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1. Introduction

The property∆ of operators was introduced by F. Schipp in [1] and he proved that,
if (Tn, n ∈ P) are a series of operators with property∆ and some boundedness,
then the operatorT =

∑∞
n=1 Tn is of type (p, p) (p ≥ 2). We resume this result

as Theorem1.1. F. Schipp applied Theorem1.1 to prove the significant result that
the Fourier-Vilenkin expansions of the functionf ∈ Lp converge tof in Lp-norms
(1 < p < ∞).

Throughout this paperP andN denote the set of positive integers and the set of
nonnegative integers, respectively. We always useC, C1 andC2 to denote constants
which may be different in different contexts.

Let (Ω,F , µ) be a complete probability space and{Fn, n ∈ N} an increasing
sequence of sub-σ-algebras ofF with F = σ(

⋃
nFn). Denote byE andEn ex-

pectation operator and conditional expectation operators relative toFn for n ∈ N,
respectively. We briefly writeLp instead of the complexLp(Ω,F , µ) while the
norm (or quasinorm) of this space is defined by‖f‖p = (E[|f |p])

1
p . A martingale

f = (fn, n ∈ N) is an adapted, integrable sequence withEnfm = fn for all n ≤ m.
For a martingalef = (fn)n≥0 we say thatf = (fn)n≥0 is Lp (1 ≤ p < ∞)-bounded
if ‖f‖p = supn ‖fn‖p < ∞. If 1 < p < ∞ andf ∈ Lp thenf̃ = (Enf)n≥0 is aLp-

bounded martingale, and‖f‖p =
∥∥∥f̃∥∥∥

p
(see [2]). We denote the maximal function

and the martingale differences of a martingalef = (fn, n ∈ N) by f ∗ = supn∈N |fn|
anddfn = fn−fn−1 (n ∈ P), df0 = f0, respectively. We recall that for aLp-bounded
martingalef = (fn)n≥0 (p > 1):

(1.1) ‖f‖p ≤ ‖f ∗‖p ≤ C ‖f‖p .
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We will use the following martingale inequality (see Weisz [2]):

(1.2) ‖f ∗‖p ≤ C1

∥∥∥∥∥∥
(

∞∑
n=0

En−1

[
|dfn|2

]) 1
2

∥∥∥∥∥∥
p

+ C1

∥∥∥∥sup
n∈N

|dfn|
∥∥∥∥

p

≤ C2 ‖f ∗‖p (2 ≤ p < ∞).

Now let∆0 = E, ∆n = En − En−1(n ∈ P). It is easy to see that

(1.3) En ◦ Em = Emin(n,m), ∆n ◦∆m = δmn∆n(n, m ∈ P),

whereδmn is the Kronecker symbol and◦ denotes the composition of functions. Let
{Tn, n ∈ P}, Tn : Lp → Lq (1 ≤ p, q < ∞), be a sequence of operators. We say
that the operators{Tn, n ∈ P} are uniformly of type(Fn−1, p, q) if there exists a
constantC > 0 such that for allf ∈ Lp

(En−1[|Tnf |q])
1
q ≤ C(En−1[|f |p])

1
p .

A sequence of operators{Tn, n ∈ P} is said to satisfy the∆-condition, if

(1.4) Tn ◦∆n = ∆n ◦ Tn = Tn (n ∈ P).

From the equations in (1.3) it is easy to see that the∆−condition is equivalent to the
following conditions:

(1.5) Tn ◦ En = En ◦ Tn = Tn, Tn ◦ En−1 = En−1 ◦ Tn = 0(n ∈ P).

For f ∈ Lp, setTf =
∑∞

n=1 Tnf andT ∗f = sup |
∑m

n=1 Tnf |. It is obvious
that the operator series

∑∞
n=1 Tnf is convergent at each point ofL =

⋃
n Lp(Fn) if

{Tn, n ∈ P} satisfy the∆-condition, since forf ∈ Lp(FN), Tnf = Tn◦∆n◦ENf =
0. We resume Schipp’s theorem as follows:
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Theorem 1.1 ([1]). Let (Tn, n ∈ P) be a sequence of operators with the property∆,
and letp ≥ 2. If for r = 2, p andn ∈ P, the operators(Tn, n ∈ P) are uniformly
of type(Fn−1, r, r), then the operatorT is of type(r, r), i.e., there exists a constant
C > 0 such that for allf ∈ Lr:

‖Tf‖r ≤ C ‖f‖r .
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2. Proof of Theorem1.1

Proof. Let f ∈ Lr (r ≥ 2). Then by (1.5), it is easy to see that the stochastic
sequence(

∑n
k=1 Tkf,Fn) is a martingale. By (1.1) we only need to prove that

‖T ∗f‖r ≤ C ‖f ∗‖r .

Since the operatorsTn are uniformly of type(Fn−1, 2, 2) and(Fn−1, r, r), it fol-
lows from (1.2) and (1.4) that

‖T ∗f‖r ≤ C

∥∥∥∥∥∥
(

∞∑
n=0

En−1

[
|Tnf |2

]) 1
2

∥∥∥∥∥∥
r

+ C

∥∥∥∥sup
n∈N

|Tnf |
∥∥∥∥

r

= C

∥∥∥∥∥∥
(

∞∑
n=0

En−1

[
|Tn ◦∆nf |2

]) 1
2

∥∥∥∥∥∥
r

+ C

∥∥∥∥sup
n∈N

|Tn ◦∆nf |
∥∥∥∥

r

≤ C

∥∥∥∥∥∥
(

∞∑
n=0

En−1

[
|∆nf |2

]) 1
2

∥∥∥∥∥∥
r

+ C

∥∥∥∥sup
n∈N

|∆nf |
∥∥∥∥

r

≤ C ‖f ∗‖r .

Remark1. The theorem is proved forr = 2 andr > 2 in a unified way, which differs
from the original proof.
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