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A sufficient condition for the energy of a point such that a local minimum of
the energy exists at every triangular lattice point is obtained. The condition is
expressed as a certain type of strong convexity condition of the function which
defines the energy. New results related to Riemann sum of a function with such
the convexity and new inequalities related to sums on triangular lattice points are
also presented.
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1. Introduction

In some scientific or engineering fields, we are sometimes required to give or mea-
sure well-distributed objects in a space. From a purely mathematical point of view,
these requirements are satisfied by solving a question which asks whether the well-
distributed points are given by the minimization of a total energy of arbitrarily dis-
tributed points. In T], assuming the well-distributed points to be arranged as in a
periodic sphere packingl{, pp.25], we have obtained the minimum energy condi-
tion in a one-dimensional case; this condition is given as a certain strong convexity
condition of the function which defines the energy. A natural question arising in this
context is whether the one-dimensional condition can be theoretically extended to
higher dimensional spaces.

In this study, we consider the two-dimensional case by imposing two strong re-
strictions. The first constraint restricts the packing structure to a hexagonal circle
packing. Although general circle packing structures are unkndsyi ], the dens-
est (ideal) circle packing is achieved by the hexagonal circle packifpg[[L1, The-
orem 1.3 (Lagrange (1773), Thue (1910), L. Fejes T6th (1940), Segre and Mahler
(1944))], which is equivalent to the structure with the center of each circle placed
on the triangular lattice points. The second constraint restricts the minimum en-
ergy analyses to the point-based local minimum analysis, which addresses whether a
small perturbation of a point increases the energy of the point. These restrictions are
motivated by a suggestion about the study of local minima for optimal configurations
[5, F17].

Hence, we investigate the condition for the energy of a point such that each trian-
gular lattice point has a locally optimal configuration with respect to the energy.
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2. Definition

Definition 2.1. For a point setX C R? and f : (0,c0) — R, let the energy of a
pointx € X be

J(X,z, f)= > fllz—yl).

yeX\{z}

. . A Local Mini E
where|| - || is the Euclidean norm. et
For ease of analysis, we use the above-mentioned definition for defining the en- A
ergy that is different from the energy in the one-dimensional caZkeHpwever, the vol. 9. 1ss. 3, art. 66, 2008

obtained results in this study are also valid for energies having the same form as that
of the energy in the one-dimensional case wheis a finite set and'(0) is defined.

Title Page
Definition 2.2. Letd > 0, v, = (%, %) andv, = (%, —£> Let one-sixth of the Contents
triangular lattice points be given by pp »
(2.1) Ay = {d(ivl +jve) i1 €N j = 1 — 1} < >
Let one-sixth of equally spaced points on equally spaced concentric circles be given Page 4 of 52
by Go Back
(2.2) Qg = {(idcos 75, idsin ;) : 7y = 7/3- (1= j/i),i € N,j =0,...,i—1}. Full Screen
In addition, let the triangular lattice point&’ and equally spaced points on equally Close
spaced concentric circlgs; be the unions of the rotations af;, and(2,, respectively,
around the origin by angle§; for j = 0,...,5. journal of inequalities
_ . . o in pure and applied
Figurel(a) and (b) illustrated ; and(,, respectively. From the definition dof;, mathematics

it can be easily checked thaf, = {d(ivy + jvq) : 4,5 € Z} \ {0}. issn: 1443-575k
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Figure 1: lllustration of two point sets along with related parametersA gagnd (b)2,.
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3. Analytical Condition for Local Minimum Energy

In this section, we derive the analytical condition for the enefgguch that it has

a local minimum atv when X consists of equally spaced points on each of the

concentric circles with arbitrary radii centeredvat

Proposition 3.1. Letn € N. Fori =1,...,n, letk; € Nwith k; > 3, 6; € [0, 27),
and0 <, <1l.Fori=1,...,nandj =0,...,k; — 1, letr,; = 27j/k; + 6, and
vectorsu,; = (r; cos 735, 7;8in 7;;). Letv € R? and a point sefX’ C R? satisfying

(3.1) Xn{yeR:|y| <1} = J{u;:j=0,.. k—1}.

i=1
Let f : (0,00) — R belong to the clas§€”? and f(z) = 0 onz > 1. If
c2 X[+ FE =Sk [ £ s,
yeX i=1 !
then the energy ((v + X) U {x},x, f) has a local minimum at = v.

Proof. We analyze the derivative ofand the Hessian matrix of the derivative. With-
out loss of generality, we may assume= 0 and#; = 0 for each: because these
restrictions do not influence the value.f6f Then, the energy of a poistis given by

n ki—1
JXU{xhxf)=> flx=y)=>_ > flx—uyl.
yeX i=1 j=0
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First, we consideV J. Since the derivative dik| with respect tox is = > We get
n ki—1 .
VJ = i 2T
; ]z; Flhe—ush- |x — ujj]

Note that at the point = 0, we havelx — u;;| = |u;;| = r;. Here, form,p € N
with m < p and forn € R with cosn # 1, a general exponential sum formula holds

A Local Minimum Energy

X Condition
n (C: Kanya Ishizaka
p—1 p—1 vol. 9, iss. 3, art. 66, 2008
(3.3) Z (cosmn + isinmn) = Z emn
m=0 m=0
; Title P
_1—e®" 11— (cospn+isinpn) et
 1—em 1—(cosn+ising) Contents
(In (3.9), i denotes the imaginary unit.) Substituting= j, p = k;, andn = 2x /k; « >
in (3.3, we obtamz ' u;; = 0 for eachi. Hence V.J = 0 holds atx = 0. Thus, < >
0 is a stationary pomt
Next, we analyze the Hessian matrix Gf/ to determine whethef has a local P 1 A
minimum atx = 0. Using the notations = (z;, z2) andu;; = (u;;1, u52), we get Go Back
, 9 Full Screen
Pl — S x =] (@m — uijm)
&cm Z Z [ (I = uy]) = x — | x — uy[? Close
=1 5=0
n k_l . . g
L (x — wy; journal of inequalities
+ Z Z H, in pure and applied
i=1 j=0 * mathematics
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wherem = 1,2 and

n k;j—1
82J ZZ // X—u ’) (lX uij|) _(Il _uij1)<x2_uij2)
0x2011 al’laﬂfg 9 |X — uzj’ ‘X —w .|2 ’
=1 j=0 1J
Note thatcosn # 1 from the assumptiok; > 3. Hence, by substituting. = j, p =
/{Zi, and77 = 471'/]@ in (33), we obtain A Local Minimum Energy
Condition
. Kanya Ishizaka
Z CO8 275 = Z sin 27;; = 0 vol. 9, iss. 3, art. 66, 2008
for eachi. Hence, using double-angle formulas, fot 1, ..., n, we have .
Title Page
k; ;2 iy
Z u@]l _ Z UUQ _ hali : Z Uij1 Uiy = 0. Contents
J=0 <« >
From these equalities, at= 0, we haveé?:c—‘]2 = g;é, 2 = 2 =, and p N
n_ ki1 Page 8 of 52
-y U B i
11]0|: :| i=1 j=0 Go Back
i "(7r; Full Screen
e Z_ |:f//<,r,i) + M:| .
i=1 2 Ti Close
Hence, atx = 0, both the discriminant and the ter%fl—"2 are positive from the journal of inequalities
assumption. Thus/ has a local minimum at = 0. O in pure and applied
mathematics

