√

63

7
√

57
√
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8
√

73

9

Figure 7.1: Triangular lattice pointsΛ1 ∪ {0} along with their distances from the origin (i ≤ 9).
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Theorem 7.1.Let r > 1. Then, for the triangular lattice pointsΛ1 defined by (2.1),

(7.4)
∑

x∈Λ1∩Br

[
1

|x|
− 2

r

]
< 0

holds, whereBr = {x : |x| < r}. Moreover, (7.4) is equivalent to (5.2) and

(7.5)
n−1∑
i=1

[
1√
i
− 2√

n

]
N ′(i) < 0

for n > 1 with N ′(n) 6= 0.

Before presenting the proof of Theorem 7.1, we prove the following lemma.

Lemma 7.2. Letk ∈ N, r ∈ R with k < r, andf ≤ 0 be convex on
[
k − 1

2
, r
]
. Then,

dre−1∑
i=k

f(i) ≤
∫ r− 1

2

k− 1
2

f(x)dx.

Proof. Sincek ≤ dre − 1 < r andf is convex on
[
k − 1

2
, r
]
, we have

(7.6)
dre−1∑
i=k

f(i) ≤ f(dre − 1) +

∫ dre− 3
2

k− 1
2

f(x)dx

and

(7.7) (r − dre+ 1)f

(
r + dre − 2

2

)
≤
∫ r− 1

2

dre− 3
2

f(x)dx.

Next, again from the convexity off and0 ≤ dre−r
r−dre+2

< 1, we have

f(dre − 1) ≤ 2(r − dre+ 1)

r − dre+ 2
f

(
r + dre − 2

2

)
+

dre − r

r − dre+ 2
f(r).

Thus, considering0 < r−dre+2
2

≤ 1 andf ≤ 0, we have

(7.8) 0 ≤ −dre − r

2
f(r) ≤ (r − dre+ 1)f

(
r + dre − 2

2

)
− f(dre − 1).

Then, the required inequality follows by summing up (7.6) and (7.7) side by side and using
(7.8). Whenf 6≡ 0, equality holds iffr ∈ N andf is linear. �

The proof of Theorem 7.1 comprises 9 steps. As illustrated in Figure 7.2(a), dividing a
circular sector at distancer from the origin into two regions,A (an equilateral triangle) andB
(a circular segment), we shall prove (7.4) onA∪B. By referring to the observations in Remark
3, our approach to the proof is based on simple convexity and monotonicity. The point is to
use a mutual elimination between the two terms in (7.4) onB. Figure 7.2(b) illustrates points
related toB, which will be explained in step 2 of the proof.

Proof of Theorem 7.1.Step 1 (equivalence of (7.4),(5.2), and (7.5)).Suppose that (5.2) is sat-
isfied. Forr > 1, choosen such thatan+1 ≥ r > an. Then, considering that#{Λ1 ∩ Br} = n,
we obtain ∑

x∈Λ1∩Br

2

r
≥ 2

an+1

#{Λ1 ∩Br} =
2n

an+1

>

n∑
i=1

1

ai

=
∑

x∈Λ1∩Br

1

|x|
,
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A

B

s = 2√
3
r

r

(a)

sv1
iv1

rv1

iv1 +

⌊
i−√3(s2 − i2)

2
+ 1

⌋
v2

iv1 +

(
i−√3(s2 − i2)

2

)
v2

1
v1
v2

(b)

Figure 7.2: Illustration of (a) regionsA andB and constantsr ands, and (b) points related toB.

which gives (7.4). When (7.4) holds, clearly (7.5) holds. Suppose that (7.5) is satisfied. For
eachn ∈ N, let m = an+1

2 and select the maximumk ≤ n such thatak < an+1. Then, from
the definition ofai and considering that

∑m−1
i=1 N ′(i) = k, we haveN ′(m) 6= 0 and

n∑
i=1

2

an+1

− n− k

an+1

=
n + k√

m
≥ 2k√

m
=

m−1∑
i=1

2N ′(i)√
m

>
m−1∑
i=1

N ′(i)√
i

=
k∑

i=1

1

ai

=
n∑

i=1

1

ai

− n− k

an+1

,

which gives (5.2). Consequently, (5.2), (7.4), and (7.5) are all equivalent to each other.
In the following steps, we concentrate on the proof of inequality (7.4).

