Journal of Inequalities in Pure and
I > <M Applied Mathematics

0 http://jipam.vu.edu.au/

Volume 7, Issue 5, Article 176, 2006

A NOTE ON THE HOLDER INEQUALITY
J. PEEARIC AND V. SIMIC

FACULTY OF TEXTILE TECHNOLOGY
UNIVERSITY OF ZAGREB
PRILAZ BARUNA FILIPOVICA 30
10000 ZAGREB, CROATIA

pecaric@hazu.hr
vidasim@ttt.hr

Received 22 November, 2006; accepted 30 November, 2006
Communicated by W.S. Cheung

ABSTRACT. In the present paper the authors present some new results concerning the Holder
inequality.
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In the following, (2, F) is a measure space ands a positive measure di. Let f, g : Q —
[0, 00) be two measurable functions. Farg > 1 such that: + 1 = 1, the classical Holder’s
integral inequality is the following one ([2], [3])

1) /Q flx)g(x)du(z) < ( /Q fp(w)du@c)); ( /Q gq(x)dﬂ(l"));

Inequality [1) may be written equivalently as

) 1Fgll < W f1lp [1glla,

where R
111 = ([ st}

The classical proof of {1) is based on Young’s inequality

p q
3) uv < L + U—,

p q
whereu,v > 0and p, ¢ > 1 suchthat +1 =1.

Moveover, recently the following rzésuﬁ abo[if (3) were obtained in ([1]):
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Lemmal. Letu, v > 0and p,q > 1 such that% + % = 1. Thenforp > 2

1 2—p _,,p—1\2
) Plu,v) < Jut (o= 0,

where
ub vl
P(u,v) = — + — —uv.
p q

If p € (1, 2], then the reverse inequality in|(4) is valid. For= 2 we have the identity ir [4).
First, we shall give a new proof of Lemrma 1.

Proof. Inequality [4) is equivalent to the following
1y s (1 1) ,
— S - >
2u v+(2 p)u q_O,
i.e.
2—p —
(5) U (QUQ + Q(p 2)U2(p_1) . ,Uqup—2) 2 0.
q \2 2p
Let us denote by)(u, v) the left-hand side of (5). Observe that

q  qlp—2)
-
2 * 2p
Suppose thgt > 2, that isq < 2. Using the known arithmetic-geometric inequality! ([2], [3])

we obtain

— 2 q q(p—2
ng + Q(pz—p)vf(pl) > (v?)2 (u*PD) B = 2,
ThusQ(u,v) > 0 and ) is valid. Fop € (1, 2] applying the reverse arithmetic-geometric
inequality we have the reverse inequality([if (5). O

We will prove the next theorem.

Theorem 2. Suppose tha}% + % =1for1 < ¢ <2 < p < co. Then the following inequalities
are valid

q 2
7 (Flalls =g 111)

1
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P 2
e G = na) |
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Proof. If we set in [4)
f(x) o()
7 — J\ —
(7) S T Tl

we obtain

L) fl@)gle) | 1g%@) 1/72() (9(%) B J”“(%’))2
p Il Al llglle g gl = 2171 \lglla 1115/
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f27p (L_fp_l>2 1
lolla 112

2— L . 5
141l lalla = 1 gl < 1’f " (all 71 = £ lalo)
p a7 1 < =

2 17112 1191l
which proves the right-hand side ¢f (6).

For the left-hand side of [6) we use the reverse of the inequalify in (4). After the substitutions
u— v, v—u, p— qandg — pwe have

Integrating the last inequality, we obtain

fgls _ 1

1- < =
11l Nglle = 2117157

1
P(u,v) > §v2_q(u — 1™ h2,
Foru andv from (7) we can similarly obtain the first inequality jr (6). O
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