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Abstract

In this article, we give characterizations of a tracial property for a positive linear
functional via inequalities; we have necessary and sufficient conditions for a
faithful positive linear functional ¢ to be a positive scalar multiple of the trace by
inequalities: for a non matrix monotone, increasing function f,

X S = p(f(X) S6lf(V))

is considered. Also for a non matrix convex, convex function f,

()25
v f 2 =Y 2

is studied. We also show that suppose
0 g 2 (plll./\‘ <X* Y>)

forall X,Y 2 O, then ¢ should be a positive scalar multiple of the trace. Here,
Pmk(X,Y) is the coefficient of * in the polynomial (X +tY)™ and 1 < k <
m—1.

Dedicated to Professor Marie Choda on the occasion of her 65th birthday.
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In operator theory, matrix monotone functions and matrix convex ones have
played a significant role, for instance, sée4, 1, Z]. A real-valued continuous
function f on an interval/ (£ R) is called matrix monotone of order if

X =Y implies f(X) £ f(Y) for all n x n Hermitian matrices andY” with
eigenvalues inf. If f is matrix monotone of all orderd, is said to be matrix
monotone or operator monotone. Whgrs matrix monotone of order, for a
positive linear functionab onn x n matrices, we have

X2V =o(f(X)) = e(f(Y))

for n x n Hermitian matricesX andY. Also, for an increasing functiori and
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Takashi Sano and Takeshi Yatsu

Hermitian matrices{ andY with X <Y, Title Page
Tr(f(X)) £ Te(f(Y)) contents
44 42

holds in whichTr is the standard trace on matrices (for more details, see the

argument at the beginning of Sectigh < 4
A real-valued continuous functiofion an intervall (€ R) is called matrix Go Back

convex of orden if the inequality

Close
f<X+Y) éf(X)+f(Y) Quit
2 2 Page 4 of 22

is satisfied for alh x n Hermitian matricesy andY” with eigenvalues id. If f

is matrix convex of all ordersf is said to be matrix convex or operator convex. > med. Pureand Appl. Math. 7(1) Art. 36, 2006
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Whenf is matrix convex of orden, for a positive linear functionab onn x n

matrices,
P(r(57)) 2o ()

holds forn x n Hermitian matricesX andY” with eigenvalues inf. And for a
convex functionf and Hermitian matriceX andY’, we have

H<f(X+Y)><TY<ﬂX%+ﬂY0
2 - 2 Characterizations of Tracial

Property via Inequalities

(see basic facts on Jensen’s inequalities explained before the proof of Theorem

3 2) Takashi Sano and Takeshi Yatsu
In this article, we give characterizations of tracial properties for positive lin-
ear functionals via inequalities; we have necessary and sufficient conditions for Title Page
a faithful positive linear functionap to be tracial by inequalities: for a non SO S
matrix monotone, increasing functighn
44 44
XY = o(f(X)) = e(f(Y)) p >
is considered. Also for a non matrix convex, convex functfon Go Back
s X+Y\) F(X)+ f(Y) Close
2 9 = 9 —
is studied. We have a criterion of non matrix monotonicity of orgler non Page 5 of 22
matrix convexity of orde. We show a necessary and sufficient condition for
the fu nC'[IOI’I J. Ineq. Pure and Appl. Math. 7(1) Art. 36, 2006

X — {Tr(|X|pC)}% http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:sano@sci.kj.yamagata-u.ac.jp
http://jipam.vu.edu.au/

(p > 2) to be a norm; the function is essentially the Schagterm.

We also observe an inequality given by a coefficient of a certain polynomial:
let p,, (X, Y) be the coefficient of* in the polynomial X + tY)™ for X, Y €
M,(C),m € N,andt € Candl = k < m — 1. Suppose that

0 § 2 (pm,k (X7 Y))

forall X,Y = O. Theny should be a positive scalar multiple of the trace (see
the remark of Propositioi.1 about the BMV conjecture). Characterizations of Tracial

We remark that divided differences are useful in this article: we refer the Property via Inequalities
reader to{, 2, 6].

