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We use Salem’s methodl3, 14] to prove an inequality of Kwapie and
Pelczyhski concerning a lower bound for partial sums of series of bi-orthogonal
vectors in a Hilbert space, or the dual vectors. This is applied to some lower
bounds onZ! norms for orthogonal expansions.
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1. Introduction

Suppose that/ is a Hilbert spacen € N, and that/ = {1,...,n} or J = N. A pair
of sets{v; : j € J} and{w; : j € J} in H are said to be bi-orthogonal pair
when

<Uj’1Uk>11 = 6jk7 \(j,k?EE J.

The inequality in Theoreri.1 below comes from Section 6 o8], where it was Sl et
proved using Grothendieck’s inequality, absolutely summing operators, and esti- & Tl ey
mates on the Hilbert matrix. Here we present an alternate proof, based on earlier vol. 10, iss. 4, art. 94, 200
ideas from Salem1[3, 14], where Bessel's inequality is combined with a result
of Menshov [LO]. Following the proof of Theoren2.1, we will describe Salem’s
method of using.? inequalities to producé' estimates on maximal functions. Such Title Page
estimates are related to the stronger results of Olée{skj, Kashin and Szarel],
and Bochkarev]]. We conclude with an observation about the statement of Theo-
rem2.1lin alinear algebra setting. Some of these results were discusdvimgre 4 44
it was shown that Salem’s methods emphasized the universality of the Rademacher-
Menshov Theorem.
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2. The Kwapien-Pelczyhski Inequality

Theorem 2.1. There is a positive constamtwith the following property. For ev-
eryn > 1, every Hilbert spacé?, and every bi-orthogonal paifv, ..., v,} and
{wl,...,wn} in H,

(2.1) logn<c max ||wm||H max

1<k<n Bi-orthogonal Pairs

k
2
=l

Christopher Meaney
vol. 10, iss. 4, art. 94, 2009
Proof. Equip [0, 1] with a Lebesgue measupeand letV = L?([0,1], H) be the
space off/-valued square integrable functions [0n1], with inner product

Title Page
(F.Q), — / @), G)) do S
and norm 0 ) K L
17l = ([ IF@E de). T
Suppose tha{F}, ..., F,} is an orthonormal set id? ([0, 1]) and define vectors Page 4 of 16
Pi,--.,Pn NV by I
pr(z) = Fy(x)wy, 1<k<n,zel0,1]. Full Sereen
Then -
(pe(@), pj(2) g = Fi(@)F(x) (we,wj)py, 1< j,k<n, Close

and sofps, ..., p,} is an orthogonal set iir. For everyP € V', Bessel's inequality
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Note that here

(P.pi)y — /01 (P(2),w), Fr(@)de,  1<k<n.

Now consider a decreasing sequenfge> fo, > --- > f, > f,i1 = 0 of
characteristic functions of measurable subset§ dff. For each scalar-valued €
L*(]0,1]) define an element df by setting

Bi-orthogonal Pairs

1:) i fj ({L‘)Uj. Christopher Meaney
7j=1

vol. 10, iss. 4, art. 94, 2009

The Abel transformation shows that

n Title Page
33) ; Af (a:)ak, Contents
whereAf, = fir — frr1 andoy = Zle vj, for 1 < k < n. The functions K L
Afy, ..., Af, are characteristic functions of mutually disjoint subsetf)of] and < >
for each0 < z < 1 at most one of the values f; (=) is non-zero. Notice that
Page 5 of 16
HPG( HH ‘ ZAfk HUkHiI Go Back
. . Full Screen
Integrating over0, 1] gives
Close

<
I1Pal < 1GI3 max ol
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(Popi)y = / Ga) fule) Fo@)da (vp,wi)ys 1<k <n.