Step 2 (division intoA andB). In (2.1), note that eachx ∈ Λ1 is given byx = iv1 + jv2 for
somei ∈ N andj ∈ {0, . . . , i− 1}, and|x| = [i2 − ij + j2]

1
2 . Let

(7.9) s =
2√
3
r.

Henceforth, for convenience, we will often uses as well asr. For i ∈ N ∩ [r, s], let

(7.10) ki =
i−
√

3(s2 − i2)

2
+ 1.

Let

A = {(i, j) : i = 1, . . . , dre − 1, j = 0, . . . , i− 1},
B = {(i, j) : i = dre, . . . , dse − 1, j = bkic, . . . , i− bkic}.

Then, we have

(7.11) {(i, j) : i ∈ N, j = 0, . . . , i− 1, [i2 − ij + j2]
1
2 < r} = A ∪B.

The proof of (7.11) is given as follows. Ifi ∈ {1, . . . , dre − 1}, then[i2 − ij + j2]
1
2 < r holds

for all j ∈ {0, . . . , i− 1}. If i ∈ {dre, . . . , dse − 1}, then[i2 − ij + j2]
1
2 < r is equivalent to

ki − 1 =
i−
√

3(s2 − i2)

2
< j <

i +
√

3(s2 − i2)

2
= i− ki + 1
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16 KANYA ISHIZAKA

andki − 1 < bkic ≤ j ≤ i− bkic = i− ki + 1. Thus, (7.11) holds. Figure 7.2(b) illustrates the
relationship betweenki and the curved boundary ofB.

Hence, from (7.11), it follows that

(7.12)
∑

x∈Λ1∩Br

[
1

|x|
− 2

r

]
=

dre−1∑
i=1

i−1∑
j=0

[
1

[i2 − ij + j2]
1
2

− 2

r

]

+

dse−1∑
i=dre

i−bkic∑
j=bkic

[
1

[i2 − ij + j2]
1
2

− 2

r

]
.

Step 3 (proof fors ≤ 7). In the case ofs ≤ 7, B is equal to an empty set. Thus, we treat this
case independently. From the argument in step 1, considering thatr =

√
3

2
s ≤

√
3

2
7 =

√
36.75,

it is sufficient to verify (7.5) for cases whenn has the following values:

(7.13) 3, 4, 7, 9, 12, 13, 16, 19, 21, 25, 27, 28, 31, 36, and37.

For example, whenn = 21, we have

20∑
i=1

[
1√
i
− 2√

21

]
N ′(i)

= 1 +
1

2
+

1√
3

+
1

3
+

2√
7

+
1

4
+

2√
13

+
1√
12

+
2√
19

− 2√
21

· 12

= 4.7188 . . .− 5.2372 . . . = −0.52 . . . < 0.

Similarly, omitting detailed calculations, by substituting the values in (7.13) in the variablen
on the left-hand side of (7.5), we obtain

− 0.15,−0.42,−0.19,−0.50,−0.29,−0.42,−0.49,−0.32,−0.51,

− 0.44,−0.41,−0.49,−0.54,−0.38, and − 0.45, respectively.

Step 4 (estimation of (7.12) related toA). Henceforth, assume thats > 7. For0 ≤ x ≤ i, let

(7.14) hi(x) = ln

∣∣∣∣2x− i

2
+ [i2 − ix + x2]

1
2

∣∣∣∣ .
Then,

hi
′(x) =

1

[i2 − ix + x2]
1
2

.

Here,hi
′(x) is strictly concave on[0, i], andhi

′(x) = hi
′(i− x) holds. Hence, we have

i−1∑
j=0

hi
′(j) =

1

2

i−1∑
j=0

[
hi

′(j) + hi
′(j + 1)

]
<

∫ i

0

hi
′(x)dx = hi(i)− hi(0) = ln 3.

