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which are larger then the space of all bounded functions. Our results are applied to the study of
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1. I NTRODUCTION

LetF be a non-void subset of the space of all real functions defined on a semigroup(S, +).
We say thatF is a left (right) invariant if and only if

(1.1) f ∈ F anda ∈ S implies thataf ∈ F (fa ∈ F),

whereaf andfa denote theleft andright translationsof f ∈ F by a ∈ S defined by

af(x) = f(a + x) andfa(x) = f(x + a), x ∈ S.

Definition 1.1. Let F be a left (right) invariant linear space of real functions defined on a
semigroupS and letF : F → R. A linear functionalM : F → R is termed aleft (right)
invariant F -meanif and only if it satisfies the following two conditions:

(1.2) M(f) ≤ F (f), f ∈ F ;

(1.3) M(af) = M(f) (M(fa) = M(f)), f ∈ F , a ∈ S.

In the case whereF = B(S, R), the space of all real bounded functions on a semigroupS
andF (f) = supx∈S f(x), for f ∈ B(S, R), we infer that our definition reduces to the classical
definition of an invariant mean.
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2 ROMAN BADORA

In argument with the traditional terminology, if there exists at least one left (right) invariant
mean on the spaceB(S, R) then the underlying semigroupS is said to beleft (right) amenable.
For the theory of amenability of semigroups and groups see e.g. Greenleaf [7] and Hewitt, Ross
[8]. Here we only stress that every Abelian semigroup is (two-sided) amenable.

The concept of invariant means in connection with functional inequalities was invented by L.
Székelyhidi (see [12]). In the present paper we are going to extend the concept of an invariant
mean to some functions spaces which are essentially larger then the spaceB(S, R). Next, we
present applications of these results to the study of functional inequalities.

2. GENERALIZED I NVARIANT M EANS

Let us start with the following existence theorem.

Theorem 2.1.Let(S, +) be a left (right) amenable semigroup and letF be a left (right) invari-
ant linear space of real functions defined onS. Assume that functionalsΦ, F : F → R satisfy
the following conditions:

(2.1) Φ(f + g) ≤ Φ(f) + Φ(g), f, g ∈ F ;

(2.2) Φ(αf) = αΦ(f), f ∈ F , α > 0;

(2.3) Φ(f) ≤ F (f), f ∈ F
and

(2.4) Φ(af) ≤ F (f) (Φ(fa) ≤ F (f)) , f ∈ F , a ∈ S.

Then there exists a left (right) invariantF -mean on the spaceF .

Proof. We shall restrict ourselves to the proof of the "left - hand side version" of this theorem.
To start with, note that by condition (2.1)

(2.5) 0 ≤ Φ(0S),

where0S denotes the function equal zero on the whole semigroupS. The Hahn - Banach
theorem, for the spaceX = F and the subspaceX0 degenerated to zero, implies that there
exists a linear operatorL : F → R such that

L(f) ≤ Φ(f), f ∈ F .

Then, by (2.3), we get

(2.6) L(f) ≤ Φ(f) ≤ F (f), f ∈ F .

Let f ∈ F be fixed. Condition (2.4) implies

L(xf) ≤ Φ(xf) ≤ F (f), x ∈ S.

Using the linearity ofL we have

(2.7) −F (−f) ≤ L(xf) ≤ F (f), x ∈ S

which means that the function
S 3 x −→ L(xf) ∈ R

belongs to the spaceB(S, R).
Let M be a left invariant mean onB(S, R) which exists by our assumption. We define the

mapM : F → R by the formula:

M(f) = Mx(L(xf)), f ∈ F ,
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where the subscriptx next to M indicates that the meanM is applied to a function of the
variablex.

From the linearity ofL andM we obtain thatM is a linear functional. Moreover, condition
(2.7) implies

M(f) = Mx(L(xf)) ≤ sup
x∈S

L(xf) ≤ F (f),

for f ∈ F .
To prove the left invariance ofM we observe that

y(xf) =x+y f, f ∈ F , x, y ∈ S.