We can apply Propositiof.1to A’ and(2; because each set can satisfy the form

(3.1) for fixed k; = 6. Furthermore, we can usg; and(2, for the estimations of tssn MAITSTEE
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(3.2) because the values d¢i.Q) for X = A} and.X = 2} are 6 times those obtained
for X = Ay andX = g, respectively. In particular, substituting= d=! in (2.2),
on €24, we obtain

e 3 [f"uyw +1 gy")} - i [f” () w5f (‘)]

yEQy i=1

S ()]

Thus, the local minimum energy condition € is simplified into the positivity of
the sum of a single-variable function. Since it might be difficult to directly analyze
(3.2) with respect ta\ ;, we would first analyze the right-hand side 8f4) for €2,.
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4. Riemann Sum of a Function with a Certain Strong Convexity

In [7], for the minimum energy analysis in a one-dimensional case, we have proved a
variant of a result obtained by Bennett and JamedgnHere, in order to investigate

a sufficient condition such that the expressiénl may be greater thah we again
adopt the same approach.

For a functionf on (0, 1], let S,,(f) be the upper Riemann sum for the integral A Local Minimum Energy
fol f resulting from division of0, 1] into » equal subintervals: Condition
Kanya Ishizaka
1 & 1 vol. 9, iss. 3, art. 66, 2008
Sa(f)=— — .
=231

Theorem 3A in ] states that iff is increasing and either convex or concave, then Title Page

S.(f) decreases with. The same theorem has been independently proved by Kuang Contents
[9]. Further related results have been presented.jr8][ Here, we show tha$,,( f)

also decreases ffis increasing(f’(:z:%)/x%)2 is convex, andim, ., f'(z) = 0. « »
Before presenting the result, we prove the following lemma. < 4
Lemma 4.1. Leta < b be real numbers and : [a,b] — R. Letp > 1 be areal Page 10 of 52
number. Iff > 0, f is decreasing, and(z)? is convex, then
Go Back
(4.1) ! /bf( Ydx < L fla)+ L f(b) Full Screen
. X )ax —QJ\a — .
b—a J, T p+1 p+1
, . . . . - cl
Equality holds iff any one of the following conditions is satisfied: ose
(@) p = 1 and f is linear on[a, b]; j:ournol of inequallities
in pure and applied
(b) f is constant ona, b]; and mathematics

issn: 1443-575k

(c) f(x)Pislinear onfa,b] and f(b) = 0.
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Proof. We show that in fact a stronger inequality

(4.2) Flza+ (1 —2)b) < v f(a) + (1 - :1:) ()

holds, wheré) < = < 1. By integrating {.2) overz € [0, 1], we can obtain4.1).

If p = 1, then the result follows from the convexity ¢f

We assume that > 1. By using the substitution(x) = f(za + (1 — z)b), itis
sufficient to show

(4.3) g(x) < (1 — x%) g(0) + v g(1)

for g : [0,1] — R, whereg > 0 is increasing ang(z)" is convex.
First, consider the case whef0) = 0. Sinceg(z)? is convex,g(z)? < zg(1)?,
thus,

(4.4) g(z) < zvg(1)

on [0, 1]. Equality holds iffg(x)? is linear; this case corresponds to case (c).

Next, suppose thaf(0) = ¢ > 0. If we can show thalg(z) — ¢J? is convex,
then ¢.3) follows from substitutingg(x) — ¢ for g(z) in (4.4). Let h(z) = g(z)?
andk(z) = [g(z) — ¢JP. Since a convex function is differentiable at all but at most
countably many points, we may rely on the differentiability:pnd thereforg and
k. Then,h'(x) = pg(z)P~'¢'(x) and

o) = i) = 19/ e) =) (1 C5)

Both #/(z) and(1 — ¢/g(x))P~! are positive and increasing. Hené§z) is increas-
ing, as required. Equality in}(3) holds iff

g(@)" = [(1 = 2'/7)g(0) + 2'/Pg(1)]7,
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which gives

[9(2)") = (9(1) = 9(0)) [9(1) — g(0) + =~ Pg(0)]"" .

Here, it follows thaty(0) = ¢(1) becausgg(x)?]’ cannot be increasing for > 1 if
g(0) < ¢g(1). This equality condition corresponds to the condition in case (b)]

Theorem 4.2.Let f : (0, 1] — R be differentiable. Iff is increasing,(f’(x%)/95%)2
is convex, andim,_., f’(z) = 0, thensS,,(f) decreases with.

Proof. From the assumptiory,” > 0 holds andf’(x%)/x% is decreasing. Without
loss of generality, we may assume tifat) = 0 and extendf = f' = 0onz > 1.
For a real number > 1, let

L] .
1 )
st=321(5)
We show thatS,’(f) < 0 for » > 1, whereS,’(f) is the differential coefficient of

S,.(f) with respect to. The existence of,’( f) is confirmed by the differentiability
of fon(0,00)andf = f' = 0onx > 1. In fact, we have

S/ = H HOEHO
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Thus, by applyingf’(z2) /2> to f in Lemma4.1with p = 2, for0 < a < b, we
obtain

P 2 f'(az) 1 f'(b2)
4.5 "(x)dr < = - —.
(4:5) b—a g PO Ty
SUbStitUtingl = (%)2 andb = (%1)2 in (45), we get A Local Minimum Energy
Condition
j —I— 1 j 2 2] —|— 1 j 1 2 ] —|— 1 — 1 ] —|— 1 Kanya Ishizaka
f A - e P . .
r r 67“ J r 67" J + 1 r vol. 9, iss. 3, art. 66, 2008
Summing overj = i,..., |r]| and usingf(1) = 0, we obtain
Title Page
(4 6) f Z Z f ‘ i f 2Z - 1fl 7’ Contents
' r 67“ r i r)’
44 44
Thus, from {.6) and f’ > 0, we obtain < >
] ; ; ; ] . ] . Page 13 of 52
/ j—
03 () (0 -% ()2 ()
1 rJ . 1 lr] |r] 1 . Full Screen
i (]
25 (1) e e i (7)
=1 i=1 j=i
1 lr] . ) journal of inequalities
—— Z ( ) in pure and applied
6r < mathematics
0 issn: 1443-575k
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Hence,S,'(f) < 0 holds. ThusS,.(f) decreases with > 1.

From Lemmat. 1, equality in ¢.5) holds iff eitherf’ = 0 on[a, b] or (' (I%)/x%)z
is linear on[a, b] with f'(b2) = 0. Thus, from ¢.6) and ¢.7), S,'(f) = 0 holds iff
eitherf’ =0on(2,1] or (f’(x%)/x%)2 is linear on[%, 2] with f’(2) = 0, indicating
that f' = 0 on[2,1]. Here, the latter condition witlfi(X) # 0 can hold only for one
f(ixe? ; Hence, for any;, > 1, S,(f) strictly decreases with > r; iff f' > 0 (El

0,-=).

