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In this paper we give a simple proof of Schipp’s theorem by using a basic mar-
tingale inequality.
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1. Introduction

The propertyA of operators was introduced by F. Schipp 1h &nd he proved that,
if (T,,n € P) are a series of operators with propertyand some boundedness,
then the operatof’ = 3 >° | T, is of type (p,p) (p > 2). We resume this result
as Theorem..1. F. Schipp applied Theorem1to prove the significant result that
the Fourier-Vilenkin expansions of the functighe L? converge tof in L”-norms
(1 <p<o0).

Throughout this papdP andN denote the set of positive integers and the set of

nonnegative integers, respectively. We always@sé’;, andC; to denote constants
which may be different in different contexts.

Let (2, F, 1) be a complete probability space afi#,,n € N} an increasing
sequence of sub-algebras ofF with 7 = o(|J,, .). Denote byE andE,, ex-
pectation operator and conditional expectation operators relati#g for n € N,
respectively. We briefly writel? instead of the complexX?(Q2, F, 1) while the

norm (or quasinorm) of this space is defined|hy|, = (E[|f\p])%. A martingale
f = (fn,n € N) is an adapted, integrable sequence Witlf,, = f, for alln < m.
For a martingalef = (f,,),>0 we say thatf = (f,,),>0 1S L, (1 < p < oo)-bounded
if || £, = sup, || fall, < 00. f 1 <p < ocoandf € L”thenf = (E,f)yso is aLP-

bounded martingale, angf||, = HfH (see B]). We denote the maximal function
p

and the martingale differences of a martingle (f,,,n € N) by f* = sup,,cy | f»|
anddf,, = f,—fa—1 (n € P), dfy = fo, respectively. We recall that forig,-bounded
martingalef = (f,,)n>0 (p > 1):

(1.1) LA, < 171, < CAL -
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We will use the following martingale inequality (see Weigp{

1.2) [I/]l, <G (ZEM Udfn|2])
n=0

p

+C <G |f*ll, (2<p<oo).

p

sup |df,|
neN

Now letAg = E, A, =E, —E,_1(n € P). Itis easy to see that
(13) ]En o IE’m - Emin(n,m)) An o Am - 5mnAn(nu m e ]P),

whered,,,, is the Kronecker symbol anddenotes the composition of functions. Let
{T,n e P}, T, : LP — L1 (1 < p,q < 0), be a sequence of operators. We say
that the operator$T,,,n € P} are uniformly of type(F, _1,p, q) if there exists a
constant”' > 0 such that for allf € L?

(En [l f1D7 < CEnallfI7])7.
A sequence of operatofd,, n € P} is said to satisfy thé\-condition, if
(1.4) Thol,=A,0T, =T, (ncP).

From the equations in.(3) it is easy to see that th&—condition is equivalent to the
following conditions:

(15) T,0E,=E,0T,=T,  ThoE, 1=K, 0T, =0(neP).

Forf e LP, setTf = % > T,f andT*f = sup|>_."  T,f|. Itis obvious
that the operator serigs -, T,,f is convergent at each point &f= J L?(F,) if
{T,,n € P} satisfy theA-condition, since fof € L?(Fy), T,.f = T,0A,oExf =
0. We resume Schipp’s theorem as follows:
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Theorem 1.1 ([L]). Let(7,,,n € P) be a sequence of operators with the propekty
and letp > 2. If for r = 2,p andn € P, the operator§7,,,n € P) are uniformly

of type(F,_1,r, 1), then the operatot” is of type(r, r), i.e., there exists a constant
C > 0 such that for allf € L":

ITf1l, < CIAA, -
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2. Proof of Theoreml1l.1

Proof. Let f € L" (r > 2). Then by (.5, it is easy to see that the stochastic
sequencé) ", Ti.f, F,) is a martingale. ByX(.1) we only need to prove that

1711, < L,

Since the operatorg, are uniformly of type(F,, 1, 2,2) and(F,_4,r, 1), it fol- Praof of Schipp's Thearem
lows from (1.2) and (L.4) that

Yanbo Ren and Junyan Ren

vol. 8, iss. 4, art. 117, 2007

00 3
I fll, < C{ DB [ITanQ}) +C ||sup [T, f]
n=0 . neN r Title Page
1

=C iEn_l [|Tn o Anf|2]> ’ + C'||sup |T,, o A, f] —
e neN N <4< >
o0 3 ' < >

<C ZE”_l [|Anf]2]> +C ilég’Anf‘ Page 6 of 7
n=0 T

< CHf*Hr " Go Back

= Full Screen
Close

Remarkl. The theorem is proved for= 2 andr > 2 in a unified way, which differs
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