We would like to express our sincere gratitude to Professor Tsuyoshi Ando
for reading the previous manuscripts and for fruitful comments. We would like
to thank the members of Tohoku-Seminar for valuable advice, especially Pro-
fessor Sin-ei Takahashi for useful comments on Proposii@mand Professor Contents
Fumio Hiai for pointing out the BMV conjecture to us. We are also grateful to
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Let M, (C) be the set of all complex-square matrices and letbe a faithful
positive linear functional o/, (C). Let f be an increasing function oh =
(a,b). For Hermitian matrices(,Y € M,,(C) withal < X £ Y < b1,

Ai(X) = Xi(Y)
fori =1,2,...,ninwhich ), is thei-th eigenvalue with\; = X\, = --- = \,..
Sincef is increasing,
A(f(X)) = (X)) = FNY) = X(f(Y).

Hence, it follows that

n

Te(f(X)) = Y A(f(X))

=1

A

> AFY)) = TH(F(V)).

Let us study the following inequality for a strictly increasing, differentiable
functionf on I = (a,b) ande € [0, 1] :

FNe?(1+4¢) —2av1 —a? Mu —¢)

1) (1 —a?) (142) 20

forall u,A € I (< A)andalla € [0, 1]. By considering) < a < 1, we have
the equivalent inequality
Q V1—a?

! ! l—e¢ f()‘)
ﬁf@‘)"‘ o f(/ﬁ)221+€' 3

=

S (1)
"
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forall u,A eI (p< X)) andalla € (0,1). Let

o '_1—5

V1—a?’ -

t .=

Then notice that

0<a<l&el0<t<oo, 051056251,
ande = 1 ifand only if 6 = 0. The corresponding inequality is described as

— Characterizati f Tracial
3 (11 ) 20 20 Fapey v s

forall0 <t <ooandally, A € I (< \). Hence, by considering arithmetic-
geometric mean inequality in the left-hand side, we have

A—p

Takashi Sano and Takeshi Yatsu

f()\ f( ) Title Page
f’(/\)f'(,u) 20 M Contents
A—p
In this case, the condition= 1 or § = 0 is given by b dd
4 | 4
A SN ()
mf — . = 0
>up f=F) Go Back
A—p
We summarize our observation as follows: Close
Proposition 2.1. Let f be a strictly increasing, continuously differentiable func- Quri
tion on/ = (a,b) ande € [0, 1]. Suppose that Page 8 of 22
inf —Vf,()\)f/(’u) — 0. J. Ineq. Pure and Appl. Math. 7(1) Art. 36, 2006
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Then the inequality

FNa?(1+e) —2aV1—a? m%i(“)u —¢)

+ [ ()1 —a®)(1+¢e) 20

holds forallyu, A € I (1 < A) and alla € [0, 1] if and only ife = 1.
The following are examples

Characterizations of Tracial
2P(p>1) on(0,a), 2’(p > 1) on (a,o00), Property via Inequalities

e’ on (CL, OO)7 e’ on (—OO, a) Takashi Sano and Takeshi Yatsu

for a constant.

Title Page
By direct computations, it is easy to see that each example satisfies the con- SO S
dition so details are left to the reader.
44 44
Theorem 2.2. Lety be a faithful positive linear functional oi/,,(C) and let f
be a function as in Propositioh.1. Then 4 d
Go Back
(2.1) o(f(X)) S p(f(Y)) wheneveral < X =Y <bl o
ose
if and only ify is a positive scalar multiple of the trace. Quit
Proof. At the beginning of this section it was explained thatyifis a pos- Page 9 of 22
itive scalar multiple of the trace then the inequali/1) holds. We show
the converse: since there is uniquely a positive definite mdriguch that 3. Ineq. Pure and Appl. Math. 7(1) Art. 36, 2006
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e(X) = Tr(XD) for X € M,(C), we have to prove thab is a positive
scalar multiple of the identity matrix. Taking into consideration

e(V*-V)=Tr(- VDV™)

for all unitary V' and thatV’ DV* is diagonal for a unitary’, we assume that
D is a diagonal matrixliag(ds, ...,d,). To show thatd, = d; for any pair
of d;,d; (i # j), we consider matriceX = (zy;) with x;; zero except for
(k1) = (i,1), (4, 7), (4,9), (4, 7). Hence, it suffices to consider the case= 2
so that we suppose

