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ABSTRACT. We study maximal inequalities for demisubmartingales and N-demisupermartingales
and obtain inequalities between dominated demisubmartingales. A sequence of partial sums
of zero mean associated random variables is an example of a demimartingale and a sequence
of partial sums of zero mean negatively associated random variables is an example of a N-
demimartingale.
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1. I NTRODUCTION

Let (Ω,F , P ) be a probability space and{Sn, n ≥ 1} be a sequence of random variables
defined on it such thatE|Sn| <∞, n ≥ 1. Suppose that

(1.1) E[(Sn+1 − Sn)f(S1, . . . , Sn)] ≥ 0

for all coordinate-wise nondecreasing functionsf whenever the expectation is defined. Then
the sequence{Sn, n ≥ 1} is called ademimartingale. If the inequality (1.1) holds for non-
negative coordinate-wise nondecreasing functionsf, then the sequence{Sn, n ≥ 1} is called a
demisubmartingale. If

(1.2) E[(Sn+1 − Sn)f(S1, . . . , Sn)] ≤ 0

for all coordinatewise nondecreasing functionsf whenever the expectation is defined, then the
sequence{Sn, n ≥ 1} is called aN−demimartingale. If the inequality (1.2) holds for non-
negative coordinate-wise nondecreasing functionsf, then the sequence{Sn, n ≥ 1} is called a
N−demisupermartingale.
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2 B.L.S. PRAKASA RAO

Remark 1.1. If the functionf in (1.1) is not required to be nondecreasing, then the condition
defined by the inequality (1.1) is equivalent to the condition that{Sn, n ≥ 1} is a martingale
with respect to the natural choice ofσ-algebras. If the inequality defined by (1.1) holds for
all nonnegative functionsf, then{Sn, n ≥ 1} is a submartingale with respect to the natural
choice ofσ-algebras. A martingale with the natural choice ofσ-algebras is a demimartingale
as well as aN−demimartingale since it satisfies (1.1) as well as (1.2). It can be checked that
a submartingale is a demisubmartingale and a supermartingale is anN -demisupermartingale.
However there are stochastic processes which are demimartingales but not martingales with
respect to the natural choice ofσ-algebras (cf. [18]).

The concept of demimartingales and demisubmartingales was introduced by Newman and
Wright [11] and the notion ofN−demimartingales (termed earlier as negative demimartingales
in [14]) andN−demisupermartingales were introduced in [14] and [6].

A set of random variablesX1, . . . , Xn is said to beassociatedif

(1.3) Cov(f(X1, . . . , Xn), g(X1, . . . , Xn)) ≥ 0

for any two coordinatewise nondecreasing functionsf andg whenever the covariance is defined.
They are said to benegatively associatedif

(1.4) Cov(f(Xi, i ∈ A), g(Xi, i ∈ B)) ≤ 0

for any two disjoint subsetsA andB and for any two coordinatewise nondecreasing functions
f andg whenever the covariance is defined.

A sequence of random variables{Xn, n ≥ 1} is said to beassociated(negatively associated)
if every finite subset of random variables of the sequence is associated (negatively associated).

2. M AXIMAL I NEQUALITIES FOR DEMIMARTINGALES AND DEMISUBMARTINGALES

Newman and Wright [11] proved that the partial sums of a sequence of mean zero associated
random variables form a demimartingale. We will now discuss some properties of demimartin-
gales and demisubmartingales. The following result is due to Christofides [5].

Theorem 2.1. Suppose the sequence{Sn, n ≥ 1} is a demisubmartingale or a demimartin-
gale andg (·) is a nondecreasing convex function. Then the sequence{g(Sn), n ≥ 1} is a
demisubmartingale.

Let g(x) = x+ = max(0, x). Then the functiong is nondecreasing and convex. As a special
case of the previous result, we get that{S+

n , n ≥ 1} is a demisubmartingale. Note thatS+
n =

max(0, Sn).
Newman and Wright [11] proved the following maximal inequality for demisubmartingales

which is an analogue of a maximal inequality for submartingales due to Garsia [8].

Theorem 2.2. Suppose{Sn, n ≥ 1} is a demimartingale (demisubmartingale) andm (·) is a
nondecreasing (nonnegative and nondecreasing) function withm(0) = 0. Let

Snj = j − th largest of (S1, . . . , Sn) if j ≤ n

= min(S1, . . . , Sn) = Sn,n if j > n.

Then, for anyn andj,

E

(∫ Snj

0

udm(u)

)
≤ E [Snm(Snj)] .

In particular, for anyλ > 0,

(2.1) λ P (Sn1 ≥ λ) ≤
∫

[Sn1≥λ]

SndP.
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DEMISUBMARTINGALES AND N−DEMISUPERMARTINGALES 3

As an application of the above inequality and an upcrossing inequality for demisubmartin-
gales, the following convergence theorem was proved in [11].

Theorem 2.3. If {Sn, n ≥ 1} is a demisubmartingale andsupnE|Sn| <∞, thenSn converges
almost surely to a finite limit.

Christofides [5] proved a general version of the inequality (2.1) of Theorem 2.2 which is an
analogue of Chow’s maximal inequality for martingales [3].

Theorem 2.4.Let{Sn, n ≥ 1} be a demisubmartingale withS0 = 0. Let the sequence{ck, k ≥
1} be a nonincreasing sequence of positive numbers. Then, for anyλ > 0,

λ P

(
max
1≤k≤n

ckSk ≥ λ

)
≤

n∑
j=1

cjE
(
S+

j − S+
j−1

)
.