Indeed, for everyz ∈ S we get

y(xf)(z) =x f(y + z) = f(x + y + z) =x+y f(z), x, y ∈ S,

which means that our identity holds.
This fact combined with the left invariance ofM yields

M(af) = Mx(L(x(af))) = Mx(L(a+xf)) = Mx(L(xf)) = M(f),

for all f ∈ F anda ∈ S. Thus, the mapM has all the desired properties for a left invariant
F -mean and the proof is completed. �

Remark 2.2. If M is a left (right) invariantF -mean on the spaceF , then the linearity ofM
jointly with condition (1.2) yields

(2.8) −F (−f) ≤M(f) ≤ F (f), f ∈ F .

Remark 2.3. If the spaceF contains the spaceCS of all constant functions onS, then in the
proof of Theorem 2.1 we can start with the spaceX0 = CS and with the functionalL0 : CS → R
defined byL0(cS) = cΦ(1S), for c ∈ R and we obtain the existence of theF -meanM such
that

(2.9) M(cS) = cΦ(1S), c ∈ R.

Now, we will give examples of situations in which all assumptions of Theorem 2.1 are satis-
fied.

Definition 2.1. A non-empty familyI of subsets of a semigroupS will be called aproper set
ideal if:

S 6∈ I;

A, B ∈ I impliesA ∪B ∈ I;

A ∈ J andB ⊂ A imply B ∈ I.

Moreover, if the setaA = {x ∈ S : a + x ∈ A} belongs to the familyI wheneverA ∈ I
anda ∈ S, then the set idealI is said to beproper left quasi-invariant(in short: p.l.q.i.).
Analogously, the set idealI is said to beproper right quasi-invariant(in short: p.r.q.i.) if the
setAa = {x ∈ S : x + a ∈ A} belongs to the familyI wheneverA ∈ I anda ∈ S. In the case
where the set ideal satisfies both these conditions we shall call itproper quasi-invariant(p.q.i.).

The sets belonging to the ideal are intuitively regarded as small sets. For example, ifS is
a second category subsemigroup of a topological groupG then the family of all first category
subsets ofS is a p.q.i. ideal. IfG is a locally compact topological group equipped with the
left or right Haar measureµ and if S is a subsemigroup ofG with positive measureµ then the
family of all subsets ofS which have zero measureµ is a p.q.i. ideal. Also, ifS is a normed
space (S 6= {0}) then the family of all bounded subsets ofS is p.q.i. ideal (see also Gajda [5]
and Kuczma [9]).
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Let I be a set ideal of subsets of a semigroupS. For a real functionf on S we defineIf to
be the family of all setsA ∈ I such thatf is bounded on the complement ofA. A real function
f on S is calledI-essentially boundedif and only if the familyIf is non-empty. The space of
all I-essentially bounded functions onS will be denoted byBI(S, R).

It is obvious that, in general, the spaceBI(S, R) is essentially larger then the spaceB(S, R).
For every elementf of the spaceBI(S, R) the real numbers

I − essinf
x∈S

f(x) = sup
A∈If

inf
x∈S\A

f(x),

I − esssup
x∈S

f(x) = inf
A∈If

sup
x∈S\A

f(x)

are correctly defined and are referred to as theI-essential infimumand theI-essential supre-
mumof the functionf , respectively.

Now, we define a mapF I : BI(S, R) → R by the following formula:

F I(f) = I − esssup
x∈S

f(x), f ∈ BI(S, R).

If I is a p.l.q.i. (p.r.q.i.) ideal of a subset ofS, thenF = BI(S, R) is a left right invariant
linear space and functionsΦ = F I , F = F I satisfy conditions (2.1), (2.2), (2.3) and (2.4).
So, as a consequence of Theorem 2.1 we obtain the following result which was proved using
Silverman’s extension theorem by Gajda in [5] (see also [1]).

Corollary 2.4. If (S, +) is a left (right) amenable semigroup andI is a p.l.q.i. (p.r.q.i.) ideal
of subsets ofS, then there exists a real linear functionalMI on the spaceBI(S, R) such that

I − essinf
x∈S

f(x) ≤ MI(f) ≤ I − esssup
x∈S

f(x)

and
MI(af) = MI(f) (MI(fa) = MI(f)),

for all f ∈ BI(S, R) and alla ∈ S.

