J Journal of Inequalities in Pure and
I > <M Applied Mathematics

0 http://jipam.vu.edu.au/

\olume 7, Issue 1, Article 12, 2006

ON GENERALIZED INVARIANT MEANS AND SEPARATION THEOREMS

ROMAN BADORA

INSTITUTE OF MATHEMATICS
SILESIAN UNIVERSITY
BANKOWA 14, PL 40-007 KKkTOWICE
POLAND.

robadora@ux2.math.us.edu.pl

Received 10 October, 2005; accepted 16 November, 2005
Communicated by K. Nikodem

ABSTRACT. We prove the existence of generalized invariant means on some functions spaces
which are larger then the space of all bounded functions. Our results are applied to the study of
functional inequalities.
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1. INTRODUCTION

Let F be a non-void subset of the space of all real functions defined on a semigfoujp
We say thatF is aleft (right) invariantif and only if

(1.1) f € Fanda € S impliesthat, f € F (f, € F),
where, f and f, denote thdeft andright translationsof f € F by a € S defined by
of (@) = fla+z)andf,(z) = f(x +a), z€S.

Definition 1.1. Let F be a left (right) invariant linear space of real functions defined on a
semigroupS and letF’ : F — R. A linear functionalM : F — R is termed deft (right)
invariant F-meanif and only if it satisfies the following two conditions:

(1.2) M(f) < F(f), feF;

(1.3) M(of) = M(f) M(fa) = M(f)), feF, aes

In the case wherg = B(S,R), the space of all real bounded functions on a semig®up
andF'(f) = sup,cq f(2), for f € B(S,R), we infer that our definition reduces to the classical
definition of an invariant mean.
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2 ROMAN BADORA

In argument with the traditional terminology, if there exists at least one left (right) invariant
mean on the spadg(S, R) then the underlying semigroupis said to bdeft (right) amenable
For the theory of amenability of semigroups and groups see e.g. Greénleaf [7] and Hewitt, Ross
[8]. Here we only stress that every Abelian semigroup is (two-sided) amenable.

The concept of invariant means in connection with functional inequalities was invented by L.
Székelyhidi (se€ [12]). In the present paper we are going to extend the concept of an invariant
mean to some functions spaces which are essentially larger then the/3#ad®). Next, we
present applications of these results to the study of functional inequalities.

2. GENERALIZED INVARIANT MEANS
Let us start with the following existence theorem.

Theorem 2.1.Let (S, +) be aleft (right) amenable semigroup and febe a left (right) invari-
ant linear space of real functions defined §nAssume that functionais, /' : 7 — R satisfy
the following conditions:

(2.1) O(f+g) <O(f)+2(9), f.geF;
(2.2) O(af)=ad(f), feF, a>0;

(2.3) O(f)<F(f), feF

and

(2.4) Of) < F(f) (®(fa) SF(f), JEF, a€S.

Then there exists a left (right) invariafit-mean on the spacg.

Proof. We shall restrict ourselves to the proof of the "left - hand side version" of this theorem.
To start with, note that by conditiop (2.1)

(2.5) 0 < ®(0g),

where(Og denotes the function equal zero on the whole semigrSuprhe Hahn - Banach
theorem, for the spac& = F and the subspac&, degenerated to zero, implies that there
exists a linear operatdr : 7 — R such that

L(f)<®(f), feF.
Then, by [2.B), we get
(2.6) L(f)<e(f) < F(f), feF
Let f € F be fixed. Condition[(2]4) implies
L(:f) <@(f) < F(f), z€85.
Using the linearity ofl. we have
(2.7) ~F(=f) S L(:f) < F(f), €5

which means that the function
Ssz— L(.f) €R

belongs to the spadg(S, R).
Let M be a left invariant mean o (.S, R) which exists by our assumption. We define the
mapM : F — R by the formula:

M(f) = Mo(L(:)), feF,
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where the subscript next to M indicates that the meam/ is applied to a function of the
variablez.
From the linearity ofL. and M we obtain thatM is a linear functional. Moreover, condition
(2.7) implies
M(f) = Mu(L(.f)) < sup L(.f) < F(f),

T€S

for f € F.
To prove the left invariance o we observe that

y(of) =24y [, fEF, xv,y€s.
Indeed, for every: € S we get

y(xf)<z) = fly+2)=flr+y+2) =zty f(z), z,yes,

which means that our identity holds.
This fact combined with the left invariance of yields

M(af) = Me(L(a(af))) = Ma(Las2f)) = Ma(L(of)) = M(F),

forall f € Fanda € S. Thus, the map\ has all the desired properties for a left invariant
F-mean and the proof is completed. O

Remark 2.2. If M is a left (right) invariantF-mean on the spacg, then the linearity oiM
jointly with condition [1.2) yields

(2.8) —F(=f) s M(f) < F(f), [eF

Remark 2.3. If the spaceF contains the spac€s of all constant functions ofy, then in the
proof of Theorem 2]1 we can start with the spage= Cs and with the functional, : Cs — R
defined byL(cs) = ¢®(1s), for ¢ € R and we obtain the existence of themeanM such
that

(29) M(CS) = C(I)(ls), ceR.

Now, we will give examples of situations in which all assumptions of The¢rem 2.1 are satis-
fied.

Definition 2.1. A non-empty familyZ of subsets of a semigroup will be called aproper set
idealif:
S &¢7T;
A, BeZimpliesAUuB €T,
AeJandB Cc Aimply B e T.

Moreover, if the setA = {r € S : a + 2 € A} belongs to the familyZ wheneverd € 7
anda € S, then the set idedl is said to beproper left quasi-invarian{in short: p.l.q.i.).
Analogously, the set idedl is said to beproper right quasi-invarian{in short: p.r.q.i.) if the
setd, = {r € S:x+a € A} belongs to the familZ wheneverd € 7 anda € S. In the case
where the set ideal satisfies both these conditions we shall padiger quasi-invarian{p.q.i.).

The sets belonging to the ideal are intuitively regarded as small sets. For exanfpls, if
a second category subsemigroup of a topological g@upen the family of all first category
subsets ofS is a p.q.i. ideal. IfG is a locally compact topological group equipped with the
left or right Haar measurg and if S is a subsemigroup af with positive measurg then the
family of all subsets of5 which have zero measuyeis a p.qg.i. ideal. Also, ifS' is a normed
space § # {0}) then the family of all bounded subsets®fis p.q.i. ideal (see also Gajda [5]
and Kuczmal[D]).
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LetZ be a set ideal of subsets of a semigréug-or a real functiory’ on .S we defineZ; to
be the family of all setsl € 7 such thatf is bounded on the complement.af A real function
fonS'is calledZ-essentially boundei and only if the familyZ; is non-empty. The space of
all Z-essentially bounded functions ¢hwill be denoted byBZ (S, R).

It is obvious that, in general, the spaBé(S, R) is essentially larger then the spaBéS, R).

For every elemenf of the space3? (S, R) the real numbers

7 — essnf = inf
3pfflo) = sup ol F@),

7 —esssup f(xr) = inf sup f(x
z€s (@) ACTy zes\A (@)

are correctly defined and are referred to asZkessential infimunand theZ-essential supre-
mumof the functionf, respectively.
Now, we define a map” : BZ(S,R) — R by the following formula:

FI(f) = T —essup f(z), f € BY(S,R).
zes

If Zis a p.l.g.i. (p.r.q.i.) ideal of a subset 6f thenF = BZ(S,R) is a left right invariant

linear space and functions = FZ, ' = FZ satisfy conditions[(2]1)] (22); (2.3) ard (2.4).
So, as a consequence of Theofen) 2.1 we obtain the following result which was proved using
Silverman’s extension theorem by Gajdalin [5] (see also [1]).