Wang [16] obtained the following maximal inequality generalizing Theorems 2.2 and 2.4.

Theorem 2.5.Let{Sn, n ≥ 1} be a demimartingale andg (·) be a nonnegative convex function
on R with g(0) = 0. Suppose that{ci, 1 ≤ i ≤ n} is a nonincreasing sequence of positive
numbers. LetS∗n = max1≤i≤n cig(Si). Then, for anyλ > 0,

λ P (S∗n ≥ λ) ≤
n∑

i=1

ciE{(g(Si)− g(Si−1))I[S
∗
n ≥ λ]}.

Suppose{Sn, n ≥ 1} is a nonnegative demimartingale. As a corollary to the above theorem,
it can be proved that

E(Smax
n ) ≤ e

e− 1
[1 + E(Sn log+ Sn)].

For a proof of this inequality, see Corollary 2.1 in [16].
We now discuss a Whittle type inequality for demisubmartingales due to Prakasa Rao [13].

This result generalizes the Kolmogorov inequality and the Hajek-Renyi inequality for indepen-
dent random variables [17] and is an extension of the results in [5] for demisubmartingales.

Theorem 2.6. Let S0 = 0 and{Sn, n ≥ 1} be a demisubmartingale. Letφ (·) be a nonnega-
tive nondecreasing convex function such thatφ(0) = 0. Letψ(u) be a positive nondecreasing
function foru > 0. Further suppose that0 = u0 < u1 ≤ · · · ≤ un. Then

P (φ(Sk) ≤ ψ(uk), 1 ≤ k ≤ n) ≥ 1−
n∑

k=1

E[φ(Sk)]− E[φ(Sk−1)]

ψ(uk)
.

As a corollary of the above theorem, it follows that

P

(
sup

1≤j≤n

φ(Sj)

ψ(uj)
≥ ε

)
≤ ε−1

n∑
k=1

E[φ(Sk)]− E[φ(Sk−1)]

ψ(uk)

for anyε > 0. In particular, for any fixedn ≥ 1,

P

(
sup
k≥n

φ(Sk)

ψ(uk)
≥ ε

)
≤ ε−1

[
E

(
φ(Sn)

ψ(un)

)
+

∞∑
k=n+1

E[φ(Sk)]− E[φ(Sk−1)]

ψ(uk)

]
for any ε > 0. As a consequence of this inequality, we get the following strong law of large
numbers for demisubmartingales [13].
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4 B.L.S. PRAKASA RAO

Theorem 2.7. Let S0 = 0 and{Sn, n ≥ 1} be a demisubmartingale. Letφ (·) be a nonega-
tive nondecreasing convex function such thatφ(0) = 0. Letψ(u) be a positive nondecreasing
function foru > 0 such thatψ(u) →∞ asu→∞. Further suppose that

∞∑
k=1

E[φ(Sk)]− E[φ(Sk−1)]

ψ(uk)
<∞

for a nondecreasing sequenceun →∞ asn→∞. Then

φ(Sn)

ψ(un)

a.s→ 0 as n→∞.

Suppose{Sn, n ≥ 1} is a demisubmartingale. LetSmax
n = max1≤i≤n Si and Smin

n =
min1≤i≤n Si. As special cases of Theorem 2.2, we get that

(2.2) λ P [Smax
n ≥ λ] ≤

∫
[Smax

n ≥λ]

SndP

and

(2.3) λ P [Smin
n ≥ λ] ≤

∫
[Smin

n ≥λ]

SndP

for anyλ > 0.
The inequality (2.2) can also be obtained directly without using Theorem 2.2 by the standard

methods used to prove Kolomogorov’s inequality. We now prove a variant of the inequality
given by (2.3).

Suppose{Sn, n ≥ 1} is a demisubmartingale. Letλ > 0. Let

N =

[
min

1≤k≤n
Sk < λ

]
, N1 = [S1 < λ]

and
Nk = [Sk < λ, Sj ≥ λ, 1 ≤ j ≤ k − 1], k > 1.

Observe that

N =
n⋃

k=1

Nk

andNk ∈ Fk = σ{S1, . . . , Sk}. FurthermoreNk, 1 ≤ k ≤ n are disjoint and

Nk ⊂

(
k−1⋃
i=1

Ni

)c

,

whereAc denotes the complement of the setA in Ω. Note that

E(S1) =

∫
N1

S1dP +

∫
Nc

1

S1dP

≤ λ

∫
N1

dP +

∫
Nc

1

S2dP.

The last inequality follows by observing that∫
Nc

1

S1dP −
∫

Nc
1

S2dP =

∫
Nc

1

(S1 − S2)dP

= E((S1 − S2)I[N
c
1 ]).
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Since the indicator function of the setN c
1 = [S1 ≥ λ] is a nonnegative nondecreasing function

of S1 and{Sk, 1 ≤ k ≤ n} is a demisubmartingale, it follows that

E((S2 − S1)I[N
c
1 ]) ≥ 0.

Therefore
E((S1 − S2)I[N

c
1 ]) ≤ 0,

which implies that ∫
Nc

1

S1dP ≤
∫

Nc
1

S2dP.

This proves the inequality

E(S1) ≤ λ

∫
N1

dP +

∫
Nc

1

S2dP

= λP (N1) +

∫
Nc

1

S2dP.