The next example is a generalization of Gajda’s example (see [6]). Here we assume that
p : S × S → [0, +∞) is a given function fulfilling the following condition:

(2.10) inf

{
n∑

i=1

p(xi, ai + s) : s ∈ S

}
= 0

(
inf

{
n∑

i=1

p(xi, s + ai) : s ∈ S

}
= 0

)
,

for all a1, a2, . . . , an ∈ S, x1, x2, . . . , xn ∈ S andn ∈ N. We say that the functionf : S → R
is p-boundedif there exist constantscf , Cf ∈ R, kf , Kf ≥ 0, n ∈ N anda1, a2, . . . , an ∈ S,
x1, x2, . . . , xn ∈ S such that

cf − kf

n∑
i=1

p(xi, ai + s) ≤ f(s) ≤ Cf + Kf

n∑
i=1

p(xi, ai + s)

(cf − kf

n∑
i=1

p(xi, s + ai) ≤ f(s) ≤ Cf + Kf

n∑
i=1

p(xi, s + ai)),

for all s ∈ S. The space of allp-bounded functions will be denoted byBp(S, R). This space is
a left (right) invariant linear space.

Let f ∈ Bp(S, R) be fixed. Then, using the fact that

inf

{
Kf

n∑
i=1

p(xi, ai + s) + kf

n∑
i=1

p(xi, ai + s) : s ∈ S

}
= 0
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(
inf

{
Kf

n∑
i=1

p(xi, s + ai) + kf

n∑
i=1

p(xi, s + ai) : s ∈ S

}
= 0

)
we getcf − Cf ≤ 0. So,

cf ≤ Cf

which means that the setCf of all Cf ∈ R such that there existKf ≥ 0, n ∈ N, a1, a2, . . . , an ∈
S andx1, x2, . . . , xn ∈ S fulfilling

f(s) ≤ Cf + Kf

n∑
i=1

p(xi, ai + s)

(
f(s) ≤ Cf + Kf

n∑
i=1

p(xi, s + ai)

)
, s ∈ S

is bounded from below. Therefore, we can define the mapF p : Bp(S, R) → R by the following
formula:

(2.11) F p(f) = inf Cf , f ∈ Bp(S, R).

It is easy to show that functionsΦ = F p andF = F p satisfy conditions (2.1), (2.2), (2.3) and
(2.4). In this case Theorem 2.1 reduces to the following.

Corollary 2.5. If p : S×S → [0, +∞) satisfies condition (2.10) andS is a left (right) amenable
semigroup, then there exists a real linear functionalMp on the spaceBp(S, R) such that

(2.12) Mp(f) ≤ F p(f), f ∈ Bp(S, R);

and

(2.13) Mp(af) = Mp(f) (Mp(fa) = Mp(f)) , f ∈ Bp(S, R), a ∈ S.

3. SEPARATION THEOREMS

We shall formulate all results of this section in the case corresponding to the left invariant
mean only. It will be quite obvious how to rephrase the results so as to obtain its right - handed
versions. The proofs of these alternative theorems require only minor changes and, therefore,
will be omitted.

Theorem 3.1. Let S be a left amenable semigroup and letf, g : S → R. Then there exists an
additive functiona : S → R such that

(3.1) f(x) ≤ a(x) ≤ g(x), x ∈ S

if and only if there exists a left invariant linear spaceF of real functions onS which contains
the space of all constant functions onS, the mapF : F → R fulfilling

(3.2) F (f + g) ≤ F (f) + F (g), f, g ∈ F ;

(3.3) F (αf) = αF (f), f ∈ F , α > 0;

(3.4) F (af) ≤ F (f), f ∈ F , a ∈ S

and the following condition:

(3.5) F (f) ≤ 0, for f ≤ 0S, f ∈ F andF (1S) > 0,

functionsζ, η : S → [0, +∞), such thatζ, η ∈ F and F (ζ) = F (η) = 0 and a function
ϕ : S → R such that, for everyx ∈ S, the map:

(3.6) S 3 y −→ ϕ(x + y)− ϕ(y) ∈ R
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belongs to the spaceF and

(3.7) f(x)− ζ(y) ≤ ϕ(x + y)− ϕ(y) ≤ g(x) + η(y), x, y ∈ S.

Proof. Let f, g : S → R. Assume that there exists an additive functiona : S → R satisfying
(3.1). Then the spaceF = CS = {cS : c ∈ R} is a left invariant linear space and the map
F : F → R defined by

F (cS) = c, c ∈ R
fulfills (3.2), (3.3), (3.4) and (3.5). Moreover, takingϕ = a, the additivity ofa implies that the
function (3.6) is constant (equala(x), for x ∈ S) - belongs toF and from condition (3.1) we
infer thatϕ satisfies (3.7) withζ, η = 0S.