D = diag(e, 1)

for a number (0 < ¢ < 1). We show that = 1.
Let

U 1 (1 1) A (A O) . o? av'1l—a?
e\l -1 TR0 w) T T T 1—a?

for \, u(A # p,a < A\, p<b),a (0 < 1). Forallt > 0,
UAy,U* SU(Ay, + tP)U™,
andal < A, , + tP, < bl for smallt > 0. Then, by assumption
Te(Uf(An,)UD) < Te(Uf(Ar,s + tP)UD).
This implies that

d
ZT(Uf(Ay, +tP)UD)|  Z0.

t=0
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Also, the standard fact, se®, [page 124] for instance, yields

d
|, S A T tEe) = <f(/\)—f(u)

t=0
B f/<>\)042 f()‘))\:/{(ﬂ) Oé\/m
I avT=c2  fi-o?) )’

whereo stands for the Hadamard (i.e., entry-wise) product. Hence, it follows Characterizations of Tracial

that Property via Inequalities
d Takashi Sano and Takeshi Yatsu
0=~ Tr(f(Ax, +tPa)UDU)
d =0 Title Page
=T (E o P+ tPa) UTDU) Contents
. f'(N)e? FATW 0 /T — o « 3
=1r
mi:i(“)oz\/l—ioﬂ f’(u)(l o a2> < >
1/ 1+e —(1-¢) Go Back
2\—-(1—¢) 1+¢
1 T =
= §{f’(/\)042(1+€> —2aV1 — a2 Tﬂ(l—é) Quit

Page 11 of 22

aﬂma—a%u+a}
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In the proof of Theorem.2, a criterion of non matrix monotonicity of order
2 is obtained:

Corollary 2.3. Let f be a function as in PropositioR.1. Thenf is not matrix
monotone of orde?.

As a corollary of Theorer.2, we have

Theorem 2.4.LetC' € M, (C) be a positive definite matrix and Ipt> 2 be
given. Then the function

p(X) = Te(|X[PC)» (X € M,(C))
is a norm if and only it is a positive scalar multiple of the identity matrix.
Proof. Suppose that is a norm. Then, by definition
p(UX) = p(X)

for all unitaryU. For positive semidefinite matrices, Y with X < Y/, there is
a contractior’/ such thatYz = VY2 andV is a convex combination of unitary
matrices:V = ZiN:l Ui, where); = 0,U; is unitary (j = 1,2,...,N) and

vazl )\; = 1. Hence, we have

" (X%> - <<§; /\,-UZ-> Y§> < ﬁ;w (UiY%> —u (Y%>

sincey is a norm. Therefore, the faithful positive linear functional & (C)
defined by

p() =Te(- C)
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satisfies
0SX2Y = p(xF)sp(vh).

Sincef > 1, it follows from Theorem2.2 that C' is a scalar multiple of the
identity matrix; the proof is completed. ]
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Let us start this section with the following observation of tracial properties:

Proposition 3.1. Let ¢ be a faithful positive linear functional of/,,(C). Let
Pmi(X,Y) be the coefficient of* in the polynomial(X + tY)™ for X,Y €
M,(C),m € N,andt € Candl < k£ < m — 1. Suppose that

@ (P (X,Y)) 20
forall X, Y = O. Theny should be a positive scalar multiple of the trace.

Remark that the non-negativity @t (p,,  (X,Y")) for all positive matrices
X, Y is (equivalent to) the Bessis-Moussa-Villani conjecture (Se€]fand also
[6]); it is known that it is the case if one of the following is satisfied:

1. k<2(orm<5),
2. n =2 (see Fact 5 ind]),
3.n=3,k=06(see[]).