Observe thatN2 ⊂ N c
1 . Hence∫

Nc
1

S2dP =

∫
N2

S2dP +

∫
Nc

2∩Nc
1

S2dP

≤
∫

N2

S2dP +

∫
Nc

2∩Nc
1

S3dP

≤ λ P (N2) +

∫
Nc

2∩Nc
1

S3dP.

The second inequality in the above chain follows from the observation that the indicator function
of the setN c

2 ∩ N c
1 = I[S1 ≥ λ, S2 ≥ λ] is a nonnegative nondecreasing function ofS1, S2

and the fact that{Sk, 1 ≤ k ≤ n} is a demisubmartingale. By repeated application of these
arguments, we get that

E(S1) ≤ λ
n∑

i=1

P (Ni) +

∫
∩n

i=1Nc
i

SndP

= λ P (N) +

∫
Ω

SndP −
∫

N

SndP.

Hence

λ P (N) ≥
∫

N

SndP −
∫

Ω

(Sn − S1)dP

and we have the following result.

Theorem 2.8.Suppose that{Sn, n ≥ 1} is a demisubmartingale . Let

N =

[
min

1≤k≤n
Sk < λ

]
for anyλ > 0. Then

(2.4) λ P (N) ≥
∫

N

SndP −
∫

Ω

(Sn − S1)dP.

In particular, if{Sn, n ≥ 1} is a demimartingale, then it is easy to check thatE(Sn) = E(S1)
for all n ≥ 1 and hence we have the following result as a corollary to Theorem 2.8.
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Theorem 2.9.Suppose that{Sn, n ≥ 1} is a demimartingale . LetN = [min1≤k≤n Sk < λ] for
anyλ > 0. Then

(2.5) λ P (N) ≥
∫

N

SndP.

We now prove some new maximal inequalities for nonnegative demisubmartingales.

Theorem 2.10. Suppose that{Sn, n ≥ 1} is a positive demimartingale withS1 = 1. Let
γ(x) = x− 1− log x for x > 0. Then

(2.6) γ(E [Smax
n ]) ≤ E [Sn logSn]

and

(2.7) γ(E
[
Smin

n

]
) ≤ E [Sn logSn] .

Proof. Note that the functionγ(x) is a convex function with minimumγ(1) = 0. Let I(A)
denote the indicator function of the setA. Observe thatSmax

n ≥ S1 = 1 and hence

E(Smax
n )− 1 =

∫ ∞

0

P [Smax
n ≥ λ]dλ− 1

=

∫ 1

0

P [Smax
n ≥ λ]dλ+

∫ ∞

1

P [Smax
n ≥ λ]dλ− 1

=

∫ ∞

1

P [Smax
n ≥ λ]dλ (since S1 = 1)

≤
∫ ∞

1

{
1

λ

∫
[Smax

n ≥λ]

SndP

}
dλ (by (2.2))

= E

(∫ ∞

1

SnI[S
max
n ≥ λ]

λ
dλ

)
= E

(
Sn

∫ Smax
n

1

1

λ
dλ

)
= E(Sn log(Smax

n )).

Using the fact thatγ(x) ≥ 0 for all x > 0, we get that

E(Smax
n )− 1 ≤ E

[
Sn

(
log(Smax

n ) + γ

(
Smax

n

SnE(Smax
n )

))]
= E

[
Sn

(
log(Smax

n ) +
Smax

n

SnE(Smax
n )

− 1− log

(
Smax

n

SnE(Smax
n )

))]
= 1− E(Sn) + E(Sn logSn) + E(Sn) logE(Smax

n ).

Rearranging the terms in the above inequality, we obtain

γ(E(Smax
n )) = E(Smax

n )− 1− logE(Smax
n )(2.8)

≤ 1− E(Sn) + E(Sn logSn) + E(Sn) logE(Smax
n )− logE(Smax

n )

= E(Sn logSn) + (E(Sn)− 1)
(
logE

(
S(max)

n

)
− 1
)

= E(Sn logSn)

sinceE(Sn) = E(S1) = 1 for all n ≥ 1. This proves the inequality (2.6).
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DEMISUBMARTINGALES AND N−DEMISUPERMARTINGALES 7

Observe that0 ≤ Smin
n ≤ S1 = 1, which implies that

E(Smin
n ) =

∫ 1

0

P [Smin
n ≥ λ]dλ

= 1−
∫ 1

0

P [Smin
n < λ]dλ

≤ 1−
∫ 1

0

{
1

λ

∫
[Smin

n <λ]

SndP

}
dλ (by Theorem 2.9)

= 1− E

(∫ 1

0

SnI[S
min
n < λ]

λ
dλ

)
= 1− E

(
Sn

∫ 1

Smin
n

1

λ
dλ

)
= 1 + E(Sn log(Smin

n )).

Applying arguments similar to those given above to prove the inequality (2.8), we get that

(2.9) γ(E(Smin
n )) ≤ E(Sn logSn)

which proves the inequality (2.7). �

The above inequalities for positive demimartingales are analogues of maximal inequalities
for nonnegative martingales proved in [9].