Corollary 2.4. If (S, +) is a left (right) amenable semigroup addis a p.l.g.i. (p.r.g.i.) ideal
of subsets of, then there exists a real linear function®l” on the spacé3”? (S, R) such that

T — essnf f(z) < M*(f) < T —esssup f()
x€ zE€S

and
M (of) = MA(f) (M*(fa) = M*(])),
forall f € BX(S,R)andalla € S.

The next example is a generalization of Gajda’s example (see [6]). Here we assume that
p: S xS —|0,+00) is a given function fulfilling the following condition:

(2.10) inf{zn:p(:vi,arl—s):s GS} =0 (inf{zn:p(:vi,s—l—ai):s GS} :O> ,

i=1 i=1
forall ay,as,...,a, € S, x1,29,...,2, € S andn € N. We say that the functiofi : S — R
is p-boundedf there exist constants;, Cy € R, k;, K; > 0, n € Nanday,as,...,a, € S,
x1,%,...,T, € 5 such that

¢~y S plasai+5) < f(s) < Cp+ K Y plaa; +9)

i=1 i=1

(cr— ks Y p(xis+a;) < f(5) < Cp+Kp Y plai, s + ai)),
i=1 i=1
for all s € S. The space of ajp-bounded functions will be denoted 87 (S, R). This space is
a left (right) invariant linear space.
Let f € B?(S,R) be fixed. Then, using the fact that

inf{Kpr(:vi,ai—i—s)~|—/{f2p(xi,ai+s) 1S € S} =0

i=1 i=1
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(inf{Kpr(xi,s—i-ai) +kf2p(xi,s+ai) 15 € S} = 0)
i=1 i=1

we getcy — Oy < 0. So,

Cr S Of
which means that the s€f of all C'y € R such thatthere exist; > 0,n € N, a1, as,...,a, €
S andzy, zs, ..., z, € Sfulfiling

f(s) §0f+Kpr(a:i,ai+s) (f(s) < Cf+Kpr($i73+ai)) , seS

i=1 i=1
is bounded from below. Therefore, we can define the i¥ap B*(S,R) — R by the following
formula:
(2.11) FP(f)=infCs, f € BP(S,R).

It is easy to show that functionls = F* andF' = F? satisfy conditiong (2]1)[ (2.2}, (2.3) and
(2.4). In this case Theorem 2.1 reduces to the following.

Corollary 2.5. If p : Sx.S — [0, +0) satisfies conditio (2.10) anflis a left (right) amenable
semigroup, then there exists a real linear function&t on the space3” (.S, R) such that

(2.12) MP(f) < FP(f), f€ BP(S,R);
and
(2.13) MP(of) = MP(f) (MP(fa) =M"(f)), f€B(SR), acs.

3. SEPARATION THEOREMS

We shall formulate all results of this section in the case corresponding to the left invariant
mean only. It will be quite obvious how to rephrase the results so as to obtain its right - handed
versions. The proofs of these alternative theorems require only minor changes and, therefore,
will be omitted.

Theorem 3.1.Let S be a left amenable semigroup and feyy : S — R. Then there exists an
additive functioru : S — R such that

(3.1) flx) <alz) <g(x), z€8

if and only if there exists a left invariant linear spageof real functions orS which contains
the space of all constant functions Snthe mapF' : 7 — R fulfilling

(3.2) F(f+9) < F(f)+F(g), f.9eF;
(3.3) F(af)=aF(f), feF, a>0;
(3.4) F.f)<F(f), feF,aeS

and the following condition:

(3.5) F(f) <0, for f <0g, f€ ]:andF(ls) > 0,

functions¢,n : S — [0,+0o0), such that(,n € F and F({) = F(n) = 0 and a function
¢ : S — R such that, for every € S, the map:

(3.6) Ssy—op@+ty) —ply) €eR
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belongs to the spacgé and

(3.7) flx) = C(y) vz +y) —ely) < gl@) +n(y), z,y €S

Proof. Let f,¢g : S — R. Assume that there exists an additive functionS — R satisfying
(3.1). Then the spac& = Cs = {cs : ¢ € R} is a left invariant linear space and the map
F : F — R defined by

F(cs)=¢, ceR
fulfills (B.2), (3.3), [3.4) and (3]5). Moreover, takigg= a, the additivity ofa implies that the
function (3.6) is constant (equalz), for = € S) - belongs taF and from condition[(3]1) we
infer thaty satisfies[(3]7) witl{, n = 0.