Therefore,S, (f) decreases with if f is increasing and either
(i) fis convex or concave (froml] Theorem 3A]), or
(i) (f'(x2)/x2)”is convex andim, ., f'(x) = 0 (from Theorem.2).
Here, conditions (i) and (ii) are independent of each other, which can be observed
in the following examples. Let > 0.
Example4.1 Let f(z) = —(1 — x)? and f'(z) = p(1 — x)?~*. Then, f is con-
vex if 0 < p < 1 and concave ip > 1. Further, (f’(a:%)/:zc%)2 is convex and
lim,_; f'(z) =0if p > 1.5. Further,f’(x%)/x% is convex ifp > 2.
Example4.2 Let f(z) = —(1—2?)? andf’(x) = 2pz(1—2?)P~1. Then,f is convex
if 0 < p < 1 and neither convex nor concavepif> 1. Further,(f’(x%)/x%)2 is
convex andim,_; f'(x) = 0if p > 1.5. Further,f'(z2) /2~ is convex ifp > 2.

Theorem 4.3.Let f : (0,1] — R. If f(x%)/x% is decreasing and convex and
f(1) =0, then

4.9 / ' fla)de < %Zf (1) < [ s
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Proof. Leta < b. The Hermite-Hadamard inequality for a convex functfogives

f<a;b) - bia/abf(f)dxﬁw'

By applying the convexity of () /2 to this inequality, we obtain
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(241 [ 1 20i+1)—1,[/i+1 4 »
/ f(x)dx < — — =)+ —- ( _ ) f _

i i n 4n 1+ 1 n < >
Summing overi = j,...,n — 1 and usingf > 0, foreachj = 1,...,n — 1, we Page 15 of 52
obtain o Back

1 n . . .
1 1 1 27—-1 J 1 2n—-1
410 der < = [ [ I 1 Full Screen
(4.10) /jf(x)x_nzjf(n) = f(n) Lo
! - Close
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50()

Hence, the left-hand inequality i @) follows from (4.10 whenj = 1. Next, we
extendf = 0 onz > 1, which yields the convexity of (x7) /2 on (0, cc). Then,
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substitutings = 25 andb = “£* on the left-hand inequality in%(9), we get
9 . N =1 iiﬂ‘ L
2O (E) s L
n n n ’27? T2

Summing ovet = 1, ..., n, we obtain the right-hand inequality i4.¢).

In (4.10), equalities hold ifff’ (x2) /=2 is linear on[Z, 1] andf (1) = 0, that s,
f=0o0n[L 1]. Hence, equality on the left-hand inequality ind) holds iff f = 0
o] [%, 1}. Similarly, equality on the right-hand inequality in.¢) holds iff f = 0 on
(0, 1]. O
If fis decreasing ofp, 1] and f(1) = 0, then ¢.8) andfolf < Lyt i(d)
are trivial. However, when we use a functignon [0, 1] in Theorem4.3, such an
additional upper estimation no longer holds. Froil(), if a stronger condition
that f/ (x%)/x% is convex is assumed in Theoren?, then in ¢.7),

. 7] .
7 1 (]
f(;) +;j§f (;) >0

holds for each.
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5. Local Minimum Energy Condition

We can obtain the local minimum energy condition gy from the result obtained
in the previous section.

Proposition 5.1. Let0 < d < 1 andQ} be defined by Definitioi.2. Letv € R?
and a point sefX c R? satisfying

{xeX x| <1}={xeQ):|x| <1}

Let f : (0,00) — R belong to the clas€? with f = 0onz > 1 and f” # 0 on
[d, 1]. If f is convex and either

(i) f’is concave or
@iy (f” (x%)/ac%)2 is convex and either is strictly convex h2d] or f(2d) # 0,
then the energy ((v + X) U {x}, x, f) has a local minimum at = v.

Proof. Let r = d~!. As stated after Propositiof. 1, it is sufficient to show that
(3.4) is greater tha. In case (i),f/” is decreasing. Moreover, there is an interval
contained in[d, 1] in which f” is strictly decreasing becaugé # 0 on [d, 1] and
f"(1) =0. Thus,

LTJ / Z Z " Z U'J ! n 1 LTJ " .7
Z[f (;)+;f (;)}Z; —/ f(g:)dx+;;f (;) > 0.

i=1
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It is expected that a result similar to that of Propositioh can be obtained for
the triangular lattice pointd} being similar in structure té, thereby leading to

the following theorem. In the proof, two inequalities related to the triangular lattice

points are required. The proofs of these inequalities are given in Sectibnthe
statement of Theorem 2, a specific value of is given. The meaning of the valyge
is explained in the proof of the theorem.

Theorem 5.2.Let0 < d < 1 and A} be defined by Definitiof.2. Letv € R? and
a point setX C R? satisfying{x € X : |x| < 1} = {x € A} : |x| < 1}. Let
f:(0,00) — R belong to the clas€? with f = 0onz > 1 and f” # 0 on|[d, 1]. If
f is convex and either

(i) f’is concave or
(i) (f"(x2)/x2)" is convex fop = 2 (47 + 27v/3) = 17.048. . ,
then the energy ((v + X) U {x}, x, f) has a local minimum at = v.

Proof. As stated in Sectiofi, we can use the one-sixth version agtinstead of the
triangular lattice points set’;. Thus, from Propositios.1, it is sufficient to show
that

(5.1) i:: {f”(ai) + f/(ai)} >0,

Q;

where the sequencf;} is obtained by sorting the valug| for all y € Ay in
increasing order. More precisely, eachis defined by

a; =max{|y| 1y € Ag, #{z € Ay : |z| < |y|} < i}.

The first 10 values of,; ared, v/3d, 2d, \/7d,/7d, 3d,/12d, v/13d, v/13d and4d;
these values are illustrated in Figuréen Section?.
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First, we summarize the inequalities that are required for the proof. From Theo-
rem7.1, which will be stated later in Section for all n € N,

n

(5.2) Yo I <o,

a.
i=1 v

In addition, from Theoreni.3, for n € N with n > 4,

(5.3) Z ‘”’:1 < Z 3a;.

=1 =1
Sincea,, increases wit, for all n € N and any real number > 0, we have

Zn: P .an+12+ 1 'an2 <Xn:an+12
im1 p+1 Qa; p—i—l a; - a; ’

i=1

Thus, by substituting = 11(47 + 274/3) and from 6.9), for all » € N, we obtain

n

P an-i—l
5.4 .
o4 ;[p+1 a; +p+1 @zl ZS%

where equality holds ifi,. = 3. Note that §.4) strictly holds for any (largep > 0
whenn # 3. The specific value op is the upper bound gf for satisfying ©.4)
whenn = 3.

Next, we prove %.1) for cases of (i) and (ii) by usings(2) and €.4), respectively.
From the assumption, suppose tlfiat f' = f” =0onz > 1andf” #Z 0onJay, 1].

