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ABSTRACT. We study maximal inequalities for demisubmartingales and N-demisupermartingales
and obtain inequalities between dominated demisubmartingales. A sequence of partial sums
of zero mean associated random variables is an example of a demimartingale and a sequence
of partial sums of zero mean negatively associated random variables is an example of a N-
demimartingale.
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1. INTRODUCTION

Let (2, F, P) be a probability space angds,,,n > 1} be a sequence of random variables
defined on it such that'|S,,| < oco,n > 1. Suppose that

(1.1) E[(Sps1 — Su)f(S1, ..., S)] =0

for all coordinate-wise nondecreasing functighsvhenever the expectation is defined. Then
the sequencgs,,n > 1} is called ademimartingale If the inequality ) holds for non-
negative coordinate-wise nondecreasing functifrteen the sequendgs,,,n > 1} is called a
demisubmartingalelf

(1.2) E[(Sps1 — Su)f(S1, ..., S)] <0

for all coordinatewise nondecreasing functighehenever the expectation is defined, then the
sequencg S,,,n > 1} is called aN—demimartingale If the inequality ) holds for non-
negative coordinate-wise nondecreasing functigrtben the sequendes,,,n > 1} is called a

N —demisupermartingale
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2 B.L.S. RRAKASA RAO

Remark 1.1. If the function f in (1.1) is not required to be nondecreasing, then the condition
defined by the inequalit.l) is equivalent to the condition it » > 1} is a martingale

with respect to the natural choice efalgebras. If the inequality defined Wy (JL.1) holds for

all nonnegative functiong, then{S,,,n > 1} is a submartingale with respect to the natural
choice ofo-algebras. A martingale with the natural choiceseéilgebras is a demimartingale

as well as aV—demimartingale since it satisfigs ([L.1) as well[as|(1.2). It can be checked that
a submartingale is a demisubmartingale and a supermartingaleNsdemisupermartingale.
However there are stochastic processes which are demimartingales but not martingales with
respect to the natural choice @falgebras (cf.[[18]).

The concept of demimartingales and demisubmartingales was introduced by Newman and
Wright [11] and the notion ofV —demimartingales (termed earlier as negative demimartingales
in [14]) and N —demisupermartingales were introduced in [14] and [6].

A set of random variableX, .. ., X,, is said to beassociatedf

(1.3) Cov(F(X1s.., Xn) g(X1s .. X)) >0

for any two coordinatewise nondecreasing functipasdg whenever the covariance is defined.
They are said to beegatively associateid

(1.4) Cov(f(X;,i€ A),g(X;,i€ B)) <0

for any two disjoint subsetd and B and for any two coordinatewise nondecreasing functions
f andg whenever the covariance is defined.
A sequence of random variabléX,,, n > 1} is said to beassociatednegatively associatgd
if every finite subset of random variables of the sequence is associated (negatively associated).

2. MAXIMAL INEQUALITIES FOR DEMIMARTINGALES AND DEMISUBMARTINGALES

Newman and Wright[11] proved that the partial sums of a sequence of mean zero associated
random variables form a demimartingale. We will now discuss some properties of demimartin-
gales and demisubmartingales. The following result is due to Christofides [5].

Theorem 2.1. Suppose the sequen¢s,,,n > 1} is a demisubmartingale or a demimartin-
gale andg (-) is a nondecreasing convex function. Then the sequénce,),n > 1} is a
demisubmartingale.

Let g(z) = 27 = max(0, z). Then the functiory is nondecreasing and convex. As a special
case of the previous result, we get ta&t", n > 1} is a demisubmartingale. Note th&if =
max(0, S,).

Newman and Wright [11] proved the following maximal inequality for demisubmartingales
which is an analogue of a maximal inequality for submartingales due to Garsia [8].

Theorem 2.2. Suppos€S,,,n > 1} is a demimartingale (demisubmartingale) and-) is a
nondecreasing (nonnegative and nondecreasing) functionmith = 0. Let

Snj = j —th largestof (Sy,...,5,) if j<n
=min(Sy,...,S,) = Spn if 7>n.
Then, for any: and,

In particular, for any\ > 0,

(2.1) AP(Sp > \) < / SpdP.
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As an application of the above inequality and an upcrossing inequality for demisubmartin-
gales, the following convergence theorem was proved in [11].

Theorem 2.3.1f {S,,,n > 1} is a demisubmartingale anghp,, £|S,,| < oo, thensS,, converges
almost surely to a finite limit.