Now, we assume thak is a left invariant linear space of real functions $rcontaining the
space of all constant functions ¢ the mapF’ : F — R satisfies[(3]2)](3]3)] (3.4) and (B.5),
functions(,n : S — [0, 4o00) belong to the spac#, F({) = F(n) = 0 and that there exists a
functiony : S — R fulfilling (B.6) and [3.7).

Let M be a left invariant’-mean on the spacg whose existence results from Theoren 2.1
for & = F'. By RemarK 2.3 we can assume that

(38) M(Cs) = CF<15>, ceR.
Moreover, condition[(3]5) implies the monotonicity
(3.9) fgeF, f<g= M(f) < Mlg).

Indeed, iff, g € F satisfy f < g, then using condition$ (J.2) arld (B.5) we get

M(f) = M(g) = M(f —g) < F(f-g) <0.

Next, by our assumptions(, —n < 0s andF(¢) = F(n) = 0. Applying (3.8) and[(28) we
have
0< —F(=Q) S M(Q) < F(() =0

and

0<=F(=n) <M(n) < F(n) =0.
Hence,
(3.10) M(¢) = M(n) =0.

Now, we puta(z) = M, (p(x +y) — ¢(y)), forz € S. Letz,y € S. Then using the linearity
and left invariance oM we get

a(z +y) = M.(e(z+y+2) —¢(2))
=M:(px+y+2)—oly+2)+ey+2) —ez)
= Ma(p(x+y+2) —py+2)) + M:(o(y + 2) — ¢(2))
= M.(p(x +2) — 0(2)) + Ma(o(y + 2) — ¢(2))
= a(z) + a(y),
so thata is additive. Moreover, by the definition of, conditions[(3.]7),[(3]19)[ (3.10) and (B.8)
imply

f(@)F(1s) = M, (f(2)) = My(f(x)) — M, ({(y)) = My(f(z) = ((y))
< My(p(z +y) —o(y) = az)
< M, (9(x) +n(y)) = My(9(x)) + My(n(y)) = M,(g(z))
= g(x)F(1s),
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for all z € S. Consequently, the map = F(1s) '« is an additive function fulfilling[(3]1),
which ends the proof. OJ

Applications of Corollary 2J4 can be found in Gajda’s papeér [5] andin [3]. Applying Corol-
lary[2.3 we have the following result on the separation of two functions by an additive map (see
also Paled [11], Nikodem, Pales, Wasowicz [10] and [4], [3]).

Theorem 3.2.Let S be a left amenable semigroup with the neutral elemgnt,S x S —

0, +00) satisfying conditior[ (2.10) and Igt g : S — R. Then there exists an additive function
a: S — Rfulfilling (8.1) if and only if there exists a functign: S — R such that

(3.11) f(@) = p(z,y) <ol +y) —ly) < g(@) +p(2,y), z,y€S.

Proof. If a is an additive function fulfilling[(3]1), thep = « satisfies[(3.11).
Assume thap : S — R satisfies|[(3.1]1). Then, for eveye S, the map

Soy—oel+y) —ply) eR

belongs to the spacB”(S,R) and, as in the proof of Theorm Bd; S — R defined by the
formula:

a(z) = My(p(z +y) —¢(y), z€5
is an additive function. Moreover, by the definition ©f we have
f(@) = =(=f(z)) < =F"(=(p(z+y) — ¢(y)))
< —My(=(plz+y) —9y) = Myle(x +y) — (y))
=a(z) < FP(p(z +y) —»(y) < g(=),
for all € S and the proof of Theorem 3.2 is finished. O
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