Case (i) Let /' be concave. Thery,” is decreasing. Thus, for< a < b,

b
/ f"(@)dz < (b— a)f"(a).
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Substitutingz = a; andb = a;;, and summing ovej = ¢,¢ + 1, ..., we obtain

[e.9]

(5.5) fllai) = = (a1 — a;) f"(a;).

j=i

Thus, from £.2) and £.5) and considering that” =
and f” is decreasing, we obtain

Oonxz > 1, f” Z00n][ay, 1],

>+ H9) 2 3 ey - X = )]
- Z Z alﬂ F f//<ai+1)>]

'MS

26" (@) = 2 ("(@) = f"(ai1))] = 0.

1

(2

Case (i) Letp = 2 (47 +27V/3) and(f" (22) /x2)" be convex. Thenf” (2) /x>
is decreasing sincg’ > 0 andf”(1) = 0. Thus, in the same way as in the derivation
of (4.5), from Lemma4.1, for 0 < a < b, we obtain

L ’”’fu() p fMex) 1 ()
b—a 2(p+1) a3 2(p+1) bs

Substitutings = a;* andb = a;,1* and summing ovef =i,i+ 1,..., we have
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o

/ p aj 12_aj2 "
(6.6) fla) 2~y > (@)

j=i J

1 o0

2
2 :aj-i-l — Q5" Ly
— a
2(]9 + ]-) j=t f ( ]+1)

@j+1

Thus, from £.4) and 6.6) and considering that” = 0 onz > 1, f” # 0 on a4, 1],

and f”(x)/x is decreasing, we obtain

o0

2+ 1)y [f”(az-) v M]

; a;
=1
o 2 "
a +1 —aj f (aj)
(p+1)f"(a;) —p )y :
Z Z .
_ f: j1” = aj2 ) ["(aj41)
=i Q; Aj41
= 3(p+ 1)f”(a2)
i=1
i 2 i 2 " "
Ait1 a; f (@i) / (%’H))
( ; CLj ; Gj) a; a1

a; Q41

>3(p+1) 'OO [f”(ai) _ <i:aj) . <f"(ai) 3 f"(ai+1)>] _

0.
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Here, the second inequality certainly holds strictly becausg. i), (strict inequality
holds forn # 3, andf”(ay)/a; — f"(az)/az > 0 holds fromf # 0 on[ay,1]. O

In cases (i) and (ii), the assumption thjats convex can be omitted because the
other conditions yield” > 0. Nevertheless, it is natural to assume this condition in
case (ii).

Now, we address the (second) question presented in the introduction.

Remarkl. Let us consider the relation between Theofefrand the one-dimensional
result [7/]. The one-dimensional result was as follows. Consider a finite point set
X C R/Z with the Euclidean distandg- || defined by

|z —y|| = min{|lx —y +¢|: e =—1,0,1}

and the energy ok defined by the average value ||z — y||) for z,y € X, where
f:10,1/2] — R. If fis convex, then among alh-point sets for fixedn > 1, the
energy is (globally) minimized by an equally spaceepoint set. Additionally, iff
is convex,f’(a:%) IS concave, andim%% f'(x) = 0, then among alin-point sets
for 1 < m < n, the energy is minimized by an equally spacepoint set.

It is easy to verify that the condition in Theoren? is stronger than these one-

dimensional conditions. Thus, in the two-dimensional case, even for the existence of

a local minimum, the functiorf should have a stronger convexity than the convexity
which is defined by these one-dimensional conditions.

As stated in Sectiof, in the two-dimensional case, by defining an affine transfor-
mationg : R? — R? and the periodic spaggR?/Z?) with the Euclidean distance
|| - || defined by

[x =yl =min{|[x —y +e1-9(1,0) +ez-g(0,1)] : e1,e2 = —1,0, 1},
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we can also define the energy of a point as

1.2 f) = 5 30 £ (I = ).

yeX

whereX is a point set ing(R?/Z?) and| X | is the cardinality ofX. Then, Theorem
5.2is also valid for the energy only if | X| is finite andf (0) is defined.
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6. Examples

Remark2. If p > 0, f(x) > 0, and f(x)? is convex, thenf(z)? is convex for all
q > p. This is because fay(z) = 29/?, g is increasing and convex d, co). Thus,

9(f(az +by)?) < glaf(x)” +bf(y)") < ag(f(x)") +bg(f(y)")
holds fora,b € [0, 1] with a 4+ b = 1.
Example6.L Forn € N, letw,(r) = n2r"/I'(% + 1) denote the volume of an
n-dimensional ball of radius. LetV,,(x) be the volume of the cross region of two
identical n-dimensional balls of unit diameter with their centers at distarizem
each other.

% 1 9 7TnT_1 1 2L*1
Vn(r) =2 . Wh—1 Z_l_x dr = m (1—33') 2 dux.
3 2 "

By omitting the constant coefficient &f, (), we definey, (r) = [ (1—x2)"~D/?dx
for 0 < r < 1 and further extend,,(r) = 0 for » > 1. Then, eachy, (z) on |0, 1] for
n=1,...,5Is given by

gi(x)=1—ux,
I 1 . 1 I 1
go(z) = 5 o8 T — Zsm(Q cos ) = 5 o8 T — ix\/l — 22,
2 1
g3(z) = 372 + 3953,
(x) = 5 cos 'z — ! sin(2cos™ ' x) + ! sin(4 cos™ ! 1)
Pt =R i 32
3 1 1
=3 cos 'z — 5:5\/1 — 2+ gx(QxQ — V1 —a?,
8 2 1
gs(z) = — —x + Za® — —2°
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Table 1: Convexities with respect fa,” and f,.,” (* results obtained from numerical analysis).

fnp/(x) fnp/(x%) (fnp//(x%)/x%)n'mg (fnp”(x%)/x%)z fnp//(l’%)/xé
IS concave| IS concave IS convex IS convex IS convex
n=1 p>2 p>2 p > 2.06* p>25 p>3
n=2|p>244* | p>% p > 1.38* p>32 p>2
n=3 | p>257* p>1 p>1.03* p>1.25 p>1.5 A Local Minimum Energy
n=4|p>264* p>1 p>1 p>1 p>1.2 Condition
n=>5|p> 268" p>1 p>1 p>1 p>1 Kanya Ishizaka

vol. 9, iss. 3, art. 66, 2008

Forp > 0, let f,,,(x) = g,(x)P. Then,f,,(z) is convex for alln > 1 andp > 0.

Table1 shows the conditions required fpito satisfy the convexities in Proposi- Title Page
tion 5.1 and Theoren®.2 with respect tof,,,” and f,,,” under the restrictiory,,, =
fop = [y =00nz =1forn =1,...,5. Inthe table, the values indicated with CEniEnE
an asterisk are approximation values obtained from the numerical analysis, while the <« D
others are exact values. In this example, among cases (i) and (ii) in Propésition
or Theoremb.2, we may confirm that case (ii) is more valid than the case (i) when < >
n > 2. In particular, case (ii) is valid for a}p > 1 if n > 4. In the case o, = 3 Page 25 of 52
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7. Inequalities Related to Sums on Triangular Lattice Points

In the rest of the paper, we focus on a variation of lattice point problems to prove
(5.2) and 6.9). In lattice point theory, the well-known Gauss’ (lattice point or circle)
problem is the problem of counting up the number of square lattice points which are
inside a circle of radius centered at the origin6[ F1] [8]. Meanwhile, the lattice
sum is the problem of determining the sums of a variety of quantities on lattice points
[2, Chap. 9]. Although itis not clearly defined, the lattice sum usually targets infinite
sums. Our problem may occupy an intermediate position between the two problems
because we will investigate a relation between certain lattice sums of finite type and
the number of triangular lattice points which are inside a circle.