Christofides([5] proved a general version of the inequdlity] (2.1) of Thepreim 2.2 which is an
analogue of Chow’s maximal inequality for martingales [3].

Theorem 2.4.Let{S,,,n > 1} be a demisubmartingale with}, = 0. Let the sequencfy, k >
1} be a nonincreasing sequence of positive numbers. Then, fox ang,

1<k<n

\P (max Sk > )\) < chE (S;r — Sj-*_l) )
=1

Wang [16] obtained the following maximal inequality generalizing Theoienjs 2.P ahd 2.4.

Theorem 2.5.Let{S,,n > 1} be a demimartingale angl(-) be a nonnegative convex function
on R with ¢(0) = 0. Suppose thafc;,1 < i < n} is a nonincreasing sequence of positive
numbers. LeS’ = max;<;<, ¢;9(S;). Then, for any\ > 0,

AP(S, > A) < ZciE{(g(Si) — g(Sim))I[S;, = AL}

i=1

Suppos€S,,,n > 1} is a nonnegative demimartingale. As a corollary to the above theorem,
it can be proved that

B(Sme) < Llu + (S, log™ S)l.

For a proof of this inequality, see Corollary 2.1 in [16].

We now discuss a Whittle type inequality for demisubmartingales due to Prakasa Rao [13].
This result generalizes the Kolmogorov inequality and the Hajek-Renyi inequality for indepen-
dent random variables [17] and is an extension of the results in [5] for demisubmartingales.

Theorem 2.6.Let S, = 0 and{S,,n > 1} be a demisubmartingale. Lét(-) be a nonnega-
tive nondecreasing convex function such théi) = 0. Let«(u) be a positive nondecreasing
function foru > 0. Further suppose that = vy < u; < --- < u,. Then

P((Sk) < tp(up), 1<k <n)>1-Y E[¢(Sk)]¢_(uf)[¢<8k_l)]
k=1

As a corollary of the above theorem, it follows that
¢(5;) ) L Elo(Sk)] — El¢(Sk-1)]
P sup >el <e
(1§jsn W(u;) ,; ¥ (uk)

for anye > 0. In particular, for any fixech > 1,

6(S) (805D = El6(SK)] — E[é(Sk )]
P<i‘i¥iw<uk>2€>§€ E(wun))*Z W (uy)

for anye > 0. As a consequence of this inequality, we get the following strong law of large
numbers for demisubmartingalés [13].

k=n+1
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Theorem 2.7.Let S, = 0 and{S,,,n > 1} be a demisubmartingale. Lét(-) be a nonega-
tive nondecreasing convex function such th@t) = 0. Lett(u) be a positive nondecreasing
function foru > 0 such that)(u) — oo asu — oo. Further suppose that

i E[p(Sk)] — E[¢(Sk-1)]
— ¥ (uk)
for a nondecreasing sequengg — oo asn — oo. Then

¢(Sn)

Suppose{S,,n > 1} is a demisubmartingale. Lef™* = max;<;<, S; and S™" =
min; <;<,, S;. AS special cases of Theorgm|2.2, we get that

< 00

a.s
=0 as n — oo.

(2.2) A PS>\ < / S,dP
[Sypax>A]

and

(2.3) A P[Smin > )] < / S, dP
[Spin>A]

forany\ > 0.

The inequality[(2.R) can also be obtained directly without using Theprem 2.2 by the standard
methods used to prove Kolomogorov’s inequality. We now prove a variant of the inequality

given by [2.3).

SupposgS,,,n > 1} is a demisubmartingale. Lat> 0. Let

N:[min Sp <A, N =[S <)
1<k<n

and
Nk:[5k</\,5j2)\,1§j§k‘—1], k> 1.
Observe that

N={JMN
k=1
andN;, € F, = o{51,..., Sk} FurthermoreV,, 1 < k < n are disjoint and
k—1 ¢
N, C (U NZ> ,
=1
whereA¢ denotes the complement of the gkin (2. Note that

E(Sl):/ SldP+/ SudP

N N¢
<A / dP + / SodP.
Ny ¢

The last inequality follows by observing that

/ SldP—/ SgdP:/ (Si — So)dP
N N N

c
1

= E((S1 — Su)I[N7]).

c c
1 1
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Since the indicator function of the s&t = [S; > )| is a nonnegative nondecreasing function
of S; and{Si, 1 < k < n}is a demisubmartingale, it follows that

E((S2 — S1)I[Ny]) = 0.
Therefore
E((S1 — S3)I[Nf]) <0,
which implies that
S1dP < SodP.