3. M AXIMAL φ-INEQUALITIES FOR NONNEGATIVE DEMISUBMARTINGALES

LetC denote the class ofOrlicz functions, that is, unbounded, nondecreasing convex functions
φ : [0,∞) → [0,∞) with φ(0) = 0. If the right derivativeφ′ is unbounded, then the functionφ
is called aYoung functionand we denote the subclass of such functions byC ′. Since

φ(x) =

∫ x

0

φ′(s)ds ≤ xφ′(x)

by convexity, it follows that

pφ = inf
x>0

xφ′(x)

φ(x)

and

p∗φ = sup
x>0

xφ′(x)

φ(x)

are in[1,∞]. The functionφ is calledmoderateif p∗φ < ∞, or equivalently, if for someλ > 1,
there exists a finite constantcλ such that

φ(λx) ≤ cλφ(x), x ≥ 0.

An example of such a function isφ(x) = xα for α ∈ [1,∞). An example of a nonmoderate
Orlicz function isφ(x) = exp(xα)− 1 for α ≥ 1.

Let C∗ denote the set of all differentiableφ ∈ C whose derivative is concave or convex and
C ′ denote the set ofφ ∈ C such thatφ′(x)/x is integrable at 0, and thus, in particularφ′(0) = 0.
Let C∗0 = C ′ ∩ C∗.

Givenφ ∈ C anda ≥ 0, define

Φa(x) =

∫ x

a

∫ s

a

φ′(r)

r
drds, x > 0.
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It can be seen that the functionΦaI[a,∞) ∈ C for any a > 0, whereIA denotes the indicator
function of the setA. If φ ∈ C ′, the same holds forΦ ≡ Φ0. If φ ∈ C∗0 , then Φ ∈ C∗0 .
Furthermore, ifφ′ is concave or convex, the same holds for

Φ′(x) =

∫ x

0

φ′(r)

r
dr,

and henceφ ∈ C∗0 implies thatΦ ∈ C∗0 . It can be checked thatφ andΦ are related through the
diferential equation

xΦ′(x)− Φ(x) = φ(x), x ≥ 0

under the initial conditionsφ(0) = φ′(0) = Φ(0) = Φ′(0) = 0. If φ(x) = xp for somep > 1,
thenΦ(x) = xp/(p − 1). For instance, ifφ(x) = x2, thenΦ(x) = x2. If φ(x) = x, then
Φ(x) ≡ ∞ but Φ1(x) = x log x − x + 1. It is known that ifφ ∈ C ′ with pφ > 1, then the
functionφ satisfies the inequalities

Φ(x) ≤ 1

pφ − 1
φ(x), x ≥ 0.

Furthermore, ifφ is moderate, that isp∗φ <∞, then

Φ(x) ≥ 1

p∗φ − 1
φ(x), x ≥ 0.

The brief introduction for properties of Orlicz functions given here is based on [2].
We now prove some maximalφ-inequalities for nonnegative demisubmartingales following

the techniques in [2].

Theorem 3.1.Let{Sn, n ≥ 1} be a nonnegative demisubmartingale and letφ ∈ C. Then

P (Smax
n ≥ t) ≤ λ

(1− λ)t

∫ ∞

t

P (Sn > λs)ds(3.1)

=
λ

(1− λ)t
E

(
Sn

λ
− t

)+

for all n ≥ 1, t > 0 and0 < λ < 1. Furthermore,

(3.2) E[φ(Smax
n )] ≤ φ(b) +

λ

1− λ

∫
[Sn>λb]

(
Φa

(
Sn

λ

)
− Φa(b)− Φ′a(b)

(
Sn

λ
− b

))
dP

for all n ≥ 1, a > 0, b > 0 and0 < λ < 1. If φ′(x)/x is integrable at 0, that is,φ ∈ C ′, then the
inequality (3.2) holds forb = 0.

Proof. Let t > 0 and0 < λ < 1. Inequality (2.2) implies that

P (Smax
n ≥ t) ≤ 1

t

∫
[Smax

n ≥t]

SndP(3.3)

=
1

t

∫ ∞

0

P [Smax
n ≥ t, Sn > s]ds

≤ 1

t

∫ λt

0

P [Smax
n ≥ t]ds+

1

t

∫ ∞

λt

P [Sn > s]ds

≤ λP [Smax
n ≥ t]ds+

λ

t

∫ ∞

t

P [Sn > λs]ds.
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Rearranging the last inequality, we get that

P (Smax
n ≥ t) ≤ λ

(1− λ)t

∫ ∞

t

P (Sn > λs)ds

=
λ

(1− λ)t
E

(
Sn

λ
− t

)+

for all n ≥ 1, t > 0 and0 < λ < 1 proving the inequality (3.1) in Theorem 3.1. Letb > 0.
Then

E[φ(Smax
n )] =

∫ ∞

0

φ′(t)P (Smax
n > t)dt

=

∫ b

0

φ′(t)P (Smax
n > t)dt+

∫ ∞

b

φ′(t)P (Smax
n > t)dt

≤ φ(b) +

∫ ∞

b

φ′(t)P (Smax
n > t)dt

≤ φ(b) +
λ

1− λ

∫ ∞

b

φ′(t)

t

[∫ ∞

t

P (Sn > λs)ds

]
dt (by (3.1))

= φ(b) +
λ

1− λ

∫ ∞

b

(∫ s

b

φ′(t)

t
dt

)
P (Sn > λs)ds

= φ(b) +
λ

1− λ

∫ ∞

b

(Φ′a(s)− Φ′a(b))P (Sn > λs)ds

= φ(b) +
λ

1− λ

∫
[Sn>λb]

(
Φa

(
Sn

λ

)
− Φa(b)− Φ′a(b)

(
Sn

λ
− b

))
dP

for all n ≥ 1, b > 0, t > 0, 0 < λ < 1 anda > 0.The value ofa can be chosen to be 0 if
φ′(x)/x is integrable at 0. �

As special cases of the above result, we obtain the following inequalities by choosingb = a
in (3.2). Observe thatΦa(a) = Φ′a(a) = 0.