Hereafter, the interval of the lattice is fixed @t= 1 because the inequalities
(5.2) and £.3) are not influenced byl. These inequalities can be analyzed by an
appropriate approximation af on A; as follows.

Remark3. Let {a;} be a sequence of the valuegoffor v € A; sorted in increasing
order. To obtain an approximation féu, }, let us consider the case that there fare
triangular lattice points in a circle of radius> 1 centered at the origin. Then, the
area of the circlegr2, can be approximated by the total area edentical equilateral
triangles of the area/§/2. Here, ifr = a;, we havek = 6i. Thus, we have; ~ b;,
where

[N

Next, we considefb;}. Sincez 2 is decreasing,

1 i+1 1 1
(i+1)2 i a2 iz

Considering that:—2 is decreasing, and from the left-hand inequality inl), we
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have

1 1 2
—_ < — 1+f

7.2 - d
(7.2) iz (i4+1)2 a2

) 1 1 2 2
<24 1)2 — 22 — -+ =
(t+1)z a2
2 2(i — 1)
(i+1)2 is

Likewise, from the right-hand inequality i (1), we have
2(2—1
(i-1)_3

.1
12 ]

(7.3) 2(i +1)7 —

N|=

Thus, summing each of (2) and (7.3) multiplied by: overi = 1,...,n, we obtain

b "L 3,
- op < 3bi .
bi i—1 bn+1

=1
Hence, if we use the sequengg} instead of the sequende; }, then 6.2) and 6.3
holds on the basis of the local inequalities (neariayobtained from the concavity
of z3.
For convenience, we also prepare the representation of the triangular lattice points

by means of number theory4,[pp.110]. LetN (n) denote the number of triangular
lattice points placed at distanggn from the origin. LetN’'(n) = N(n)/6. Then,
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N’(n) is specified by the following values:

N'(3%) = for a >0,

N'(p*)=a+1 for p=1 (mod 3),

N'(p*) =0 for p=2 (mod 3), aodd
N'(p*) =1 for p=2 (mod 3), aeven

wherep # 3 is prime. That s, by factorizing the natural numlento prime factors
by
n=3"p" g,

wherepy,...,pr =1 (mod 3) andgq,...,q =2 (mod 3), we have
N'(n) = N'(3°) - N'(p™) - - N'(p") - N'(¢x**) - - N'(ar™).
For example N’(27) = N'(3%) =1, N'(39) = N'(3') - N’(13') = 2, andN’(49) =

N'(7%) = 3. Figure2 shows the distances of pointsAq U {0} from the origin for
1 < 9.

Theorem 7.1.Letr > 1. Then, for the triangular lattice point§; defined byZ.1),

(7.4) > [Iix| - g] <0

xEA1NB;,

holds, whereB, = {x : |x| < r}. Moreover, {.4) is equivalent to%.2) and

(7.5) : [ \H N'(i) < 0

for n > 1 with N'(n) # 0.
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and

7.7) (r =[] +1)f (#) < /H f(@)de.

N

Next, again from the convexity gf and0 < T[}Lﬁz < 1, we have

2(r — [r] + 1) r+[r] —2 [r] —r
frl=1 = r—[r|+2 f( 2 >+r—(ﬂ—|—2f<r)'

Thus, considering < # <landf <0, we have

r+[r]—2

@8 o<~ g0 < o= s (U2 -

Then, the required inequality follows by summing tupd) and (/.7) side by side and
using (7.9). Whenf # 0, equality holds iffr € N andf is linear. O

The proof of Theoren?.1 comprises 9 steps. As illustrated in Figu@), divid-
ing a circular sector at distancdrom the origin into two regions4 (an equilateral
triangle) andB (a circular segment), we shall prové4) on A U B. By referring to
the observations in Remagkour approach to the proof is based on simple convexity
and monotonicity. The point is to use a mutual elimination between the two terms
in (7.4) on B. Figure3(b) illustrates points related t8, which will be explained in
step 2 of the proof.

Proof of TheorenY. 1. Step 1 (equivalence of (4),(5.2), and (7.5)). Suppose that{?)
is satisfied. For > 1, choosen such that,,,; > r > a,. Then, considering that
#{A; N B,} = n, we obtain

2 2 2n 1 1
S annn - B

a a
xeA1NB, n+1 n xeA1NB,
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Figure 3: lllustration of (a) regiond and B and constants ands, and (b) points related tB

A Local Minimum Energy
Condition

Kanya Ishizaka

vol. 9, iss. 3, art. 66, 2008

Title Page
which gives {.4). When (7.4) holds, cIearIyY.S) holds. Suppose that () is sat- Contents
isfied. For eacm € N, letm = a,,,% and select the maximur < n such that <« »
ar < a,41. Then, from the definition of; and considering that_", 1 N'(i) = k,
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ivi + jv, for somei e Nandj € {0,...,i — 1}, and|x| = [i2 — ij + j%]z. Let

2
7.9 5= —=r.
(7.9) 7
Henceforth, for convenience, we will often usas well as". Fori € NN [r, s], let
) — 3 2 _ 52
(7.10) hy = - és DY

Let
A={@,5):i=1,...,[r]—=1,j=0,...,i— 1},
B={@,j):i=r],....[s] = 1,5 = |ki],...,i— |k}
Then, we have
(7.11) {(i,j) i €N,j=0,...,i—1,[i2—ij+j%? <r} = AUB.

The proof of {.11) is given as follows. I € {1,..., [r]—1}, then[i>—ij+j%z < r
holds for allj € {0,...,i—1}. Ifi € {[r],...,[s] — 1}, then[i? —ij + j%|z <r
is equivalent to

ki—lzi_ 3252—2'2) <j<i+ 3;32—2'2)

andk; — 1 < |k;] <j <i—|ki] =1—k + 1. Thus, (.17) holds. Figure3(b)
illustrates the relationship betweépand the curved boundary &f.

—i—k+1
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Hence, from {.11), it follows that

w2 3 [5-3]- 3 Z[ i+ _2]

xEALNB, i=1 j=0
[s]—1i—|k:]

=

i=[r] j=|ki]

Step 3 (proof fox < 7). In the case ok < 7, B is equal to an empty set. Thus,
we treat this case independently. From the argument in step 1, considering that

= fs < f? V/36.75, it is sufficient to verify (/.5 for cases whem has the
foIIowmg values

(7.13) 3,4,7,9,12,13,16, 19,21, 25, 27, 28, 31, 36, and37.

For example, when = 21, we have

20
1 2
2 NG
Z{f Jo7] 0
_1+1+1+1+2 1 2 1 2 2
Tt A T U e Ve v
:4.7188...—5.2372...:—0.52...<O.

