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ABSTRACT. This paper deals with an integral inequality which arises in numerical analysis of
the Lax — Friedrichs scheme for the elastodynamics system. It is obtained as a consequence of a
more general inequality.

Key words and phrasedntegral inequality, Elastodynamics, Lax — Friedrichs scheme.

2000Mathematics Subject Classificat 086D15, 35145, 74B20.

1. INTRODUCTION
Let us consider the following problem:

Theorem 1.1.Leta,b € R, a <0, b > 0andf € Cla, b], such that:

(1.2) 0<f<1on]a,bd]
(1.2) f is decreasing offu, 0],
0 b
1.3 dx = dr.
L9 [ rae= [ pas
then
b a5

(1.4) / fPdx < 2/ fdx.

As we will see later, Theoren 1.1 is a transformed and slightly generalized form of a problem
related to the numerical analysis of a nonlinear system of PDEs. This problem is stated below.

Theorem 1.2. Suppose that € C*(R) satisfies
(1.5) o(w)>0 forall weR
(1.6) wo'(w) >0 foral weR\{0}.
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Assume further that fow,, wy € [—1,00), w; <0, wy > 0 anda > 0, the conditions

0 w2
a.7) Vo' ds = Vo' ds,
w1 0
and
(1.8) ar/o'(w) <1 forall w e [wy, ws).
hold. Then
w1 +wg
(1.9) / Vrds > 2 [o(us) — o{un)].

The main subject of this paper is the inequaljty (1.9). In the next section we describe the
context in which the inequality arises. We start the third section with the proof of Th¢orem 1.1,
then proceed with the proof of Theor¢m|1.2 and finally conclude the section with two remarks.

2. LAX — FRIEDRICHS SCHEME FOR THE ELASTODYNAMICS SYSTEM

The elastodynamics system governs isentropic processes in thermoelastic nonconductors of
heat. The Cauchy problem for the underlying system in the one-dimensional case has the form

(2.1) Ow — 0,v =0, 0w —0o(w)=0INR x (0,7,

(2.2) w(z,0) = wy(x), v(z,0) = vo(z) INR,

wherew : R x [0,7) — [—1,00) is the strain and : R x [0,7") — R is the velocity. In the

theory of nonlinear systems of conservation laws this system plays an important role due to its
accessability to a detailed mathematical analysis (see [1]). The special feature that renders these
equations amenable to analytical treatment is the existence of the so-called compact invariant
regions. Invariant regions are setsc R? with the following property: if the initial function

uy = (wo, vy) takes its values ity, then so does the solutian= (w, v) of (2.1), [2.2). It can

be shown (see [1]) that fa¥ > 0, the sets given by

(2.3) Sy = {(w,v) C[=L,00) xR : |y(w,v)] <N, |2(w,v)| < N},
are invariant for the Cauchy problem (2.1), (2.2), where

y(w,v) = — w\/a’(s)d8+v, z(w,v):—/w\/a’(s)ds—v

are the the so-called Riemann invariants.
The Lax — Friedrichs scheme is frequently used as a discretization procedure for systems of
conservation laws. In our particular case, the scheme takes the form

1
(2.4) Wt = = S () = (i) + 5 (i — 20} +ul,),

wherea > 0 is a parameter and? = (wf, v}*) fori € Z, n € N. Here we used (u) =
(—v, —o(w)), with u = (w, v). For the numerical stability of the Lax — Friedrichs scheme it is
crucial that the set§y from (2.3) are also invariant fof (2.4). That isyif € Sy for all i € Z,
j[henu;“rl € Sy for all _z' € Z proyideda “SUDP(y yesy VO (W) < 1, (se_e [3]). _Similarly as

in [2], the proof of the invariancy is reduced to some problems associated with certain integral

inequalities. The problem stated in Theorenj 1.2 is one of them.
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3. PROOF OF THE INEQUALITIES

Proof of Theorer 1]1We will consider two cases.
1. Case:a+b>0.

By (1.1) and[(I.B), we have

b b 0 atb
/f2dx§/fdx:2/ fdx§2/ fdx.

2. Case:a+b < 0.
First, note that due t¢ (1.1) ar{d ([L.3), for evefye [a, 0] there exists a uniquié < [0, b], such
thatff, fdx = fob f dz. Therefore, one can introduce a functipn [a, 0] — [0, b] with the

propertyfxofds = foq’(x) f dx. Obviously,p(a) = b ande(0) = 0. Itis a simple matter to
prove thaty is differentiable and that for alt € [a, 0],

(3.1) flo(a) ¢'(z) = —f(2).
We will show that the inequality

o(a) =)
(3.2) / frds < 2/ f ds,

holds for allz € [a, 0]. Then [(1.4) will be a consequence pf (3.2), whes a.

Letz € [a, 0] be arbitrary. Ifx + ¢(x) > 0, then we proceed as in Case 1. Therefore, suppose
that

(3.3) z+ ¢(x) <0.
Define a function) : [a, 0] — R with

z+o(z)

1/J(x):2/x ’ fds—/:(x)des.

x+ p(z)

V(@)= @) £ () < af) - et 070,
using [3.1) follows

From

o) o) = [Flo(e)) - )] £ (22

—2f(2) fle(2)) + f*((2)) f(z) + f*(2) fo(@)).

If f(e(x)) — f(x) <0, then obviously)’(z) < 0. Assume nowf(p(z)) — f(z) > 0. Using
the fact thatr < 0, p(x) > 0 and ), we obtaif > "”++*‘”) > x, which together With2)

0
yields, f (%) < f(z). Hence,

Flo(@) v (z) < [fo(@)) = f(2)] fz) = 2f(2) f(o(x)) + [2((2)) f(2) + () fp(2))
= f(2) [f(@) + fe(@)] [f(e(x)) —1] <0.

Hence we have shown that(z) < 0 for all z € [a, 0]. Sincey(0) = 0, one concludes that
¥ > 0onla, 0], thatis, [(3.2) holds. O
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Proof of Theorerfi 1} 2Sincec (w,) — o(wy) = [ o’ ds, then by multiplying (1. .) by« and

introducing f = av/o’, the mequallty.) is transformed m@ 4), with= wy, b = w».
Due to [1.6),0’ decreases ofw,, 0], so f does ona, 0], as well. The relations (1.5) ar.. d (1.8)

yield (1.1). The equality (1]7) implie§ (1.3). Therefore, Theofem 1.1 applies.

Remark 3.1. Assume thaf (1]1)[ (1.2) and (1.3) hold fbie C|a, b].
(&) The constani = 2 in

(3.4) ([ﬁngLwa

is optimal in the case + b = 0; indeed, takingf = 1 in (3.4), one obtains! > 2.
(b) Itis easy to see that jf > 2, then the inequality

(3.5) [ﬂwg@lwfw

holds for all4, > 2. However, ifl < p < 2, then proceeding similarly as in the proof
of Theorenj 1.1, one can deduce tiat|(3.5) is satisfied fot,alt 4.
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