Theorem 3.2.Let{Sn, n ≥ 1} be a nonnegative demisubmartingale and letφ ∈ C. Then

(3.4) E[φ(Smax
n )] ≤ φ(a) +

λ

1− λ
E

[
Φa

(
Sn

λ

)]
for all a ≥ 0, 0 < λ < 1 andn ≥ 1. Letλ = 1

2
in (3.4). Then

(3.5) E[φ(Smax
n )] ≤ φ(a) + E[Φa(2Sn)]

for all a ≥ 0 andn ≥ 1.

The following lemma is due to Alsmeyer and Rosler [2].

Lemma 3.3. LetX andY be nonnegative random variables satisfying the inequality

t P (Y ≥ t) ≤ E(XI[Y≥t])

for all t ≥ 0. Then

(3.6) E[φ(Y )] ≤ E[φ(qφX)]

for any Orlicz functionφ, whereqφ =
pφ

pφ−1
andpφ = infx>0

xφ′(x)
φ(x)

.

J. Inequal. Pure and Appl. Math., 8(4) (2007), Art. 112, 17 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


10 B.L.S. PRAKASA RAO

This lemma follows as an application of the Choquet decomposition

φ(x) =

∫
[0,∞)

(x− t)+φ′(dt), x ≥ 0.

In view of the inequality (2.2), we can apply the above lemma to the random variablesX =
Sn andY = Smax

n to obtain the following result.

Theorem 3.4.Let{Sn, n ≥ 1} be a nonnegative demisubmartingale and letφ ∈ C with pφ > 1.
Then

(3.7) E[φ(Smax
n )] ≤ E[φ(qφSn)]

for all n ≥ 1.

Theorem 3.5.Let{Sn, n ≥ 1} be a nonnegative demisubmartingale. Suppose that the function
φ ∈ C is moderate. Then

(3.8) E[φ(Smax
n )] ≤ E[φ(qφSn)] ≤ q

p∗φ
Φ E[φ(Sn)].

The first part of the inequality (3.8) of Theorem 3.5 follows from Theorem 3.4. The last part
of the inequality follows from the observation that ifφ ∈ C is moderate, that is,

p∗φ = sup
x>0

xφ′(x)

φ(x)
<∞,

then
φ(λx) ≤ λp∗φφ(x)

for all λ > 1 andx > 0 (see [2, equation (1.10)]).

Theorem 3.6.Let{Sn, n ≥ 1} be a nonnegative demisubmartingale. Supposeφ is a nonnega-
tive nondecreasing function on[0,∞) such thatφ1/γ is also nondecreasing and convex for some
γ > 1. Then

(3.9) E[φ(Smax
n )] ≤

(
γ

γ − 1

)γ

E[φ(Sn)].

Proof. The inequality

λP (Smax
n ≥ λ) ≤

∫
[Smax

n ≥λ]

SndP

given in (2.2) implies that

(3.10) E[(Smax
n )p] ≤

(
p

p− 1

)p

E(Sp
n), p > 1

by an application of the Holder inequality (cf. [4, p. 255]). Note that the sequence{[φ(Sn)]1/γ, n ≥
1} is a nonnegative demisubmartingale by Lemma 2.1 of [5]. Applying the inequality (3.10) for
the sequence{[φ(Sn)]1/γ, n ≥ 1} and choosingp = γ in that inequality, we get that

(3.11) E[φ(Smax
n )] ≤

(
γ

γ − 1

)γ

E[φ(Sn)].

for all γ > 1. �

Examples of functionsφ satisfying the conditions stated in Theorem 3.6 areφ(x) = xp[log(1+
x)]r for p > 1 andr ≥ 0 andφ(x) = erx for r > 0. Applying the result in Theorem 3.6 for the
functionφ(x) = erx, r > 0, we obtain the following inequality.
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Theorem 3.7.Let{Sn, n ≥ 1} be a nonnegative demisubmartingale. Then

(3.12) E[erSmax
n ] ≤ eE[erSn ], r > 0.

Proof. Applying the result stated in Theorem 3.6 to the functionφ(x) = erx, we get that

(3.13) E[erSmax
n ] ≤

(
γ

γ − 1

)γ

E[erSn ]

for anyγ > 1. Let γ →∞. Then (
γ

γ − 1

)γ

↓ e

and we get that

(3.14) E[erSmax
n ] ≤ eE[erSn ], r > 0.

�

The next result deals with maximal inequalities for functionsφ ∈ C which arek times differ-
entiable with thek-th derivativeφ(k) ∈ C for somek ≥ 1.

Theorem 3.8. Let {Sn, n ≥ 1} be a nonnegative demisubmartingale. Letφ ∈ C which is
differentiablek times with thek-th derivativeφ(k) ∈ C for somek ≥ 1.Then

(3.15) E[φ(Smax
n )] ≤

(
k + 1

k

)k+1

E[φ(Sn)].