Similarly, omitting detailed calculations, by substituting the values/ing) in the
variablen on the left-hand side of/(5), we obtain

—0.15, —0.42, —0.19, —0.50, —0.29, —0.42, —0.49, —0.32, —0.51,
—0.44,-0.41,-0.49, —0.54, —0.38, and — 0.45, respectively
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Step 4 (estimation of’(12) related toA). Henceforth, assume that> 7. For0 <

x <1, let

20 —1
2

=

(7.14) hi(x) = In + [i* — iz + 272 .

Then, .
hzl(ﬂf) = .
[i2 — iz + 22|
Here,h,(x) is strictly concave o0, i], andh;/(x) = h;/(i — x) holds. Hence, we
have

[SIE

(7.15) e(n) = hi'(j) —nln3.

i=1 j=0
Then, as an estimation of (L2 related toA, we obtain

[T]1-1 i—1

U S XO R
T n i—1 [r]—-1 -1 [r]—1 -1 9
D IIOED DD WAUED B
=1 j=0 i=n+1 j=0 =1 j=0
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<e(n)+nn3+([r]—n—1)In3 — (r] = Dfr]

r

— () + (r] - ma - =D

wheren is an arbitrary natural number with< n < [r] — 1. Thus, in (.16, the
negative value:(n) can be regarded as an adjustment value. Sif(egdecreases
with n, a largern gives a better upper estimation in.{6. However, from [,
Theorem 3A], we can find thaz hi'(j) increases tdn 3 with i. Thus,s(n) —

e(n + 1) decreases t6 with n. Thus even a small may be rather effective. In
the final estimation in step 9, we shall use the fixed valé¢ as the largest allowed
value fors > 7 obtained from

V3 V3
v e ] e

Step 5 (estimation of’(12) related toB for j = | k;|,...,i — |k;] when|k;| < 2).
This is the key part of the proof. Suppose théat| g % Sinceh;/(z) is strictly con-
cave onf0, 4], from h;/(z) = h'(i — x) and | k;] <i — |k;|, we get

gty 2 2
717 3 |0) 2] < Ul 4t~ Ll =l ]) - 2216 + )

r
J=|ki]

On replacing| ;| with z, the value of the terms on the right-hand side ofL()
increases withe because by using > 1, [i*? — iz + x ]é < ‘/732 < ‘/737: and
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2 — 1 < x < s, Its derivative satisfies
4 20 —1 2 4
h'(x) = 2h(2) + = =~ 4=
r 202 —iz+ 2?2 [2—dx+a?z T

N s( 2 )3 44
2 \V3r V3r
4

= W(_Q —3V3r +9r) > 0.

Sinceh;’ is strictly concave, for any ¢ Rwith 0 < ¢t < i — 1, we have
(7.18)  hi(i —t+1) —hi(i —t) + hi(t) — hi(t — 1) — [h'(t — 1) + hi' ()]

_ Q/t hi'()dx — [hi'(t — 1) + hi'(t)] > 0.

-1
From (7.17), (7.19, and the increase in the value of the terms on the right-hand side
of (7.17), we have

i—| ki) 9
USSR

r
J=lki]
2
< =hi'(ki = 1) + hi(i =k + 1) = hi(ki — 1) — g(i — 2k; + 1).
T

From (7.10), we have

(7.20) [ —i(k;— 1)+ (ki — D)2 = [ —i(i — ki + 1) + (i — ki + 1)%]2

| S

r= s
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and

(7.21) 2(k; 1)—i7_2(1—ki+1)—z:_ 3(s? —12)
2 2 2
Thus, we havéy;'(k; — 1) = r~! and
"N — 1) — Z(; — - __-_Z 2 _ ;2
(7.22) hi (ki = 1) = (i = 2k +1) = =~ — = ( 3(s2 — i2) 1)
1 44/s2 — 12
r s ‘

In (7.22), the calculation-1/r + 2/r = 1/r corresponds to the mutual elimination
stated before the proof. Thus, by substituting?@) and (/.14) in the right-hand side
of (7.19, and then by using/(20) and (7.21), the inequality (.19 is rewritten as

2 1 44/52 — 42
7.23 hi'(j) — = - +21 — )
02 Y (WG -2 < teem| )BT

J=|ki]

In fact, (7.29 also holds in the case ¢f;] > <. This will be proved in step 7.

A Local Minimum Energy
Condition

Kanya Ishizaka

vol. 9, iss. 3, art. 66, 2008

Title Page
Contents
44 44
< >

Page 37 of 52

Step 6 (function for further estimations of {2) related toB for i = [r|, ..., [s] — 1). Go Back
In this step, we present some properties related to the variable term of the right-hand Ul S
side of (7.29. For0 < z < s, let o Sereen
Close
2 [c2 __ p2
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is the variable term on the right-hand side of43. Here, for s <z < s,

£7(2) 2 x §2 — x? 2(22% — 5?) -0
1 () = — — = .
s [Vs? — a2 x sry/ 8% — x?
Further, for all0 < z < s,
2 T §2 — 2 1 1.2 A Local Minimum Energy
f" () == 5 s+ 5 +—= s+ 5| > 0. Condition
§ §T—x x =T (52 - x2)2 Kanya Ishizaka

. . s ;- . . vol. 9, iss. 3, art. 66, 2008
Hence, f; is strictly convex on[%, s}, and f," is strictly convex on0, s] and in-

creasing or{ =, s]. Sincefy'(s) = 0, fy'(x) < 0 also holds or[ﬁ, s]. e
Step 7 (proof of (.23 when| k; | > 2) Suppose thatk;| > 5. Since both k; | and Contents
i are natural numbersk; | > “£* holds, hence,
I <« >
1—+/3(s* —1 1+ 1
<2 )+1:l@-2U@-JZ 5 < >
Thus,i? > s* — L. Sincef,’ is increasing or{\/%, s], by substitutings = #ﬁl) Page 38 of 52
we get Go Back
2 1 2 Full Screen
@) +—=2>H[\/s* =5 +—=
\/gs 3 \/§S Close
s+ o=
—In \f _ 2 journal of inequalities
§— 7% V/3s in pure and applied
= P > 0, issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:Kanya.Ishizaka@fujixerox.co.jp
http://jipam.vu.edu.au

where the last inequality holds by the convexity oft 1) In z. The left-hand side of
(7.23 can be naturally defined to be equal to 0 whén > 5. Hence, (.23 holds
foralli € [r,s] N N.