Now, we assume thatF is a left invariant linear space of real functions onS containing the
space of all constant functions onS, the mapF : F → R satisfies (3.2), (3.3), (3.4) and (3.5),
functionsζ, η : S → [0, +∞) belong to the spaceF , F (ζ) = F (η) = 0 and that there exists a
functionϕ : S → R fulfilling (3.6) and (3.7).

LetM be a left invariantF -mean on the spaceF whose existence results from Theorem 2.1
for Φ = F . By Remark 2.3 we can assume that

(3.8) M(cS) = cF (1S), c ∈ R.

Moreover, condition (3.5) implies the monotonicity ofM:

(3.9) f, g ∈ F , f ≤ g =⇒M(f) ≤M(g).

Indeed, iff, g ∈ F satisfyf ≤ g, then using conditions (1.2) and (3.5) we get

M(f)−M(g) = M(f − g) ≤ F (f − g) ≤ 0.

Next, by our assumptions−ζ,−η ≤ 0S andF (ζ) = F (η) = 0. Applying (3.5) and (2.8) we
have

0 ≤ −F (−ζ) ≤M(ζ) ≤ F (ζ) = 0

and
0 ≤ −F (−η) ≤M(η) ≤ F (η) = 0.

Hence,

(3.10) M(ζ) = M(η) = 0.

Now, we putα(x) = My(ϕ(x + y)− ϕ(y)), for x ∈ S. Let x, y ∈ S. Then using the linearity
and left invariance ofM we get

α(x + y) = Mz(ϕ(x + y + z)− ϕ(z))

= Mz(ϕ(x + y + z)− ϕ(y + z) + ϕ(y + z)− ϕ(z))

= Mz(ϕ(x + y + z)− ϕ(y + z)) +Mz(ϕ(y + z)− ϕ(z))

= Mz(ϕ(x + z)− ϕ(z)) +Mz(ϕ(y + z)− ϕ(z))

= α(x) + α(y),

so thatα is additive. Moreover, by the definition ofα, conditions (3.7), (3.9), (3.10) and (3.8)
imply

f(x)F (1S) = My(f(x)) = My(f(x))−My(ζ(y)) = My(f(x)− ζ(y))

≤My(ϕ(x + y)− ϕ(y)) = α(x)

≤My(g(x) + η(y)) = My(g(x)) +My(η(y)) = My(g(x))

= g(x)F (1S),
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for all x ∈ S. Consequently, the mapa = F (1S)−1α is an additive function fulfilling (3.1),
which ends the proof. �

Applications of Corollary 2.4 can be found in Gajda’s paper [5] and in [3]. Applying Corol-
lary 2.5 we have the following result on the separation of two functions by an additive map (see
also Páles [11], Nikodem, Páles, Wa̧sowicz [10] and [4], [3]).

Theorem 3.2. Let S be a left amenable semigroup with the neutral element,p : S × S →
[0, +∞) satisfying condition (2.10) and letf, g : S → R. Then there exists an additive function
a : S → R fulfilling (3.1) if and only if there exists a functionϕ : S → R such that

(3.11) f(x)− p(x, y) ≤ ϕ(x + y)− ϕ(y) ≤ g(x) + p(x, y), x, y ∈ S.

Proof. If a is an additive function fulfilling (3.1), thenϕ = a satisfies (3.11).
Assume thatϕ : S → R satisfies (3.11). Then, for everyx ∈ S, the map

S 3 y −→ ϕ(x + y)− ϕ(y) ∈ R

belongs to the spaceBp(S, R) and, as in the proof of Theorem 3.1,a : S → R defined by the
formula:

a(x) = My(ϕ(x + y)− ϕ(y)), x ∈ S

is an additive function. Moreover, by the definition ofF p we have

f(x) = −(−f(x)) ≤ −F p(−(ϕ(x + y)− ϕ(y)))

≤ −My(−(ϕ(x + y)− ϕ(y))) = My(ϕ(x + y)− ϕ(y))

= a(x) ≤ F p(ϕ(x + y)− ϕ(y)) ≤ g(x),

for all x ∈ S and the proof of Theorem 3.2 is finished. �
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