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ABSTRACT. This paper deals with an integral inequality which arises in numerical analysis of
the Lax – Friedrichs scheme for the elastodynamics system. It is obtained as a consequence of a
more general inequality.
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1. I NTRODUCTION

Let us consider the following problem:

Theorem 1.1.Leta, b ∈ R, a < 0, b > 0 andf ∈ C[a, b], such that:

0 < f ≤ 1 on [a, b],(1.1)

f is decreasing on[a, 0],(1.2) ∫ 0

a

f dx =

∫ b

0

f dx.(1.3)

then

(1.4)
∫ b

a

f 2 dx ≤ 2

∫ a+b
2

a

f dx.

As we will see later, Theorem 1.1 is a transformed and slightly generalized form of a problem
related to the numerical analysis of a nonlinear system of PDEs. This problem is stated below.

Theorem 1.2.Suppose thatσ ∈ C2(R) satisfies

σ′(w) > 0 for all w ∈ R(1.5)

w σ′′(w) > 0 for all w ∈ R\{0}.(1.6)
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Assume further that forw1, w2 ∈ [−1,∞), w1 < 0, w2 > 0 andα > 0, the conditions

(1.7)
∫ 0

w1

√
σ′ ds =

∫ w2

0

√
σ′ ds,

and

(1.8) α
√
σ′(w) ≤ 1 for all w ∈ [w1, w2].

hold. Then

(1.9)
∫ w1+w2

2

w1

√
σ′ ds ≥ α

2

[
σ(w2)− σ(w1)

]
.

The main subject of this paper is the inequality (1.9). In the next section we describe the
context in which the inequality arises. We start the third section with the proof of Theorem 1.1,
then proceed with the proof of Theorem 1.2 and finally conclude the section with two remarks.

2. L AX – FRIEDRICHS SCHEME FOR THE ELASTODYNAMICS SYSTEM

The elastodynamics system governs isentropic processes in thermoelastic nonconductors of
heat. The Cauchy problem for the underlying system in the one-dimensional case has the form

(2.1) ∂tw − ∂xv = 0, ∂tv − ∂xσ(w) = 0 in R× (0, T ),

(2.2) w(x, 0) = w0(x), v(x, 0) = v0(x) in R,

wherew : R × [0, T ) → [−1,∞) is the strain andv : R × [0, T ) → R is the velocity. In the
theory of nonlinear systems of conservation laws this system plays an important role due to its
accessability to a detailed mathematical analysis (see [1]). The special feature that renders these
equations amenable to analytical treatment is the existence of the so-called compact invariant
regions. Invariant regions are setsS ⊂ R2 with the following property: if the initial function
u0 = (w0, v0) takes its values inS, then so does the solutionu = (w, v) of (2.1), (2.2). It can
be shown (see [1]) that forN > 0, the sets given by

(2.3) SN = {(w, v) ⊂ [−1,∞)× R : |y(w, v)| ≤ N, |z(w, v)| ≤ N},

are invariant for the Cauchy problem (2.1), (2.2), where

y(w, v) = −
∫ w

w0

√
σ′(s) ds+ v, z(w, v) = −

∫ w

w0

√
σ′(s) ds− v

are the the so-called Riemann invariants.
The Lax – Friedrichs scheme is frequently used as a discretization procedure for systems of

conservation laws. In our particular case, the scheme takes the form

(2.4) un+1
i = un

i −
α

2

(
f(un

i+1)− f(un
i−1)

)
+

1

2

(
un

i−1 − 2un
i + un

i+1

)
,

whereα > 0 is a parameter andun
i = (wn

i , v
n
i ) for i ∈ Z, n ∈ N. Here we usedf(u) =

(−v,−σ(w)), with u = (w, v). For the numerical stability of the Lax – Friedrichs scheme it is
crucial that the setsSN from (2.3) are also invariant for (2.4). That is, ifun

i ∈ SN for all i ∈ Z,
thenun+1

i ∈ SN for all i ∈ Z, providedα · sup(w,v)∈SN

√
σ′(w) ≤ 1, (see [3]). Similarly as

in [2], the proof of the invariancy is reduced to some problems associated with certain integral
inequalities. The problem stated in Theorem 1.2 is one of them.
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3. PROOF OF THE I NEQUALITIES

Proof of Theorem 1.1.We will consider two cases.