Define a negative variableε(n) as

(7.15) ε(n) =
n∑

i=1

i−1∑
j=0

hi
′(j)− n ln 3.
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Then, as an estimation of (7.12) related toA, we obtain

dre−1∑
i=1

i−1∑
j=0

[
hi

′(j)− 2

r

]
=

n∑
i=1

i−1∑
j=0

hi
′(j) +

dre−1∑
i=n+1

i−1∑
j=0

hi
′(j)−

dre−1∑
i=1

i−1∑
j=0

2

r
(7.16)

< ε(n) + n ln 3 + (dre − n− 1) ln 3− (dre − 1)dre
r

= ε(n) + (dre − 1) ln 3− (dre − 1)dre
r

,

wheren is an arbitrary natural number with1 ≤ n < dre−1. Thus, in (7.16), the negative value
ε(n) can be regarded as an adjustment value. Sinceε(n) decreases withn, a largern gives a
better upper estimation in (7.16). However, from [1, Theorem 3A], we can find that

∑i−1
j=0 hi

′(j)

increases toln 3 with i. Thus,ε(n) − ε(n + 1) decreases to0 with n. Thus, even a smalln
may be rather effective. In the final estimation in step 9, we shall use the fixed valueε(5) as the
largest allowed value fors > 7 obtained from

dre − 1 =

⌈√
3

2
s

⌉
− 1 ≥

⌈√
3

2
7

⌉
− 1 = 6.

Step 5 (estimation of (7.12) related toB for j = bkic, . . . , i− bkic whenbkic ≤ i
2
). This is the

key part of the proof. Suppose thatbkic ≤ i
2
. Sincehi

′(x) is strictly concave on[0, i], from
hi

′(x) = hi
′(i− x) andbkic ≤ i− bkic, we get

(7.17)
i−bkic∑
j=bkic

[
hi

′(j)− 2

r

]
< hi

′(bkic) + hi(i− bkic)− hi(bkic)−
2

r
(i− 2bkic+ 1).

On replacingbkic with x, the value of the terms on the right-hand side of (7.17) increases with
x because by usingr > 1, [i2 − ix + x2]

1
2 ≤

√
3

2
i ≤

√
3

2
r, and2x − i < x ≤ s, its derivative

satisfies

hi
′′(x)− 2hi

′(x) +
4

r
= − 2x− i

2[i2 − ix + x2]
3
2

− 2

[i2 − ix + x2]
1
2

+
4

r

> −s

2

(
2√
3r

)3

− 4√
3r

+
4

r

=
4

9r2
(−2− 3

√
3r + 9r) > 0.

Sincehi
′ is strictly concave, for anyt ∈ R with 0 ≤ t ≤ i− 1, we have

hi(i− t + 1)− hi(i− t) + hi(t)− hi(t− 1)− [hi
′(t− 1) + hi

′(t)](7.18)

= 2

∫ t

t−1

hi
′(x)dx− [hi

′(t− 1) + hi
′(t)] > 0.
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18 KANYA ISHIZAKA

From (7.17), (7.18), and the increase in the value of the terms on the right-hand side of (7.17),
we have

i−bkic∑
j=bkic

[
hi

′(j)− 2

r

]
(7.19)

< hi
′(ki) + hi(i− ki)− hi(ki)−

2

r
(i− 2ki + 1)

< −hi
′(ki − 1) + hi(i− ki + 1)− hi(ki − 1)− 2

r
(i− 2ki + 1).

From (7.10), we have

[i2 − i(ki − 1) + (ki − 1)2]
1
2 = [i2 − i(i− ki + 1) + (i− ki + 1)2]

1
2(7.20)

= r =

√
3

2
s

and

(7.21)
2(ki − 1)− i

2
= −2(i− ki + 1)− i

2
= −

√
3(s2 − i2)

2
.

Thus, we havehi
′(ki − 1) = r−1 and

−hi
′(ki − 1)− 2

r
(i− 2ki + 1) = −1

r
− 2

r

(√
3(s2 − i2)− 1

)
(7.22)

=
1

r
− 4

√
s2 − i2

s
.

In (7.22), the calculation−1/r+2/r = 1/r corresponds to the mutual elimination stated before
the proof. Thus, by substituting (7.22) and (7.14) in the right-hand side of (7.19), and then by
using (7.20) and (7.21), the inequality (7.19) is rewritten as

(7.23)
i−bkic∑
j=bkic

[
hi

′(j)− 2

r

]
<

1

r
+ 2 ln

∣∣∣∣ i

s−
√

s2 − i2

∣∣∣∣− 4
√

s2 − i2

s
.

In fact, (7.23) also holds in the case ofbkic > i
2
. This will be proved in step 7.