Proof. Due to the same argument fgr= Tr(-D) as in the proof of Theorem
2.2, it suffices to consider the case= 2 so that we suppose

D = diag(e, 1)

for anumber (0 < e = 1). We show that = 1.

Characterizations of Tracial
Property via Inequalities

Takashi Sano and Takeshi Yatsu

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 14 of 22

J. Ineq. Pure and Appl. Math. 7(1) Art. 36, 2006

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:sano@sci.kj.yamagata-u.ac.jp
http://jipam.vu.edu.au/

for a numben (0 < « < 1). SinceA? = A, p,,x(A, B) is described as

1 /1 1
=351 )

2= 2

At first consider the case = 2; let

2
a
_(a\/l—a2 1—a?

aﬂ) |

Notice that for a numbek, A <1 O) Alis

0 A

at + (1 —a?)A

<a3\/1 —a?+a(l —a?)V1 — a2\

and

a?(1—a?) + (1

AB* 4+ B¥A 4 the terms including3AB + the termsAB* A.

—a?)?)\

V1 —a?+a(l—a?)V1— a%\)

(A= ( .

2
ABF = °
av1 — a?

Thus, we have fofr = 2

AB'A =o(a) (a—0),

Wi
a*(1 —a?) ) .

BAB =o(a) (a—0),
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whereo is Landau’s smalb, and
0 < p(pmi(UAU*,UBU™))
= o(Upmi(A, B)U)
= ¢ (U{AB" + B"A + o(a)}U")

= ayp (U {é(AB’“ + B*A) + 0(1)} U*) (a0 —0).

Dividing this inequality bya > 0 and takingy asa — 0, we have

01

< *

o (v (i 0)7)
B 1 0
—7l\o -1
1 0 e 0
(0 )@ )

1
EAB]“ — ((1) 8) (v — 0).

since

Henceg = 1ore = 1.
For the casé =1, let
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Thenp,,1(A, C)is AC + C A +the termsAC A. Notice thatACA = AB%A =
o(a) (a — 0) and the preceding argument for= 2 works similarly. There-
fore, the proof is completed. O

Remark 1. It follows from the proof that the inequality assumption €or<
X,Y < 1is sufficient for the assertion.

Theorem 3.2. Lety be a faithful positive linear functional oi/,,(C) and let f
be a twice continuously differentiable convex functiorilonro) with

£%(0,0,0) =0,  f#(1,0,0) >0, oroperty wa Inequalites
where f? is the second divided difference fof Then Takashi Sano and Takeshi Yatsu
fX)+ 1) X+Y
(3.1) %) (f 2ol f O Title Page
holds for all.X,Y > 0 if and only if¢ is a positive scalar multiple of the trace. SNt
Also, f(t) =" (p > 2) on|0, c0) is such an example. <« 33
Before giving a proof, let us recall basic facts on matrix convex continuous < >
functions: letf be a matrix convex continuous function of oraeon an interval G p
1. Then by definition, 0 Bac
JO+FY) o (X4Y close
2 = 9 Quit

holds for Hermitian matriceX’, Y € M,,(C) with eigenvalues ifl. This yields Page 17 of 22

. (—f (O +f m) >0 (f (X - Y)) o eI Oy

2 2
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for a positive linear functionap on M,,(C).
We also recall basic facts on Jensen’s inequalities: for a convex continuous
function f on I and Hermitian matriceX’, Y € M, (C) with eigenvalues i,

0 a1

is satisfied; this inequality is well-known, for instance, se&g, [Proposition

3.1]: von Neumann observes the convexity— Tr(f(x)). E. H. Lieb gives a
description ofTr(f(z)) and B. Simon has further arguments. F. Hansen and
G.K. Pedersen study generalizations; Jensen’s operator inequality and Jensen’s
trace inequality. There are also many articles on these kinds of inequalities. See
the introduction and references ii] pbout Jensen’s inequalities.
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Title Page
Proof. We have a proof of Jensen’s inequalidy4) for the reader’s convenience: g
Ky Fan’s maximum principle (for instance, seg page 35]) means that Contents
. . X < 43
DNX)ED AT =) NN +Y) < >
=1 =1 =1
Go Back
fork=1,2,....,n—1,and
Close
SONX) ) M) =) MX +Y), Qi
i=1 i=1 i=1 Page 18 of 22