Nt NY
This proves the inequality

E(S)) g/\/ dP+/ SadP
Ny ¢

— AP(N)) + / SadP.

Nt

Observe thatV, C Nf. Hence

J

SQdP:/ SzdP—l—/ Sod P
Ny NSNN¢

S/ S2dp+/ S3dP
Ny N§SNN§

< A P(Ny) + / SsdP.

N§NNE

c
1

The second inequality in the above chain follows from the observation that the indicator function
of the setVg N Ni = I[S; > A\, S; > Al is a nonnegative nondecreasing functionSef S,

and the fact thafS;, 1 < k£ < n} is a demisubmartingale. By repeated application of these
arguments, we get that

E(S)) < AiP(MH / S, dP

n c
i:lNi

=AP(N)+ / SpdP — / SpdP.
Q N
Hence
A P(N) > / SpdP — /(Sn — S1)dP
N Q
and we have the following result.

Theorem 2.8. Suppose tha{S,,n > 1} is a demisubmartingale . Let

N:{min Sk<)\]

1<k<n

forany A > 0. Then
(2.4) A P(N) > /

N

SpdP — / (S, — S1)dP.
Q

In particular, if{.S,,,» > 1} is a demimartingale, then it is easy to check thas,,) = E(S;)
for all n > 1 and hence we have the following result as a corollary to Theprem 2.8.
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Theorem 2.9. Suppose thafs,,,n > 1} is a demimartingale . LeV = [minj <<, S < A] for
any\ > 0. Then

(2.5) A P(N) > / S, dP.
N
We now prove some new maximal inequalities for nonnegative demisubmartingales.

Theorem 2.10. Suppose tha{S,,n > 1} is a positive demimartingale witly; = 1. Let
v(z) =x — 1 —logx forz > 0. Then

(2.6) VE[SP™]) < E[Sylog S,
and
(2.7) Y(E [S2]) < E[S,log Sy .

Proof. Note that the functiony(z) is a convex function with minimurry(1) = 0. Let I(A)
denote the indicator function of the sét Observe that'** > S; = 1 and hence

B(Sm) — 1 = / P[S™ > A]dA — 1
0
1 o]
= / PS™> > A]dA +/ P[S™ > AJdA — 1
0 1

= / P[SP® > A|d\ (since S; =1)
1
1

</ {— / sndp}dA (by 22)
1 LA sy
:E</ SnI[S;“zA]dA)
1 A
S g
=F (Sn/1 Xd)x)

= E(Sh log(57™)).
Using the fact that/(z) > 0 for all x > 0, we get that

B(SP™) 1< E [Sn (10g<55? A (%)H

Smax Smax
= | ] maxy 4 1] e
b [S (Og(s" N T B (&E(S:;m))ﬂ
= 1— B(S,) + E(S,log S,) + E(S,)log B(S™).

Rearranging the terms in the above inequality, we obtain

(2.8)  (E(S™)) = E(5;™) — 1 —log E(S™)
<1—E(S,) + E(S,log S,) + E(S,)log E(S™) — log E(S™*)
= E(S,log S,) + (E(S,) — 1) (log E (S — 1)
= E(S,logS,)

sinceE(S,) = E(S;) = 1 foralln > 1. This proves the inequality (2.6).
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Observe thap < S™» < §; = 1, which implies that
1
B(Sminy — / PIS™™ > A
0

1
=1 —/ P[S™™ < M]dA
0

(1
<1 —/ {—/ SndP} d\ (by Theorem 2)9)
0 )\ [S;{xi11<)\}

1 min
:1_E(/ S, ]S" <)\]d)\>
0 A

!
=1—-F (Sn/ —d)\)
Sglin )\

=1+ E(S, log(S™™)).
Applying arguments similar to those given above to prove the inequality (2.8), we get that
(2.9) V(E(S™)) < E(S,log Sy,)
which proves the inequality (3.7). O

The above inequalities for positive demimartingales are analogues of maximal inequalities
for nonnegative martingales proved in [9].