Proof. The proof follows the arguments given in [2] following the inequality (3.9). We present
the proof here for completeness. Note that

φ(x) =

∫
[0,∞)

(x− t)+Qφ(dt),

where
Qφ(dt) = φ′(0)δ0 + φ′(dt)

andδ0 is the Kronecker delta function. Hence, ifφ′ ∈ C, then

φ(x) =

∫ x

0

φ′(y)dy(3.16)

=

∫ x

0

∫
[0,∞)

(y − t)+Qφ′(dt)dy

=

∫
[0,∞)

∫ x

0

(y − t)+dyQφ′(dt)

=

∫
[0,∞)

((x− t)+)2

2
Qφ′(dt).

An inductive argument shows that

(3.17) φ(x) =

∫
[0,∞)

((x− t)+)k+1

(k + 1)!
Qφ(k)(dt)

for anyφ ∈ C such thatφ(k) ∈ C. Let

φk,t(x) =
((x− t)+)k+1

(k + 1)!

for any k ≥ 1 and t ≥ 0. Note that the function[φk,t(x)]
1/(k+1) is nonnegative, convex and

nondecreasing inx for anyk ≥ 1 andt ≥ 0. Hence the process{[φk,t(Sn)]1/(k+1), n ≥ 1} is
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a nonnegative demisubmartingale by [5]. Following the arguments given to prove (3.10), we
obtain that

E(([φk,t(S
max
n )]1/(k+1))k+1) ≤

(
k + 1

k

)k+1

E(([φk,t(Sn)]1/(k+1))k+1)

which implies that

(3.18) E[φk,t(S
max
n )] ≤

(
k + 1

k

)k+1

E[φk,t(Sn)].

Hence

E[φ(Smax
n ))] =

∫
[0,∞)

E[φk,t(S
max
n )]Qφ(k)(dt) (by (3.17))(3.19)

≤
(
k + 1

k

)k+1 ∫
[0,∞)

E[φk,t(Sn)]Qφ(k)(dt) (by (3.18))

=

(
k + 1

k

)k+1

E[φ(Sn)]

which proves the theorem. �

We now consider a special case of the maximal inequality derived in (3.2) of Theorem 3.1.
Let φ(x) = x. ThenΦ1(x) = x log x − x + 1 andΦ′1(x) = log x. The inequality (3.2) reduces
to

E[Smax
n ] ≤ b+

λ

1− λ

∫
[Sn>λb]

(
Sn

λ
log

Sn

λ
− Sn

λ
+ b− (log b)

Sn

λ

)
dP

= b+
λ

1− λ

∫
[Sn>λb]

(Sn logSn − Sn(log λ+ log b+ 1) + λb)dP

for all b > 0 and0 < λ < 1. Let b > 1 andλ = 1
b
. Then we obtain the inequality

(3.20) E [Smax
n ] ≤ b+

b

b− 1
E

[∫ max(Sn,1)

1

log x dx

]
, b > 1, n ≥ 1.

The value ofb which minimizes the term on the right hand side of the equation (3.20) is

b∗ = 1 +

(
E

[∫ max(Sn,1)

1

log x dx

]) 1
2

and hence

(3.21) E(Smax
n ) ≤

1 + E

[∫ max(Sn,1)

1

log x dx

] 1
2

2

.

Since ∫ x

1

log ydy = x log+ x− (x− 1), x ≥ 1,

the inequality (3.20) can be written in the form

(3.22) E(Smax
n ) ≤ b+

b

b− 1
(E(Sn log+ Sn)− E(Sn − 1)+), b > 1, n ≥ 1.
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Let b = E(Sn − 1)+ in the equation (3.22). Then we get the maximal inequality

(3.23) E(Smax
n ) ≤ 1 + E(Sn − 1)+

E(Sn − 1)+
E(Sn log+ Sn).

If we chooseb = e in the equation (3.22), then we get the maximal inequality

(3.24) E(Smax
n ) ≤ e+

e

e− 1
(E(Sn log+ Sn)− E(Sn − 1)+), b > 1, n ≥ 1.

This inequality gives a better bound than the bound obtained as a consequence of the result
stated in Theorem 2.5 (cf. [16]) ifE(Sn − 1)+ ≥ e− 2.

4. I NEQUALITIES FOR DOMINATED DEMISUBMARTINGALES

Let M0 = N0 = 0 and {Mn, n ≥ 0} be a sequence of random variables defined on a
probability space(Ω,F , P ). Suppose that

E[(Mn+1 −Mn)f(M0, . . . ,Mn)|ζn] ≥ 0

for any nonnegative coordinatewise nondecreasing functionf given a filtration{ζn, n ≥ 0}
contained inF . Then the sequence{Mn, n ≥ 0} is said to be astrong demisubmartingale
with respect to the filtration{ζn, n ≥ 0}. It is obvious that a strong demisubmartingale is a
demisubmartingale in the sense discused earlier.

Definition 4.1. LetM0 = 0 = N0. Suppose{Mn, n ≥ 0} is a strong demisubmartingale with
respect to the filtration generated by a demisubmartingale{Nn, n ≥ 0}. The strong demisub-
martingale{Mn, n ≥ 0} is said to beweakly dominatedby the demisubmartingale{Nn, n ≥ 0}
if for every nondecreasing convex functionφ : R+ → R, and for any nonnegative coordinate-
wise nondecreasing functionf : R2n → R,

(4.1) E[(φ(|en|)− φ(|dn|)f(M0, . . . ,Mn−1;N0, . . . , Nn−1)|N0, . . . , Nn−1] ≥ 0 a.s.,

for all n ≥ 1 wheredn = Mn −Mn−1 anden = Nn −Nn−1. We writeM � N in such a case.