Step 6 (a function for further estimations of (7.12) related toB for i = dre, . . . , dse − 1). In this
step, we present some properties related to the variable term of the right-hand side of (7.23).
For0 ≤ x ≤ s, let

(7.24) f1(x) = 2x ln

∣∣∣∣ x

s−
√

s2 − x2

∣∣∣∣− 2x
√

s2 − x2

s
.

Then,

f1
′(x) = 2 ln

∣∣∣∣ x

s−
√

s2 − x2

∣∣∣∣− 4
√

s2 − x2

s

is the variable term on the right-hand side of (7.23). Here, fors√
2

< x < s,

f1
′′(x) =

2

s

[
x√

s2 − x2
−
√

s2 − x2

x

]
=

2(2x2 − s2)

sx
√

s2 − x2
> 0.

Further, for all0 < x < s,

f1
′′′(x) =

2

s

[
x√

s2 − x2
+

√
s2 − x2

x2
+

1√
s2 − x2

+
x2

(s2 − x2)
3
2

]
> 0.
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Hence,f1 is strictly convex on
[

s√
2
, s
]
, andf1

′ is strictly convex on[0, s] and increasing on[
s√
2
, s
]
. Sincef1

′(s) = 0, f1
′(x) ≤ 0 also holds on

[
s√
2
, s
]
.

Step 7 (proof of (7.23) whenbkic > i
2
). Suppose thatbkic > i

2
. Since bothbkic andi are natu-

ral numbers,bkic ≥ i+1
2

holds, hence,

i−
√

3(s2 − i2)

2
+ 1 = ki ≥ bkic ≥

i + 1

2
.

Thus,i2 ≥ s2 − 1
3
. Sincef1

′ is increasing on
[

s√
2
, s
]
, by substitutings = x+1√

3(x−1)
, we get

f1
′(i) +

2√
3s

≥ f1
′

(√
s2 − 1

3

)
+

2√
3s

= ln

∣∣∣∣∣s + 1√
3

s− 1√
3

∣∣∣∣∣− 2√
3s

=
(x + 1) ln x− 2(x− 1)

x + 1
> 0,

where the last inequality holds by the convexity of(x+1) ln x. The left-hand side of (7.23) can
be naturally defined to be equal to 0 whenbkic > i

2
. Hence, (7.23) holds for alli ∈ [r, s] ∩ N.

Step 8 (estimation of two functional values defined in step 6).We derive two estimations forf1(x).
The first estimation is made atx = dre− 1

2
. Sincef1 is strictly convex on

[
s√
2
, s
]

and the interval[
min{dre − 1

2
, r}, max{dre − 1

2
, r}
]

is contained in
[

s√
2
, s
]
, we have

f1

(
dre − 1

2

)
> f1(r) + f1

′(r)

(
dre − r − 1

2

)
(7.25)

= r ln 3− r + (ln 3− 2)

(
dre − r − 1

2

)
.

The second estimation is made atx = s− 1
2

as follows:

(7.26) f1

(
s− 1

2

)
<

2
(
s− 1

2

) 1
2

3s
.

The proof of (7.26) is given as follows. Let

x2 =
s− 1

2

s−
√

s2 −
(
s− 1

2

)2 ,

wherex > 1. Then, we get

4(x2 − 1)2s2 − 4(x4 − x2 + 1)s + (x4 + 1) = 0,

and thus,

s =
x4 − x2 + 1 +

√
(x4 − x2 + 1)2 − (x2 − 1)2(x4 + 1)

2(x2 − 1)2
=

x4 + 1

2(x2 − 1)2
.

This equality can be rewritten as follows:(
s− 1

4

) 1
2

=
x2 + 1

2(x2 − 1)
,

(
s− 1

2

) 1
2

=
x

x2 − 1
.
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Hence, forx > 1, we can write

f1

(
s− 1

2

)
−

2
(
s− 1

2

) 1
2

3s
= 2

(
s− 1

2

)
g(x),

where

g(x) = 2 ln x− x4 − 1

x4 + 1
− 2(x2 − 1)3

3x(x4 + 1)
.