3. MAXIMAL ¢-INEQUALITIES FOR NONNEGATIVE DEMISUBMARTINGALES

LetC denote the class @rlicz functionsthat is, unbounded, nondecreasing convex functions
¢ :[0,00) — [0, 00) with ¢(0) = 0. If the right derivativep’ is unbounded, then the functign
is called a¥oung functiorand we denote the subclass of such function§’bgince

o(x) = /0 " §(s)ds < 26/ ()

by convexity, it follows that

. x¢(2)
pe = I =
and
bt — sup 2 )
¢ >0 (ZE)

are in[1, oo]. The functiong is calledmoderatef pj, < oo, or equivalently, if for some\ > 1,
there exists a finite constant such that

p(Ar) < exg(x), x=>0.

An example of such a function is(z) = z* for a € [1,00). An example of a nonmoderate
Orlicz function is¢(z) = exp(xz®) — 1 for o > 1.

Let C* denote the set of all differentiable € C whose derivative is concave or convex and
C’ denote the set of € C such that'(x)/z is integrable at 0, and thus, in particul&(0) = 0.
LetC; =C'NnC*.

Giveng¢ € C anda > 0, define

O, () = /am /as @drds, x> 0.
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It can be seen that the functidn,/;, .y € C for anya > 0, wherel, denotes the indicator
function of the setd. If ¢ € C’, the same holds fo = &,. If ¢ € Cj, thend € Cj.
Furthermore, it’ is concave or convex, the same holds for

v - [ 20,

r

and henceb € C; implies that® € C;. It can be checked that and® are related through the
diferential equation

z®'(z) — P(x) = ¢(z), >0
under the initial conditiong(0) = ¢'(0) = ®(0) = ®'(0) = 0. If ¢(z) = «P for somep > 1,
then®(x) = 27/(p — 1). For instance, ifp(z) = 22, then®(z) = 22. If ¢(x) = =, then
O(z) = oo but ®y(z) = xlogz — x + 1. Itis known that if¢p € C’' with p, > 1, then the
function ¢ satisfies the inequalities

1
d(x) < o(x), x>0.
(@) < 6
Furthermore, it is moderate, that ig}, < oo, then
1
O(x) > — o(x), x=>0.
(@) 2 6@

The brief introduction for properties of Orlicz functions given here is basedlon [2].
We now prove some maximatinequalities for nonnegative demisubmartingales following
the techniques in [2].

Theorem 3.1.Let{S,,,n > 1} be a nonnegative demisubmartingale andfet C. Then

max >\ >
(3.1) P(S™x > 1) < (1_A)t/t P(S, > As)ds

foralln > 1, > 0and0 < A < 1. Furthermore,

max )\ S’Vl / STL
(3.2) E[p(Si™)] <o) + — Do | ) = Pu(b) = DL(0) | ——b) ) dP
1—A [Sn>Ab] A A

foralln>1,a>0,b>0and0 < A\ < 1. If ¢'(x)/x is integrable at O, that isp € C’, then the
inequality [3.2) holds fob = 0.

Proof. Lett > 0 and0 < X < 1. Inequality [2.2) implies that

(3.3) PS> 1) < & / S,dP

[Spex=t]

/ PS> t,5, > s|ds
0

1 D
t
1 At 1 )
< —/ PS> t]ds + —/ P[S,, > s]ds
t Jo t e

)\ oo
< AP[S™ > t]ds + ?/ P[S, > As|ds.
t
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Rearranging the last inequality, we get that

)\ o
P max > < P
(S >1) < = A)t/t (S > As)ds

foralln > 1,¢ > 0and0 < A < 1 proving the inequality[ (3]1) in Theorem B.1. Liet> 0.
Then

Smax / ¢ Smax ) dt

/ SOPE™ > dt + [ & ()P(S™™ > t)dt

b

/ ¢ Smax t)dt
/ ¢'(t) { OO P(S, > )\s)dS} dt (by (3.1))

+ 1
:¢(b)+1i/\/ (/b ¢'(t) )P(Sn>)\s)ds

o)+ 125 [ @)~ BE)PIS, > Ae)ds

o+ 25 [ (0 () - wor - w (S -0) ) ar

foralln > 1,6 > 0,¢ > 0,0 < A < 1 anda > 0.The value ofa can be chosen to be O if
¢'(x)/x is integrable at 0. -

As special cases of the above result, we obtain the following inequalities by cha@osing
in (3.9). Observe thab,(a) = ®/,(a) = 0.