In analogy with the inequalities for dominated martingales developed in [12], we will now
prove an inequality for domination between a strong demisubmartingale and a demisubmartin-
gale.

Define the functionsu<2(x, y) andu>2(x, y) as in Section 2.1 of [12] for(x, y) ∈ R2. We
now state a weak-type inequality between dominated demisubmartingales.

Theorem 4.1.Suppose{Mn, n ≥ 0} is a strong demisubmartingale with respect to the filtration
generated by the sequence{Nn, n ≥ 0} which is a demisubmartingale. Further suppose that
M � N. Then, for anyλ > 0,

(4.2) λ P (|Mn| ≥ λ) ≤ 6 E|Nn|, n ≥ 0.

We will at first prove a Lemma which will be used to prove Theorem 4.1.

Lemma 4.2. Suppose{Mn, n ≥ 0} is a strong demisubmartingale with respect to the filtration
generated by the sequence{Nn, n ≥ 0} which is a demisubmartingale. Further suppose that
M � N. Then

(4.3) E[u<2(Mn, Nn)f(M0, . . . ,Mn−1;N0, . . . , Nn−1)]

≥ E[u<2(Mn−1, Nn−1)f(M0, . . . ,Mn−1;N0, . . . , Nn−1)]
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and

(4.4) E[u>2(Mn, Nn)f(M0, . . . ,Mn−1;N0, . . . , Nn−1)]

≥ E[u>2(Mn−1, Nn−1)f(M0, . . . ,Mn−1;N0, . . . , Nn−1)]

for any nonnegative coordinatewise nondecreasing functionf : R2n → R, n ≥ 1.

Proof. Defineu(x, y) whereu = u<2 or u = u>2 as in Section 2.1 of [12]. From the arguments
given in [12], it follows that there exist a nonnegative functionA(x, y) nondecreasing inx
and a nonnegative functionB(x, y) nondecreasing iny and a convex nondecreasing function
φx,y (·) : R+ → R, such that, for anyh andk,

(4.5) u(x, y) + A(x, y)h+B(x, y)k + φx,y(|k|)− φx,y(|h|) ≤ u(x+ h, y + k).

Let x = Mn−1, y = Nn−1, h = dn andk = en. Then, it follows that

(4.6) u(Mn−1, Nn−1) + A(Mn−1, Nn−1)dn

+B(Mn−1, Nn−1)en + φMn−1,Nn−1(|en|)− φMn−1,Nn−1(|dn|)
≤ u(Mn−1 + dn, Nn−1 + en) = u(Mn, Nn).

Note that,

E[A(Mn−1, Nn−1)dnf(M0, . . . ,Mn−1;N0, . . . , Nn−1)|N0, . . . , Nn−1] ≥ 0 a.s.

from the fact that{Mn, n ≥ 0} is a strong demisubmartingale with respect to the filtration
generated by the process{Nn, n ≥ 0} and that the function

A(xn−1, yn−1)f(x0, . . . , xn−1; y0, . . . , yn−1)

is a nonnegative coordinatewise nondecreasing function inx0, . . . , xn−1 for any fixedy0, . . . , yn−1.
Taking expectation on both sides of the above inequality, we get that

(4.7) E[A(Mn−1, Nn−1)dnf(M0, . . . ,Mn−1;N0, . . . , Nn−1)] ≥ 0.

Similarly we get that

(4.8) E[B(Mn−1, Nn−1)dnf(M0, . . . ,Mn−1;N0, . . . , Nn−1)] ≥ 0.

Since the sequence{Mn, n ≥ 0} is dominated by the sequence{Nn, n ≥ 0}, it follows that

(4.9) E[(φMn−1,Nn−1(|en|)− φMn−1,Nn−1(|dn|)f(M0, . . . ,Mn−1;N0, . . . , Nn−1)] ≥ 0

by taking expectation on both sides of (4.1). Combining the relations (4.6) to (4.9), we get that

(4.10) E[u(Mn, Nn)f(M0, . . . ,Mn−1;N0, . . . , Nn−1)]

≥ E[u(Mn−1, Nn−1)f(M0, . . . ,Mn−1;N0, . . . , Nn−1)].

�

Remark 4.3. Let f ≡ 1. Repeated application of the inequality obtained in Lemma 4.2 shows
that

(4.11) E[u(Mn, Nn)] ≥ E[u(M0, N0)] = 0.

Proof of Theorem 4.1.Let

v(x, y) = 18 |y| − I

[
|x| ≥ 1

3

]
.

It can be checked that (cf. [12])

(4.12) v(x, y) ≥ u<2(x, y).
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Letλ > 0. It is easy to see that the strong demisubmartingale
{

Mn

3λ
, n ≥ 0

}
is weakly dominated

by the demisubmartingale{Nn

3λ
, n ≥ 0}. In view of the inequalities (4.7) and (4.8), we get that

(4.13) 6 E|Nn| − λ P (|Mn| ≥ λ) = λE

[
v

(
Mn

3λ
,
Nn

3λ

)]
≥ λE

[
u<2

(
Mn

3λ
,
Nn

3λ

)]
≥ 0

which proves the inequality

(4.14) λ P (|Mn| ≥ λ) ≤ 6 E|Nn|, n ≥ 0.

�

Remark 4.4. It would be interesting if the other results in [12] can be extended in a similar
fashion for dominated demisubmartingales. We do not discuss them here.