Step 8 (estimation of two functional values defined in step\@)derive two estima-
tions for f,(z). The first estimation is made at= [r] — 3. Sincef; is strictly

convex on[ s, s| and the interva|min{[r] — 3,7}, max{[r] — 3,r}] is contained

A Local Minimum Energy

in [\/ii, s|, we have Condion
Kanya Ishizaka
1 , 1 vol. 9, iss. 3, art. 66, 2008
(7.25) fi W—g > fi(r) + fi'(r) M—T—§
1 .
:rln3—7"+(ln3—2)([ﬂ—7"—5), Title Page
Contents
The second estimation is maderat s — % as follows: <« b
1
1 2(s—1)2 < >
(7.26) als- 1)y c26-3)°
2 3s Page 39 of 52
The proof of (.26 is given as follows. Let Go Back
:c2 _ s — % Full Screen
5 — /52_(5_%)27 Close
wherez > 1. Then, we get journal of inequalities
' in pure and applied
4(2? = 1)%s* —4(z* — 2+ D)s+ (2 +1) =0, mathematics
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and thus,

B et — 2+ 14 (2t — 22 +1)2 — (22— 1)2(2* + 1) a4+
°T 2(22 — 1)2 T o2 1)

This equality can be rewritten as follows:

1 1
1?2 2 +1 1?2 T
s—— | =—F5——, s——| = .
4 2(z2 - 1) 2 x2—1

Hence, forr > 1, we can write

where
zt—1  2(2*-1)3

A+ 1 3x(zt+1)

g(x) =2Inx —

Here, we obtair/(z) < 0 for x > 1 from the following straightforward calculation.

gy 2 Aat(at - 1) 423 205z + 1) (22 —1)3  4(2? —1)?
g(a:)f;+ (z* +1)2 S 302(zt 4+ 12 (4 1)
2
- 3z2(xt 4+ 1)2
+ (52" + 1) (2* — 1)° — 62%(2® — 1)*(2* 4+ 1)]
2(2? = 1)(x — 1)3

= — 320 1 1) (° + 2 + 22 +1).

[3z(z* +1)* — 122°

Thus, sincey(1) = 0, we haveyg(z) < 0 for x > 1. Hence, {.26) holds.
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Step 9 (total estimation of' (12 for s > 7). Now we present the final estimation.

From the assumption > 7, we have[s| > [r] > 7. Substitutingn = 5 in
(7.19, we define

1 1 1 2 1
1 2
Nic _+ RV T
:—0.1378....

—5In3

Sincef,’ is convex on[\/%, s|, from Lemma7.2, (7.25, and (/.26), we have

[s]—1 _1

2 Y <[ s

i=[r] [71- %

[\
—~
VA

=
~—

[ I

TQ—rln3+r—(1n3—2)((r]—r—%)

Finally, from (7.12), (7.16), (7.23, and (/.27), we obtain

x€A1NBy i=[7r]

[s]—1
< 8(5) + ([7;‘ - 1)1113— (P:I — 1)“11 + ([S-I ; [T—D + Z fl/(l>
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2 2 2(7 —

DO =
~—
[SIE

+—=-= m3—1+ +e(5)
AR
= —0.1246. ..
< 0.
This concludes the proof of Theoreml O

In Gauss’s problem, let(r) denote the number of triangular lattice points ly-
ing truly inside a circle of radius centered at the origin. Then, sin€gr) =
6> wea,np, T1, from Theorenv.1, we obtain the relation between Gauss’s problem
and the lattice sum of finite type, given as follows:

[r21=1 oy
1 (4)
G(r) > 3r — 41 |=3r —+1].
naor 3 g (s 2 )
If we assume that/(r) also contains the triangular lattice points that lie just on the
circle, then by redefinind, = {x : |x| < r}, we obtain the same inequality.

Similarly, we obtain Theoreni.3. The logic of the proof is mainly same as that
of the proof of TheorenY.1. In the proof of Theoren?.3, we omit the proofs for
some increasing or convex properties of functions, which can be proved similar to
the manner followed in Theorem L

Theorem 7.3.Letr > /7. Then, for the triangular lattice pointd; defined by
(2.0),

(7.28) > h%—%m@<o

xEA1NBy
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holds, whereB, = {x : |x| < r}. Moreover, (.29 is equivalentto%.3) forn > 4
and

(7.29)

for n > 7 with N'(n) # 0.

Proof. By referring to Theoren?.1, the proof of the equivalence of 9, (5.3,
and (7.29 can be obtained in the same manner as that followed.i), ((5.2), and
(7.5), and the estimation can be carried out on each of the reglasmsd B. In the
following steps, we estimate the inequality {9.

Step 1 (estimation of/(29) related toA). Lets > 7. For0 < z < i, let h;(z) be
defined by {.14) and

Then,

I (z) = [i2 — iz + 2?]2.

w\»a

Here,l;/(z) is strictly convex o0, 7], andl;'(z) = I;'(i — z) holds. Hence, we have

[y

i— 1—1

L'(4) 'G+1)] > / I/ (z)dx
J=0 0

:un—um:<%+gmgﬁ

.

Il

()
[\DI»—\
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Forl <n < [r] —1,lete(n) be defined by {.15. Then, we obtain the estimation
onA:

[r1-1i-1 3
(7.30) 3 [h/(j) - —2l/(j)}
i=1 j=0 "
n =t [ﬂ_l i1 [ﬂ_l it 3 A Local Minimum Energy
- Z Z hz,(]) + Z Z h/(]) - Z Z ﬁlzlg) Condition
i=1 j=0 1=n+1 j=0 =1 j=0 Kanya Ishizaka
[r]—1 3/1 3 vol. 9, iss. 3, art. 66, 2008
In3 —n—1)In3 — —(=+=-In3 )
<e(n)+nn3d+([r]—n—1)In3 ;r2(2+8n)2
1 3 Title Page
=e(n)+([r] —1)In3 — o2 (1 + 2 ln3) 2[r]® = 3[r)* + [r]). Contents
Step 2 (estimation of’(29) related toB for j = |k;|,...,i — | k;]). Suppose thatk; | 4 4
< L. Sinceh;’ is strictly concavel;’ is strictly convex, andk;| < i — [k;], we get p N
i—| ks ] 3 Page 44 of 52
731 Y [0 - S| < WD + i~ L)) = i) o
j=1ki]
3 , ‘ Full Screen
= S5 (0 (k) + Ui = ki) = LK)
r Close
If |%;] on the right-hand side of/(31) is replaced withz, the value of the term on _ Lof "
the right-hand side of/(31) increases withe. Moreover, again sincg’ is strictly jodrnat of Inequaliies
in pure and applied
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convex, forany € Rwith0 <t <i— 1, we have
(7.32) L;(i—t+1)—LGE—t)+ L) =Lt —1)=[I'(t—1)+1'(t)]

_ z/t L (w)dz — [I/(t — 1) + 1/ (t)] < 0.

-1

From (7.31) and (/.32 and the increase in the value of the terms on the right-hand

side of (/.31), we get

i—| ki)
3 {hi’(j) _ %l/(j)} < (ki — 1) + hali — Es + 1) — ha(ki — 1)
J=|ki]
=y — 1)+ b — Ry 1) — Lk — 1),

7"2
Thus, from {.10), (7.20), (7.21), and the definition of; andl;’, we obtain

i—| k]
733 Y |wl) - 510)]

J=|k:]
4 3vs2 —i2 352 1
V3s s — /82 —q? s s s — /82 — 2

In fact, (7.39 also holds in the case ¢f;| > £; this is similar to step 7 of Theorem
7.1

Next, we consider the properties of the right-hand side’dfd). For0 < x < s,
let

fo(z) =2xIn

s — /82— 2
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Then,

, T 3Vs?2 — a2 3a? x
fo' () =2In - ——In|———|.
s —/s? — a2 s s s —/s? — x?