Theorem 3.2.Let{S,,,n > 1} be a nonnegative demisubmartingale andfet C. Then

3.4 Blo(sz™)] < o(0) + 25 8 |2 ()]
foralla > 0,0 <A< 1landn > 1. LetA=1in(3.4). Then
(3.5) E[p(Sy™)] < ¢(a) + E[Pa(25,)]

foralla > 0andn > 1.
The following lemma is due to Alsmeyer and Roslé€r [2].
Lemma 3.3. Let X andY be nonnegative random variables satisfying the inequality
tP(Y >1) < E(XIysy)
forall t > 0. Then
(3.6) Elp(Y)] < Blé(gsX)]

for any Orlicz functionp, whereg, = % andps = inf,~¢ "”;fég).
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This lemma follows as an application of the Choquet decomposition
o= [ @-vroa), zz0
[0,00)

In view of the inequality[(2]2), we can apply the above lemma to the random vari&bies
S, andY = S** to obtain the following result.

Theorem 3.4.Let{S,,,n > 1} be a nonnegative demisubmartingale anddet C with p, > 1.
Then

(3.7) Ep(Sy™)] < E[¢(qsSn)]
forall n > 1.

Theorem 3.5.Let{S,,n > 1} be a nonnegative demisubmartingale. Suppose that the function
¢ € C is moderate. Then

(3.8) E[$(S™)] < El(a550)] < dg’ E[6(S,)].

The first part of the inequality (3.8) of Theor¢m|3.5 follows from Thedrem 3.4. The last part
of the inequality follows from the observation thatife C is moderate, that is,

. xd(x)
Po =80 o) ~ >
then
p(A\z) < Nog(z)

forall A > 1 andz > 0 (seel[2, equation (1.10)]).

Theorem 3.6.Let{S,,,n > 1} be a nonnegative demisubmartingale. SuppoiEea nonnega-
tive nondecreasing function d@, co) such thats'/7 is also nondecreasing and convex for some
~ > 1. Then

39) Blotsy) < (15 ) El(s.)L

Proof. The inequality
AP(ST# > \) < / SpdP
(i)

given in (2.2) implies that

(3.10) E[(smy] < (p%l)pwzx p>1

by an application of the Holder inequality (cfl [4, p. 255]). Note that the sequn¢g,,)]/7, n >

1} is a nonnegative demisubmartingale by Lemma 2.Llof [5]. Applying the ineqyality (3.10) for
the sequencé€[o(S,)]"/?,n > 1} and choosing = ~ in that inequality, we get that

(3.11) Elp(S7)] < (#)VEW&)].
forall v > 1. 0J

Examples of functions satisfying the conditions stated in Theorien 3.6¢dte) = «*[log(1+
z)]" for p > 1 andr > 0 and¢(z) = ™ for » > 0. Applying the result in Theorein 3.6 for the
functiono(z) = "%, r > 0, we obtain the following inequality.
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Theorem 3.7.Let{S,,,n > 1} be a nonnegative demisubmartingale. Then
(3.12) Ele"""] < eE[e™"], r>0.
Proof. Applying the result stated in Theorem 3.6 to the functfdn) = e™*, we get that

(3.13) E[er™] < (7_1) Ele"]

foranyy > 1. Lety — oo. Then

and we get that
(3.14) E[e"™"™] < eE[e™"], r>0.
O

The next result deals with maximal inequalities for functigns C which arek times differ-
entiable with thek-th derivativep®) € C for somek > 1.

Theorem 3.8. Let {S,,,n > 1} be a nonnegative demisubmartingale. ket C which is
differentiablek times with the-th derivativep®) e C for somek > 1.Then

(315) Blotsyl < (M) Blotsl

Proof. The proof follows the arguments given in [2] following the inequality |3.9). We present
the proof here for completeness. Note that

o) = /[ (=) Qular),

where
Qo(dt) = ¢'(0)do + ¢'(dt)

andd, is the Kronecker delta function. Hencegife C, then

(3.16) o) = [ " )y
- / ) / 0 Qulandy
/0 y / (v — 1) dyQy (d)