1. Case: a + b ≥ 0.

By (1.1) and (1.3), we have∫ b

a

f 2 dx ≤
∫ b

a

f dx = 2

∫ 0

a

f dx ≤ 2

∫ a+b
2

a

f dx.

2. Case: a + b < 0.

First, note that due to (1.1) and (1.3), for everya′ ∈ [a, 0] there exists a uniqueb′ ∈ [0, b], such
that

∫ 0

a′ f dx =
∫ b′

0
f dx. Therefore, one can introduce a functionϕ : [a, 0] → [0, b] with the

property
∫ 0

x
f ds =

∫ ϕ(x)

0
f dx. Obviously,ϕ(a) = b andϕ(0) = 0. It is a simple matter to

prove thatϕ is differentiable and that for allx ∈ [a, 0],

(3.1) f(ϕ(x))ϕ′(x) = −f(x).

We will show that the inequality

(3.2)
∫ ϕ(x)

x

f 2 ds ≤ 2

∫ x+ϕ(x)
2

x

f ds,

holds for allx ∈ [a, 0]. Then (1.4) will be a consequence of (3.2), whenx = a.

Let x ∈ [a, 0] be arbitrary. Ifx + ϕ(x) ≥ 0, then we proceed as in Case 1. Therefore, suppose
that

(3.3) x+ ϕ(x) < 0.

Define a functionψ : [a, 0] → R with

ψ(x) = 2

∫ x+ϕ(x)
2

x

f ds−
∫ ϕ(x)

x

f 2 ds.

From

ψ′(x) = (1 + ϕ′(x)) f

(
x+ ϕ(x)

2

)
− 2f(x)− f 2(ϕ(x))ϕ′2(x),

using (3.1) follows

f(ϕ(x))ψ′(x) =
[
f(ϕ(x))− f(x)

]
f

(
x+ ϕ(x)

2

)
− 2f(x) f(ϕ(x)) + f 2(ϕ(x)) f(x) + f 2(x) f(ϕ(x)).

If f(ϕ(x)) − f(x) ≤ 0, then obviouslyψ′(x) ≤ 0. Assume nowf(ϕ(x)) − f(x) > 0. Using
the fact thatx ≤ 0, ϕ(x) ≥ 0 and (3.3), we obtain0 > x+ϕ(x)

2
≥ x, which together with (1.2)

yields,f
(

x+ϕ(x)
2

)
≤ f(x). Hence,

f(ϕ(x))ψ′(x) ≤
[
f(ϕ(x))− f(x)

]
f(x)− 2f(x) f(ϕ(x)) + f 2(ϕ(x)) f(x) + f 2(x) f(ϕ(x))

= f(x)
[
f(x) + f(ϕ(x))

] [
f(ϕ(x))− 1

]
≤ 0.

Hence we have shown thatψ′(x) ≤ 0 for all x ∈ [a, 0]. Sinceψ(0) = 0, one concludes that
ψ ≥ 0 on [a, 0], that is, (3.2) holds. �
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Proof of Theorem 1.2.Sinceσ(w2) − σ(w1) =
∫ w2

w1
σ′ ds, then by multiplying (1.9) by2α and

introducingf = α
√
σ′, the inequality (1.9) is transformed into (1.4), witha = w1, b = w2.

Due to (1.6),σ′ decreases on[w1, 0], sof does on[a, 0], as well. The relations (1.5) and (1.8)
yield (1.1). The equality (1.7) implies (1.3). Therefore, Theorem 1.1 applies. �

Remark 3.1. Assume that (1.1), (1.2) and (1.3) hold forf ∈ C[a, b].
(a) The constantA = 2 in

(3.4)
∫ b

a

f 2 dx ≤ A

∫ a+b
2

a

f dx

is optimal in the casea+ b = 0; indeed, takingf = 1 in (3.4), one obtainsA ≥ 2.
(b) It is easy to see that ifp ≥ 2, then the inequality

(3.5)
∫ b

a

fp dx ≤ Ap

∫ a+b
2

a

f dx

holds for allAp ≥ 2. However, if1 ≤ p < 2, then proceeding similarly as in the proof
of Theorem 1.1, one can deduce that (3.5) is satisfied for allAp ≥ 4.
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