Here, we obtaing′(x) < 0 for x > 1 from the following straightforward calculation.

g′(x) =
2

x
+

4x3(x4 − 1)

(x4 + 1)2
− 4x3

x4 + 1
+

2(5x4 + 1)(x2 − 1)3

3x2(x4 + 1)2
− 4(x2 − 1)2

(x4 + 1)

=
2

3x2(x4 + 1)2

[
3x(x4 + 1)2 − 12x5

+ (5x4 + 1)(x2 − 1)3 − 6x2(x2 − 1)2(x4 + 1)
]

= −2(x2 − 1)(x− 1)3

3x2(x4 + 1)2
(x5 + x3 + x2 + 1).

Thus, sinceg(1) = 0, we haveg(x) < 0 for x > 1. Hence, (7.26) holds.

Step 9 (total estimation of (7.12) fors > 7). Now we present the final estimation. From the as-
sumptions > 7, we havedse > dre ≥ 7. Substitutingn = 5 in (7.15), we define

ε(5) = 1 +
1

2
+

1√
3

+
1

3
+

2√
7

+
1

4

+
2√
13

+
1√
12

+
1

5
+

2√
21

+
2√
19

− 5 ln 3

= −0.1378 . . . .

Sincef1
′ is convex on

[
s√
2
, s
]
, from Lemma 7.2, (7.25), and (7.26), we have

dse−1∑
i=dre

f1
′(i) ≤

∫ s− 1
2

dre− 1
2

f1
′(x)dx(7.27)

<
2
(
s− 1

2

) 1
2

3s
− r ln 3 + r − (ln 3− 2)

(
dre − r − 1

2

)
.

Finally, from (7.12), (7.16), (7.23), and (7.27), we obtain∑
x∈Λ1∩Br

[
1

|x|
− 2

r

]
< ε(5) + (dre − 1) ln 3− (dre − 1)dre

r
+

(dse − dre)
r

+

dse−1∑
i=dre

f1
′(i)

< −(dre − r)2

r
+
dse
r
− 1

2
ln 3− 1 +

2
(
s− 1

2

) 1
2

3s
+ ε(5)

≤ 2√
3s

+
2√
3
− 1

2
ln 3− 1 +

2
(
s− 1

2

) 1
2

3s
+ ε(5)

<
2

7
√

3
+

2√
3
− 1

2
ln 3− 1 +

2(7− 1
2
)

1
2

3 · 7
+ ε(5)

= −0.1246 . . .

< 0.
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This concludes the proof of Theorem 7.1. �

In Gauss’s problem, letG(r) denote the number of triangular lattice points lying truly inside
a circle of radiusr centered at the origin. Then, sinceG(r) = 6

∑
x∈Λ1∩Br

+1, from Theorem
7.1, we obtain the relation between Gauss’s problem and the lattice sum of finite type, given as
follows:

G(r) > 3r
∑

x∈Λ1∩Br

1

|x|
+ 1

(
= 3r

dr2e−1∑
i=1

N ′(i)√
i

+ 1

)
.

If we assume thatG(r) also contains the triangular lattice points that lie just on the circle, then
by redefiningBr = {x : |x| ≤ r}, we obtain the same inequality.

Similarly, we obtain Theorem 7.3. The logic of the proof is mainly same as that of the proof
of Theorem 7.1. In the proof of Theorem 7.3, we omit the proofs for some increasing or convex
properties of functions, which can be proved similar to the manner followed in Theorem 7.1.

Theorem 7.3.Let r >
√

7. Then, for the triangular lattice pointsΛ1 defined by (2.1),

(7.28)
∑

x∈Λ1∩Br

[
1

|x|
− 3

r2
|x|
]

< 0

holds, whereBr = {x : |x| < r}. Moreover, (7.28) is equivalent to (5.3) forn ≥ 4 and

(7.29)
n−1∑
i=1

[
1√
i
− 3

√
i

n

]
N ′(i) < 0

for n > 7 with N ′(n) 6= 0.

Proof. By referring to Theorem 7.1, the proof of the equivalence of (7.28), (5.3), and (7.29) can
be obtained in the same manner as that followed in (7.4), (5.2), and (7.5), and the estimation can
be carried out on each of the regionsA andB. In the following steps, we estimate the inequality
(7.28).

Step 1 (estimation of (7.28) related toA). Let s > 7. For 0 ≤ x ≤ i, let hi(x) be defined by
(7.14) and

li(x) =
2x− i

4
[i2 − ix + x2]

1
2 +

3i2

8
ln

∣∣∣∣2x− i

2
+ [i2 − ix + x2]

1
2

∣∣∣∣.
Then,

li
′(x) = [i2 − ix + x2]

1
2 .