(@0
_ /[ s

An inductive argument shows that

(3.17) o(z) :/[Ooo) %me(dt)

for any¢ € C such thapy®) ¢ C. Let
((CE _ t)+)k+1

Dre(w) = (k+ 1)

for anyk > 1 andt > 0. Note that the functionig, (x)]*/**1 is nonnegative, convex and
nondecreasing im for anyk > 1 andt > 0. Hence the procesg ¢y, :(S,)]Y/*+) n > 1} is
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a nonnegative demisubmartingale by [5]. Following the arguments given to (3.10), we
obtain that

k+1
B([na(S2 401 < (1) Bl )
which implies that
k+1
(318 Blowdsz < (CF1) Blowdsil

Hence
(319)  E[4(sm)) = /[ Bl Qun (@) (by @ID)

b+ 1"
<(57) [ PSR o @)

- (21" motsa

which proves the theorem. O

We now consider a special case of the maximal inequality derivgd ip (3.2) of Thg¢orem 3.1.
Let ¢(z) = x. Then®,(z) = zlogx — z + 1 and®/ (z) = log z. The inequality[(3.R) reduces
to

A S S, S S
B[S <b+ —— —“log =" — = +b—(logh)—= | dP

- L/ (5,108 Sp — S(log A + log b + 1) + Ab)dP
1—A [Sn>Ab]

forallb > 0and0 < A < 1. Letb > 1and\ = % Then we obtain the inequality

max(Sp,1)
/ logx dx|, b>1,n>1.
1

The value oy which minimizes the term on the right hand side of the equaltion|(3.20) is

max(Sn,1)
b*=1+FE / log x dx
1

max(Sn,1) % ?
(3.21) B(S™) < [1+E / logz da| | .
1

/ logydy = xlogt z — (z — 1), x>1,
1

the inequality[(3.20) can be written in the form

(3.20) E[S™] < b+ %E

N

and hence

Since

(3.22) B(S™) < b+ %(E(Sn log* S,) — E(S, — 1)*), b>1,n> 1.
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Letb = E(S, — 1)* in the equation[(3.22). Then we get the maximal inequality

1+ E(S,—1)"
E(S,—1)*
If we choosé = e in the equation(3.22), then we get the maximal inequality

(3.23) E(Sy™) < E(S,log" S,,).

(3.24) B(S™) < e+ %(E(Sn log™ S,) — E(S, — 1)), b>1,n> 1.
-

This inequality gives a better bound than the bound obtained as a consequence of the result
stated in Theorefn 2.5 (cf._[16]) £(S, — 1)" > e — 2.

4. INEQUALITIES FOR DOMINATED DEMISUBMARTINGALES

Let My = Ny = 0 and{M,,n > 0} be a sequence of random variables defined on a
probability spac€(), F, P). Suppose that

E[(Mn+1 - Mn)f(MOv s 7Mn)|Cn] >0

for any nonnegative coordinatewise nondecreasing fungtigiven a filtration{¢,,n > 0}
contained inF. Then the sequencgM,,,n > 0} is said to be atrong demisubmartingale
with respect to the filtratio{¢,,» > 0}. It is obvious that a strong demisubmartingale is a
demisubmartingale in the sense discused earlier.

Definition 4.1. Let My = 0 = Ny. Suppos€g M,,,n > 0} is a strong demisubmartingale with
respect to the filtration generated by a demisubmarting&le n > 0}. The strong demisub-
martingale{ M,,,n > 0} is said to baveakly dominatetly the demisubmartingalgV,,,n» > 0}

if for every nondecreasing convex functipn R, — R, and for any nonnegative coordinate-
wise nondecreasing functigh: R?" — R,

(41) E[(¢(|6TLD - ¢(|dn|)f(MU’ covy My—13 No, . 7Nn—1)|N07 ce Nn—l] >0 as,
for all n > 1 whered,, = M,, — M,_; ande,, = N,, — N,,_;. We write M < N in such a case.

In analogy with the inequalities for dominated martingales developed In [12], we will now
prove an inequality for domination between a strong demisubmartingale and a demisubmartin-
gale.

Define the functions.»(z, y) andu-.(z,y) as in Section 2.1 of [12] fofx,y) € R?. We
now state a weak-type inequality between dominated demisubmartingales.

Theorem 4.1.Supposé€ M,,,n > 0} is a strong demisubmartingale with respect to the filtration
generated by the sequengd’,,,n > 0} which is a demisubmartingale. Further suppose that
M < N. Then, for any\ > 0,

(4.2) A P(IM,| > ) <6 E|N,|, n>0.
We will at first prove a Lemma which will be used to prove Theofem 4.1.