5. N−DEMIMARTINGALES AND N−DEMISUPERMARTINGALES

The concept of a negative demimartingale, which is now termed asN−demimartingale, was
introduced in [14] and in [6]. It can be shown that the partial sum{Sn, n ≥ 1} of mean zero
negatively associated random variables{Xj, j ≥ 1} is aN−demimartingale (cf. [6]). This can
be seen from the observation

E[(Sn+1 − Sn))f(S1, . . . , Sn)] = E(Xn+1f(S1, . . . , Sn)] ≤ 0

for any coordinatewise nondecreasing functionf and from the observation that increasing func-
tions defined on disjoint subsets of a set of negatively associated random variables are neg-
atively associated (cf. [10]) and the fact that{Xn, n ≥ 1} are negatively associated. Sup-
poseUn is a U-statistic based on negatively associated random variables{Xn, n ≥ 1} and
the product kernelh(x1, . . . , xm) =

∏m
i=1 g(xi) for some nondecreasing functiong (·) with

E(g(Xi)) = 0, 1 ≤ i ≤ n. Let

Tn =
n!

(n−m)!m!
Un, n ≥ m.

Then the sequence{Tn, n ≥ m} is aN−demimartingale. For a proof, see [6].
The following theorem is due to Christofides [6].

Theorem 5.1.Suppose{Sn, n ≥ 1} is aN−demisupermartingale. Then, for anyλ > 0,

λ P

[
max
1≤k≤n

Sk ≥ λ

]
≤ E(S1)−

∫
[max1≤k≤n Sk≥λ]

SndP.

In particular, the following maximal inequality holds for a nonnegativeN−demisupermartingale.

Theorem 5.2. Suppose{Sn, n ≥ 1} is a nonnegativeN−demisupermartingale. Then, for any
λ > 0,

λ P

(
max
1≤k≤n

Sk ≥ λ

)
≤ E(S1)

and

λ P

(
max
k≥n

Sk ≥ λ

)
≤ E(Sn).

Prakasa Rao [15] gives a Chow type maximal inequality forN−demimartingales.
Supposeφ is a right continuous decreasing function on(0,∞) satisfying the condition

lim
t→∞

φ(t) = 0.
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Further suppose thatφ is also integrable on any finite interval(0, x). Let

Φ(x) =

∫ x

0

φ(t)dt, x ≥ 0.

Then the functionΦ(x) is a nonnegative nondecreasing function such thatΦ(0) = 0. Further
suppose thatΦ(∞) = ∞. Such a function is called aconcave Young function. Properties of
such functions are given in [1]. An example of such a function isΦ(x) = xp, 0 < p < 1.
Christofides [6] obtained the following maximal inequality.

Theorem 5.3. Let {Sn, n ≥ 1} be a nonnegativeN−demisupermartingale. LetΦ(x) be a
concave Young function and defineψ(x) = Φ(x)− xφ(x). Then

(5.1) E[ψ(Smax
n )] ≤ E[Φ(S1)].

Furthermore, if

lim sup
x→∞

xφ(x)

Φ(x)
< 1,

then

(5.2) E[Φ(Smax
n )] ≤ cΦ(1 + E[Φ(S1)])

for some constantcΦ depending only on the functionΦ.

6. REMARKS

It would be interesting to find whether an upcrossing inequality can be obtained forN− demi-
martingales and then derive an almost sure convergence theorem forN−demisupermartingales.
Such results are known for demisubmartingales (see Theorem 2.3).

Wood [18] extended the notion of a discrete time parameter demisubmartingale to a con-
tinuous time parameter demisubmartingale following the ideas in [7]. A stochastic process
{St, 0 ≤ t ≤ T} is said to be a demisubmartingale if for every set{tj, 0 ≤ j ≤ k}, k ≥ 1
contained in the interval[0, T ] with 0 = t0 < t1 < · · · < tk = T, the sequence{Stj , 0 ≤ j ≤ k}
forms a demisubmartingale.

Suppose that a stochastic process{St, 0 ≤ t ≤ T} is a demisubmartingale in the sense
defined above. One can assume that the process is separable in the sense of [7]. It is easy to
check thatE(Sα) ≤ E(Sβ) wheneverα ≤ β since the constant functionf ≡ 1 is a nonnegative
nondecreasing function and

E[(Sβ − Sα)f(S0, Sα)] ≥ 0.

Furthermore, for anyλ > 0,

λP

(
sup

0≤t≤T
St ≥ λ

)
≤
∫

[sup0≤t≤T St≥λ]

STdP

and

λP

(
inf

0≤t≤T
St ≤ λ

)
≥
∫

[inf0≤t≤T St≤λ]

STdP − E(ST ) + E(S0).

In analogy with the above remarks, a continuous time parameter stochastic process{St, 0 ≤
t ≤ T} is said to be aN−demisupermartingale if for every set{tj, 0 ≤ j ≤ k}, k ≥ 1 contained
in the interval[0, T ] with 0 = t0 < t1 < · · · < tk = T, the sequence{Stj , 0 ≤ j ≤ k} forms a
N−demisupermartingale. Theorems 5.1 and 5.2 can be extended to continuous time parameter
N−demisupermartingales.

Results on maximal inequalities stated and proved in this paper for demisubmaqrtingales
andN−sdemisupermartingales generalize maximal inequalities for submartingales and su-
permartingales respectively. Recall that the class of submartingales is aproper subclass of
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demisubmartingales and the class of supermartingales is aproper subclass ofN− demisuper-
martingales with respect to the natural choice ofσ-algebras..
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