Here,li
′(x) is strictly convex on[0, i], andli

′(x) = li
′(i− x) holds. Hence, we have

i−1∑
j=0

li
′(j) =

1

2

i−1∑
j=0

[
li
′(j) + li

′(j + 1)
]

>

∫ i

0

li
′(x)dx

= li(i)− li(0) =

(
1

2
+

3

8
ln 3

)
i2.
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For1 ≤ n < dre − 1, let ε(n) be defined by (7.15). Then, we obtain the estimation onA:

dre−1∑
i=1

i−1∑
j=0

[
hi

′(j)− 3

r2
li
′(j)

]
(7.30)

=
n∑

i=1

i−1∑
j=0

hi
′(j) +

dre−1∑
i=n+1

i−1∑
j=0

hi
′(j)−

dre−1∑
i=1

i−1∑
j=0

3

r2
li
′(j)

< ε(n) + n ln 3 + (dre − n− 1) ln 3−
dre−1∑
i=1

3

r2

(
1

2
+

3

8
ln 3

)
i2

= ε(n) + (dre − 1) ln 3− 1

4r2

(
1 +

3

4
ln 3

)
(2dre3 − 3dre2 + dre).

Step 2 (estimation of (7.28) related toB for j = bkic, . . . , i− bkic). Suppose thatbkic ≤ i
2
. Since

hi
′ is strictly concave,li

′ is strictly convex, andbkic ≤ i− bkic, we get

(7.31)
i−bkic∑
j=bkic

[
hi

′(j)− 3

r2
li
′(j)

]
< hi

′(bkic) + hi(i− bkic)− hi(bkic)

− 3

r2

(
li
′(bkic) + li(i− bkic)− li(bkic)

)
.

If bkic on the right-hand side of (7.31) is replaced withx, the value of the term on the right-hand
side of (7.31) increases withx. Moreover, again sinceli

′ is strictly convex, for anyt ∈ R with
0 ≤ t ≤ i− 1, we have

li(i− t + 1)− li(i− t) + li(t)− li(t− 1)− [li
′(t− 1) + li

′(t)](7.32)

= 2

∫ t

t−1

li
′(x)dx− [li

′(t− 1) + li
′(t)] < 0.

From (7.31) and (7.32) and the increase in the value of the terms on the right-hand side of (7.31),
we get

i−bkic∑
j=bkic

[
hi

′(j)− 3

r2
li
′(j)

]
< −hi

′(ki − 1) + hi(i− ki + 1)− hi(ki − 1)

− 3

r2

(
−li

′(ki − 1) + li(i− ki + 1)− li(ki − 1)
)
.

Thus, from (7.10), (7.20), (7.21), and the definition ofli andli
′, we obtain

(7.33)
i−bkic∑
j=bkic

[
hi

′(j)− 3

r2
li
′(j)

]

<
4√
3s

+ 2 ln

∣∣∣∣ i

s−
√

s2 − i2

∣∣∣∣− 3
√

s2 − i2

s
− 3i2

s2
ln

∣∣∣∣ i

s−
√

s2 − i2

∣∣∣∣ .
In fact, (7.33) also holds in the case ofbkic > i

2
; this is similar to step 7 of Theorem 7.1.

Next, we consider the properties of the right-hand side of (7.33). For0 ≤ x ≤ s, let

f2(x) = 2x ln

∣∣∣∣ x

s−
√

s2 − x2

∣∣∣∣− x
√

s2 − x2

s
− x3

s2
ln

∣∣∣∣ x

s−
√

s2 − x2

∣∣∣∣ .
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Then,

f2
′(x) = 2 ln

∣∣∣∣ x

s−
√

s2 − x2

∣∣∣∣− 3
√

s2 − x2

s
− 3x2

s2
ln

∣∣∣∣ x

s−
√

s2 − x2

∣∣∣∣ .
It can be verified thatf2 is strictly convex on

[
s√
2
, s
]

andf2
′ is strictly convex on[0, s] and

increasing on
[

s√
2
, s
]
. Sincef2

′(s) = 0, f2
′(x) ≤ 0 also holds on

[
s√
2
, s
]
.