Lemma 4.2. Supposd M,,,n > 0} is a strong demisubmartingale with respect to the filtration
generated by the sequengd’,,,n > 0} which is a demisubmartingale. Further suppose that
M < N.Then

(43) E[U<Q(Mn, Nn)f(MQ, Ce ,Mn_l; No, ceey Nn—l)]
> Eluco(My—1, Nyp1) f(Mo, ..., My_1;No, ..., Nyp_1)]
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and
(44) E[U>Q(Mn7 Nn)f(MOa s 7Mn—l; NOa ORI Nn—l)]

> Bluso(My_1, Nu—1) f(My, ..., My_15No, ..., Ny—1)]
for any nonnegative coordinatewise nondecreasing fungtio®?” — R, n > 1.

Proof. Defineu(z, y) whereu = u_, Oru = u~ as in Section 2.1 of[12]. From the arguments
given in [12], it follows that there exist a nonnegative functidfi,y) nondecreasing in:
and a nonnegative functioB(z, y) nondecreasing i and a convex nondecreasing function
b2y (1) : Ry — R, such that, for any. andk,

(4.5) w(z,y) + Az, y)h + B(x,y)k + ¢y (|k]) — ¢y (|h]) < ulz + h,y+ k).
Letx = M,,_1,y = N,,_1,h = d,, andk = e,.. Then, it follows that
(4.6) u(M,_1, Ny1) + A(My—1, Nyp1)dy,
+ B(Mp 1, No—1)en + ¢Mn717Nn71(|6n|) - QSMn,l,anlOdnl)
< u(Mp—1+ dp, Nyo1 + €,) = u(M,, Ny,).
Note that,
E[A(My—1, Ny_1)do f (Mo, ..., Mp_1; Nos -, Nu_1)|Noy . .., Nu1] > 0 as.

from the fact that{ M,,,n > 0} is a strong demisubmartingale with respect to the filtration
generated by the proce§d/,,, » > 0} and that the function

A(xn—la yn—1>f('r07 -y Tp—15Y0, - - - 7yn—1)

is a nonnegative coordinatewise nondecreasing functiop in . , x,,_; for any fixedyo, . . . , yn_1.
Taking expectation on both sides of the above inequality, we get that

(47) E[A(Mn—b Nn—l)dnf(M07 s 7Mn—1; N07 ) Nn—l)] Z 0.
Similarly we get that
(48) E[B(Mnfl, Nn,1>dnf(M0, ceey Mnfl; No, SN 7Nn71)] 2 0.
Since the sequendé\/,,,n > 0} is dominated by the sequen{#,,, n > 0}, it follows that
(4.9) El(or, 1 v (lenl) = oar, i v ([dnl) (Mo, - .oy My—1; No, - .., Noo)] 20
by taking expectation on both sides [of (4.1). Combining the relatjonp (4.6) {o (4.9), we get that
(4.10) E[u(M,, N,)f(My, ..., My_1; No, ..., No_1)]

Z E[U<Mn—17 Nn—l)f(M07 R Mn—l; N07 SR Nn—l)]'

U

Remark 4.3. Let f = 1. Repeated application of the inequality obtained in Lemma 4.2 shows
that

(4.11) E[u(M,, N,)| > E[u(My, Ny)] = 0.
Proof of Theorer 4]1Let
1
o) =18 bl = 1 [Jel > 3]
It can be checked that (cf. [12])
(412) U(.CE, y) > u<2(a:, y)
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Let A > 0. Itis easy to see that the strong demisubmartingafe, n > 0} is weakly dominated
by the demisubmartingalglz, » > 0}. In view of the inequalitieq (4]7) anf (4.8), we get that

37

M, N, M, N,
. - > = BN EN > 3\ 3\ >
(4.13) 6 E|N,| -\ P(|M,| > \) = \E [“(3A’3A)] > \E [u<2(3/\,3)\>} >0

which proves the inequality
(4.14) A P(IM,| > X)) <6 E|N,|,n>0.
O

Remark 4.4. It would be interesting if the other results in [12] can be extended in a similar
fashion for dominated demisubmartingales. We do not discuss them here.