where )\; is thei-th eigenvalue with\; = X\, = --. = \,. In other words,
J. Ineq. Pure and Appl. Math. 7(1) Art. 36, 2006
{\; (¥£X) } is majorized by {#} Then the majorization theoryA] http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:sano@sci.kj.yamagata-u.ac.jp
http://jipam.vu.edu.au/

page 40]) says that

g;f (M(X)—;&-(Y)) > gf(& (X;—Y))

Hence, from the convexity of in the left-hand side, the above inequaliBy4)
for Tr and f follows. Therefore, ifp is a positive scalar multiple of the trace,
we have the inequality3(1).

We show the converse: at first we have explicit calculations for the case  characterizations of Tracial

f(t) =t™ (m € N,m = 3) although we have a general treatment below: by Property via Inequalities
assumption, Takashi Sano and Takeshi Yatsu
X™m+ (X +tYy)™ X+ (X +tY)\™
W( (2 ) —< (2 >> )20 Title Page
Contents
fort > 0andX,Y = 0. Since
44 44
X4+ (X +ty)™ 1 "ol
+<2+ " <X+§tY> = Pma(XV)E 4 o) (¢ —0), < 4
Go Back
0= tz{‘:@(pm,2(X7 Y)) +o(1)} (t —0). Close
Thus, dividing this inequality by? > 0 and takingt ast — 0, we have Quit
@(pm,Q(X, y)) > 0. Page 19 of 22
Hence, in this case the assertion follows from Proposiidn 3. Ineq. Pure and Appl. Math. 7(1) Art. 36, 2006
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Let us consider the general case: since

gO(f(x)+f2(x+ﬂ/) _f(X+();+tY))) >0

fort > 0andX,Y = 0, the preceding argument yields similarly
d2
¥ (d—tQ

For the same matrice$, B, U as in the proof of Propositios. 1,

FIX + tY)) > 0.

t=0

1 d?
2 dt?

f(A+tB)

t=0

is of the form

f(1,1,1)ABABA + f?(1,1,0)ABAB(1 — A)

+ f#(1,0,1)AB(1 — A)BA + f#(0,1,1)(1 — A)BABA

+ f¥(1,0,0)AB(1 — A)B(1 — A) + f2(0,0,1)(1 — A)B(1 — A)BA

+ f210,1,0)(1 — A)BAB(1 — A) + f1%/(0,0,0)(1 — A)B(1 — A)B(1 — A)
(see the formula of the second divided differenceZingdage 129] and remark
that f?! is symmetric andi is an orthogonal projectiom = 1-A-+0-(1— A)).
The order estimation foBAB, AB2A and the assumptiori®/(0,0,0) = 0

mean
o(f¥(1,0,0)(AB* + B%A) + o(a)) 20 (o — 0).
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Hence, replacingl, B with UAU*, U BU*, we get
P(U{f?(L,0,0)(AB* + B*A) + o(a)}U") 20 (a — 0).
Therefore, as in the proof of Propositi8ri, the proof is completed. O

In the proof of Theoren3.2, a criterion of non matrix convexity of order
iS obtained:

Corollary 3.3. Let f be a function as in Theore@®2. Then f is not matrix
convex of ordeg.

The same argument works for the following theorem whose proof is left to
the reader:

Theorem 3.4. Lety be a faithful positive linear functional oi/,,(C) and let f
be a continuously differentiable increasing function[oyo) with

10,0 =0, fM(1,0) >0,
where 1l is the first divided difference ¢f. Then
o(f(X)) < o(f(Y)) wheneverO < X <Y

if and only ify is a positive scalar multiple of the trace.

f(t) =1t" (p>1)on]0,00) is such an example.

We remark that a proof can be obtained by the formula of the first divided
difference in [, p. 12] for

Sl f(A+tB)

t=0
as in the proof of Theorerd.2.
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