Moreover, we havef2(x) ≤ 2f1(x), wheref1 is defined by (7.24). To obtain the proof of this
inequality, let

y
1
2 =

x

s−
√

s2 − x2
,

wherey ≥ 1 because0 ≤ x ≤ s. Then, we can write

2f1(x)− f2(x) = 2x ln

∣∣∣∣ x

s−
√

s2 − x2

∣∣∣∣− 3x
√

s2 − x2

s
+

x3

s2
ln

∣∣∣∣ x

s−
√

s2 − x2

∣∣∣∣
= ln y − 3

(
y − 1

y + 1

)
+ 2

y

(y + 1)2
ln y

=
(y2 + 4y + 1)2

(y + 1)2

∣∣∣∣ln y − 3(y2 − 1)

(y2 + 4y + 1)2

∣∣∣∣ .
Here, assuming

g(x) = ln x− 3(x2 − 1)

(x2 + 4x + 1)2
,

we get

g′(x) =
(x− 1)4

x(x2 + 4x + 1)2
.

Hence,g is increasing onx ≥ 1 with g(1) = 0. Thus,2f1(x)− f2(x) ≥ 0 for 0 ≤ x ≤ s.
Considering that the functionf2 is strictly convex on

[
s√
2
, s
]

and the interval
[
min{dre −

1
2
, r}, max{dre − 1

2
, r}
]

is contained in
[

s√
2
, s
]
, we have

f2

(
dre − 1

2

)
> f2(r) + f2

′(r)

(
dre − r − 1

2

)
(7.34)

=
5

8
r ln 3− 1

2
r −

(
1

8
ln 3 +

3

2

)(
dre − r − 1

2

)
.

In addition, fromf2(x) ≤ 2f1(x) and (7.26), we have

(7.35) f2

(
s− 1

2

)
<

4
(
s− 1

2

) 1
2

3s
.

Step 3 (total estimation of (7.28) fors ≥ 21). Let s ≥ 21. Sincef2
′ is convex on

[
s√
2
, s
]
, from

Lemma 7.2, (7.34), and (7.35), we have

dse−1∑
i=dre

f2
′(i) ≤

∫ s− 1
2

dre− 1
2

f2
′(x)dx(7.36)

<
4
(
s− 1

2

) 1
2

3s
− 5

8
r ln 3 +

1

2
r +

(
1

8
ln 3 +

3

2

)(
dre − r − 1

2

)
.
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Thus, from (7.11), (7.30), (7.33), and (7.36), fors ≥ 21, we obtain

(7.37)
∑

x∈Λ1∩Br

[
1

|x|
− 3

r2
|x|
]

< g(r) + ε(5) +
2dse

r
+

4
(
s− 1

2

) 1
2

3s
,

where

g(r) = (dre − 1) ln 3− 1

4r2

(
1 +

3

4
ln 3

)
(2dre3 − 3dre2 + dre)− 2dre

r

− 5

8
r ln 3 +

1

2
r +

(
1

8
ln 3 +

3

2

)(
dre − r − 1

2

)
.

Here, by using the substitutionα = dre − r, we have

g(r) =
ln 3

16r2
(−8r2 − 3r − 18dreα2 + 18dreα + 12α3 − 9α2 − 3α)(7.38)

+
1

4r2
(−8r2 − r − 6dreα2 + 4α3 + 5α2 − α)

<
ln 3

16r2
(−8r2 − 2r) +

ln 3

16r2
(−r − 18dreα2 + 18dreα + 12α3 − 9α2 − 3α)

+
1

4r2
(−8r2 − r) +

3 ln 3

16r2
(−6dreα2 − 2dreα + 4α3 + 5α2 − α)

= ln 3

(
−1

2
− 1

8r

)
− 2− 1

4r
+

ln 3

16r2

(
−dre(6α− 1)2 + 24α3 + 6α2 − 5α

)
≤ ln 3

(
−1

2
− 1

8r

)
− 2− 1

4r
+

ln 3

16r2

(
−(6α− 1)2 + 24α3 + 6α2 − 5α

)
= ln 3

(
−1

2
− 1

8r

)
− 2− 1

4r
+

ln 3

16r2
(α− 1)

(
24

(
α− 1

8

)2

+
5

8

)
< ln 3

(
−1

2
− 1

8r

)
− 2− 1

4r
,

where the first inequality holds since−1
4

< −3 ln 3
16

= −0.206 . . . and

6dreα2 + 2dreα− 4α3 − 5α2 + α ≥ 6α2 + 2α− 4α3 − 5α2 + α

= α(4α + 3)(1− α) ≥ 0.