5. N—DEMIMARTINGALES AND N —DEMISUPERMARTINGALES

The concept of a negative demimartingale, which is now terméd-ademimartingale, was
introduced in[[14] and in_[6]. It can be shown that the partial sip, » > 1} of mean zero
negatively associated random variab{es;, j > 1} is a N —demimartingale (cf.[[6]). This can
be seen from the observation

E[(Spi1 — Su))f(S1, ..., 50)] = E(Xns1 f(S1,...,5,)] <0

for any coordinatewise nondecreasing functfoend from the observation that increasing func-
tions defined on disjoint subsets of a set of negatively associated random variables are neg-
atively associated (cf.[ [10]) and the fact tHaX,,,» > 1} are negatively associated. Sup-
poseU,, is a U-statistic based on negatively associated random varigblgs: > 1} and

the product kerneh(zy,...,z,) = [[-, g(x;) for some nondecreasing functign(-) with
E(g(X;)) =0,1<i<n.Let

n!

T, = U,,n>m.

(n —m)!m!

Then the sequendd’,,n > m} is a N—demimartingale. For a proof, see [6].
The following theorem is due to Christofidés [6].

Theorem 5.1. Suppos€ S,,, n > 1} is a N—demisupermartingale. Then, for any> 0,

)\P[max SkZ)\] SE(SI)—/ S, dP.
[max)<p<n SE>A]

1<k<n
In particular, the following maximal inequality holds for a nonnegafivtedemisupermartingale.

Theorem 5.2. Suppos€ S,,,n > 1} is a nonnegativéV —demisupermartingale. Then, for any
A >0,

1<k<n
and
AP (maXSk > A) < E(S,).

k>n

Prakasa Rao [15] gives a Chow type maximal inequalityN¥erdemimartingales.
Suppose’ is a right continuous decreasing function @noc) satisfying the condition

tlim o(t) =0.
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Further suppose thatis also integrable on any finite intervdl, x). Let

O(x) = /: o(t)dt, x>0.

Then the functionP(z) is a nonnegative nondecreasing function such #{@) = 0. Further
suppose tha®(co) = oo. Such a function is called eoncave Young functiorProperties of
such functions are given inl[1]. An example of such a functio®{s) = 27,0 < p < 1.
Christofides|[6] obtained the following maximal inequality.

Theorem 5.3. Let {S,,n > 1} be a nonnegativeV—demisupermartingale. Leb(z) be a
concave Young function and definér) = ®(z) — z¢(x). Then

(5.1) ER(Sy™)] < E[®(S1)].
Furthermore, if

hgi solip :gﬁ((;c)) <1,
then
(5.2) E[®(S,™)] < ca(1 + E[®(S1)])

for some constant; depending only on the functich

6. REMARKS

It would be interesting to find whether an upcrossing inequality can be obtainadt-falemi-
martingales and then derive an almost sure convergence theorédm-flemisupermartingales.
Such results are known for demisubmartingales (see Thegorém 2.3).

Wood [18] extended the notion of a discrete time parameter demisubmartingale to a con-
tinuous time parameter demisubmartingale following the idea5slin [7]. A stochastic process
{5:,0 <t < T} is said to be a demisubmartingale if for every $6t0 < j < k}, k > 1
contained in the intervdd, 7] with 0 = ¢, < t; < --- < t; = T, the sequencgS,,,0 < j < k}
forms a demisubmartingale.

Suppose that a stochastic procgss, 0 < ¢t < T} is a demisubmartingale in the sense
defined above. One can assume that the process is separable in the sense of [7]. It is easy to
check that'(S,) < E(Ss) whenevern: < 3 since the constant functioh= 1 is a nonnegative
nondecreasing function and

E(S5 — 5a)f(So, 52)] = 0.
Furthermore, for any > 0,

AP ( sup S; > /\) < / SrdP
0<t<T [supg<i<7 St>A]

AP ( inf S, < )\> > / SrdP — E(ST) + E(SO)
[info<i<p St<A

0<t<T

and

In analogy with the above remarks, a continuous time parameter stochastic gr6céss
t < T} is said to be @& —demisupermartingale if for every s, 0 < j < k}, k > 1 contained
in the interval[0, T] with 0 = ¢, < t; < --- < t;, = T, the sequencéS,,,0 < j < k} forms a
N —demisupermartingale. Theorems|5.1 5.2 can be extended to continuous time parameter
N —demisupermartingales.

Results on maximal inequalities stated and proved in this paper for demisubmaqgrtingales
and N —sdemisupermartingales generalize maximal inequalities for submartingales and su-
permartingales respectively. Recall that the class of submartingaleprigar subclass of
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demisubmartingales and the class of supermartingaleprgper subclass ofV— demisuper-
martingales with respect to the natural choice aflgebras..
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