It can be verified thay; is strictly convex on[%, 5] and f5' is strictly convex on
[0, s] and increasing o, s]. Sincefy'(s) = 0, f>'(x) < 0 also holds or{ 5, s].

Moreover, we have,(z) < 2f,(x), wheref, is defined by {.24). To obtain the
proof of this inequality, let

X

<
ol

b
s — /82 — 2

wherey > 1 becaus® < z < s. Then, we can write

x 3rxvs? — a2 23 x
2fi(x) = fa(z) = 221n s — /52 — 12| S _'_?hl s — /82— a2
y—1 Y
=ly-3(LT—)+2— 1
t (y+1> 17"
IS R U
(y +1)2 (y* +4y + 17|
Here, assuming
3(z*—1)
—lnzx—
g(z) =Inz (22 + 4z +1)%’
we get
x—1)*
g() = L1

x(z? +4x + 1)
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Hence,g is increasing onc > 1 with g(1) = 0. Thus,2f,(z) — fa(z) > 0 for
0<z<s.
Considering that the functiorf, is strictly convex on[

[min{[r] — 3,7}, max{[r] — 1, r}] is contained in[ -

f,s} and the interval

5 s|, we have

(7.34) fQ(W - %) > folr) + £/ (r) (m e %)

) 1 1 3 1
—grln?)—ET— (gln3+§) ([ﬂ _T_ﬁ)'

In addition, fromfs(z) < 2f;(x) and (/.26), we have
(7.35) fa (3 - %) < %

Step 3 (total estimation of (29 for s > 21). Let s > 21. Sincef,’ is convex on
[%, s, from Lemma7.2, (7.34, and (.35, we have

[s]—1

Z f2'(i _/ [ (2)de

M\»—‘

A= 5 TR |
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g(r) = ([r] = 1) In3 - 4—;(1 +%1n3) (2[11* = 3572 + [+]) — 2171

) 1 1 3
—§r1n3—|—§r—i— (gln3+§)<(ﬂ —r—=

Here, by using the substitutien= [r] — r, we have

In3
(7.38) g(r) = 1o (—=81* = 37 = 18[r]a® + 18r]a + 120° — 9a* — 3a)
T
1
+p(—&“z—7“—6[7“1&2+4a3+5a2—a)
,
In3 9
—8r% — 2
16r2( sr )
In3 9 5 ,
+ 152 (- — 18[rla? +18[r]a +120° — 9a” — 3a)
1 2 3In3 9 3 9
(=8 - - —2 1 _
+47"2( 8r r)+ 167’2( 6’770—‘@ (T—Ia‘i‘ o +50é Oé)
=1In3 —l_i _2_i
2 8r 4r
In3

2 3 2
+ 162 (= (6a — 1)* + 240 4 6a* — Ha)
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11 1 1n3 1\?> 5

3 = _0.206...and

6[r]a® + 2[r]a — 4a® — 5a® + a > 6a* + 2a — 4a® — 5a* +
= a(da+3)(1 —a) > 0.

Finally, from (7.37), (7.39, ande(5) = —0.1378.. . ., for s > 21, we obtain

T

xeA1NB,

1 1 1 4 4 4(5—1)%
~In3 2— ——+e(5) +—=+ + 2
( \/_8) 2 ®)

V/3s V3 V3s 3s

41 (7 1, .\1 4(s—1)?

_ 94 — 4+ — (= I3 5) 4+ — 2/
jd+ et o (F-qms) Sae) + 20

1 4 1 /7 1 1 4(21 — 1)z

<-2--1 — (= —3) = +e(6)+ ——2"
< 2n3—|—\/_ \/_( 4n)21—|—8()+ 391

= —0.0016. ..

< 0.

Step 4 (proof fox < 21). For s < 21, it is straightforward to check the required
inequality (7.29 by carrying out direct calculations. Using the same argument as in
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step 1 of Theoreni.1land considering that

. £3 < £21 — /330.75,

it is sufficient to verify (.29 for n € N satisfying7 < n < 331 andN’(n) # 0. Let

Table2 shows the approximations of the calculated valuegof. From this result,

(7.29 holds for eacly < n < 331 with N'(n) # 0.
This concludes the proof of Theoren®. H
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n|N| v n |[N'|wv n |N'| v n |N'| v n |N'| v n |N'| v
1/1| — || 48] 1 |1.7(103| 2 |4.8|163| 2 |4.8|225| 1 |7.2|/291| 2 |4.9
31| 0 49 | 3 |3.0((108| 1 [2.9|/169| 3 |2.4|/228| 2 [6.1||292| 2 | 6.6
4| 1| 47| 52| 2 |6.3|109| 2 |3.7|/171| 2 |5.2]|229| 2 |8.0//300| 1 |3.3
712 |-05| 57| 2 |36|111| 2 |53|172| 2 |7.3|237| 2 |4.2]|301| 4 |3.8
9| 1| 51| 61| 2|27|112| 2 |7.9|175| 2 |7.6|241| 2 |3.8/[304| 2 |6.3
12| 1| 09| 63| 2 |48 117| 2 |59|/181| 2 |5.1(|243| 1 |4.8|/307| 2 |6.5
13| 2| 35| 64| 1 |8.2|121| 1 |5.2|/183| 2 |6.3|[244| 2 |53|/309| 2 |7.4
16| 1| 43| 67| 2 |6.2]|124| 2 |3.8|/189| 2 |4.0||247| 4 |5.6//313| 2 |6.9
19| 2 | 1.1 || 73| 2 |24|127| 2 |4.2||192| 1 |4.3|252| 2 |6.8]/316]| 2 |7.1
21| 2 | 48 || 75| 1 |4.3||129| 2 |5.6|[193| 2 |4.9|256| 1 |6.2|/324| 1 |4.0
25| 1| 31| 76| 2 |53(133| 4 |4.9|/196| 3 |5.2|[259| 4 |5.2|/325| 2 |4.4
27| 1| 26 || 79| 2 |5.7|/139| 2 [55|[199| 2 |6.8|/268| 2 [3.5|327| 2 |5.3
28| 2| 43| 81| 1 |7.4|144| 1 |3.8|201| 2 |7.9|271| 2 |3.8//331| 2 |4.9
31| 2 | 50 84| 2 |56(147| 3 |2.6|[208| 2 |4.8|273| 4 |4.8

36| 1| 1.7 || 91| 4 |1.1|148| 2 |6.6||211| 2 |5.1|277| 2 |6.7

37| 2| 32| 93| 2 |7.0(151| 2 |6.8|[217| 4 |2.9|279| 2 |7.6

39| 2| 581 97| 2 |6.0|156| 2 |5.2|[219| 2 |6.7|283| 2 |7.1

43| 2 | 4.4 ||100| 1 |6.4|157| 2 |7.4]|223] 2 |6.2(|289| 1 |5.2

Table 2: List of values: € N, N'(n), andv(n) restricted tol < n < 331 andN’(n) # 0.
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