Finally, from (7.37), (7.38), andε(5) = −0.1378 . . ., for s ≥ 21, we obtain∑
x∈Λ1∩Br

[
1

|x|
− 3|x|

r2

]

< − ln 3

(
1

2
+

1

4
√

3s

)
− 2− 1

2
√

3s
+ ε(5) +

4√
3

+
4√
3s

+
4
(
s− 1

2

) 1
2

3s

= −2− 1

2
ln 3 +

4√
3

+
1√
3

(
7

2
− 1

4
ln 3

)
1

s
+ ε(5) +

4
(
s− 1

2

) 1
2

3s

≤ −2− 1

2
ln 3 +

4√
3

+
1√
3

(
7

2
− 1

4
ln 3

)
1

21
+ ε(5) +

4(21− 1
2
)

1
2

3 · 21

= −0.0016 . . .

< 0.
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Step 4 (proof fors < 21). For s < 21, it is straightforward to check the required inequality
(7.29) by carrying out direct calculations. Using the same argument as in step 1 of Theorem 7.1
and considering that

r =

√
3

2
s ≤

√
3

2
21 =

√
330.75,

it is sufficient to verify (7.29) forn ∈ N satisfying7 < n ≤ 331 andN ′(n) 6= 0. Let

v(n) = 10 ·
n−1∑
i=1

[
3
√

i

n
− 1√

i

]
N ′(i).

Table 7.1 shows the approximations of the calculated values ofv(n). From this result, (7.29)
holds for each7 < n ≤ 331 with N ′(n) 6= 0.

This concludes the proof of Theorem 7.3. �

n N ′ v n N ′ v n N ′ v n N ′ v n N ′ v n N ′ v

1 1 — 48 1 1.7 103 2 4.8 163 2 4.8 225 1 7.2 291 2 4.9

3 1 0 49 3 3.0 108 1 2.9 169 3 2.4 228 2 6.1 292 2 6.6

4 1 4.7 52 2 6.3 109 2 3.7 171 2 5.2 229 2 8.0 300 1 3.3

7 2 −0.5 57 2 3.6 111 2 5.3 172 2 7.3 237 2 4.2 301 4 3.8

9 1 5.1 61 2 2.7 112 2 7.9 175 2 7.6 241 2 3.8 304 2 6.3

12 1 0.9 63 2 4.8 117 2 5.9 181 2 5.1 243 1 4.8 307 2 6.5

13 2 3.5 64 1 8.2 121 1 5.2 183 2 6.3 244 2 5.3 309 2 7.4

16 1 4.3 67 2 6.2 124 2 3.8 189 2 4.0 247 4 5.6 313 2 6.9

19 2 1.1 73 2 2.4 127 2 4.2 192 1 4.3 252 2 6.8 316 2 7.1

21 2 4.8 75 1 4.3 129 2 5.6 193 2 4.9 256 1 6.2 324 1 4.0

25 1 3.1 76 2 5.3 133 4 4.9 196 3 5.2 259 4 5.2 325 2 4.4

27 1 2.6 79 2 5.7 139 2 5.5 199 2 6.8 268 2 3.5 327 2 5.3

28 2 4.3 81 1 7.4 144 1 3.8 201 2 7.9 271 2 3.8 331 2 4.9

31 2 5.0 84 2 5.6 147 3 2.6 208 2 4.8 273 4 4.8

36 1 1.7 91 4 1.1 148 2 6.6 211 2 5.1 277 2 6.7

37 2 3.2 93 2 7.0 151 2 6.8 217 4 2.9 279 2 7.6

39 2 5.8 97 2 6.0 156 2 5.2 219 2 6.7 283 2 7.1

43 2 4.4 100 1 6.4 157 2 7.4 223 2 6.2 289 1 5.2

Table 7.1: List of valuesn ∈ N, N ′(n), andv(n) restricted to1 ≤ n ≤ 331 andN ′(n) 6= 0.
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