Combining this with Bessel’s inequality (), we arrive at the inequality

n 2
(2.3) | cnFan < [IGI max [loll% -
; 0.1 1wl 1<ksn
This |mp||es that Bi-orthogonal Pairs
n 9 Christopher Meaney
Fnl 2 2 vol. 10, iss. 4, art. 94, 2009
o (Z .., crFi ) < (s o ) 1615 ( s ol )
We now concentrate on the case where the functigns. ., F,, are given by Men- Title Page

shov’s result (Lemma 1 on page 255 of Kashin and Saak3janThere is a constant

: C
co > 0, independent of,, so that ontents
i X « »
(2.5) A ({x €1[0,1] : max ZFk(:c) > colog(n) ﬁ}) > 1 < >
Let us useM(x) to denote the maximal function R e
Go Back
() = 1@%}; Z F(z O0<z<Ll Full Screen
. . Close
Define an integer-valued function(z) on [0, 1] by
m journal of inequalities
m(z) = min ¢ m Z Fi(z)| = ) in pure and applied
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{z €10,1] : m(z) > k}.
Then

n m(z)
> fel@)Fu(x) = S (@) = Y Fu(z),  V0O<az <1
k=1 k=1
For an arbitraryG € L? ([0, 1]) we have

/0 () S (D)l = 3 /0 () fu(2) Fu(z)da

Using the Cauchy-Schwarz inequality on the right hand side, we have

n 2\ 1/2
gﬂ(Z ) ,

k=1
forall G € L*(]0, 1]). We will use the functiorz which hasG(x)| = 1 everywhere
on [0, 1], with

@8 || cwSoE | eniar

G(x) Sz (z) = M(x), VO <z <1.
In this case, the left hand side &f.¢) is

C
M, > L log(n) Vi

because of4.5). Combining this with 2.6) we have

1
/ G f. T d\

0

2) 1/2

This can be put back intd?(4) to obtain ¢.1). Notice that|G||; = 1 on the right
hand side of%.3). O

log( )f<f(z

k=1
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3. Applications

3.1. L!estimates

In this section we us& = L*(X, i), for a positive measure spat¥, ;). Suppose
we are given an orthonormal sequence of functiong >~ , in L*(X, ), and sup-
pose that each of the functionhs is essentially bounded ol. Let (a,),—, be a
sequence of non-zero complex numbers and set Bi-orthogonal Pairs

Christopher Meaney
Z ajhy

Lemma 3.1. For a set of functiong i, ..., h,} C L3(X, u) N L>®(X, 1) and max-
imal function Contents

M ma Hh H and S ma vol. 10, iss. 4, art. 94, 2009
n — X ) = X

, forzxe X, n>1.
1<j<n 1<k<n

Title Page

(N <« >
Si(w) = max. Z%

< 3
we have Page 8 of 16

lajhi(x)] < 28;(x),  VzeX,1<j<n, e

and Go Back
Z?:l a;h; (m)‘ Full Screen
- <1, V1<k<nandzwhereS:(z)+#0.
Sr() Close

Proof. The first inequality follows from the triangle inequality and the fact that . ; »
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for 2 < 7 < n. The second inequality is a consequence of the definitia¥y of

Fixn > 1 and let

vi(@) = a;h;(x) (Si(2)) ™ andw;(z) = a; ' hy(w) (S;(x))"?
for all x € X whereS’(z) # 0 andl < j < n. From their definition,

{v1,...,v,} and {wy,...,w,}
are a bi-orthogonal pair ih?( X, ;). The conditions we have placed on the functions
h; give:
M2
-2 n *
sl = bl [ 1l (1) < — 2111
ming <<y, |ax|
and
k 2 1 k 2 k
S| = [ || s [ an,
j=1 9 X \En/ |1 j=1 1

We can put these estimates infol) and find that

M. i 1/2
1 <e——m—n—— 12 h
ogn < Cm1n1<k<n\ak|H Sulli max ;Cl] j
We could also say that
k
*
max 1> ajh|| < |IS;]
j=1 1
and so M,
log(n) < c | 1S5l -

m1n1<k<n ’ak
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Corollary 3.2. Suppose thath,).- , is an orthonormal sequence it¥ (X, 1) con-
sisting of essentially bounded functions. For each sequengé _, of complex num-
bers and each > 1,

k

2 2
(mln |ag| logn) < c(max Pk o ) max 5 ajh; max E a;h;
1<k< 1<k< 1<k<n | 4= i==s
j=
and
< Z
min |ay| logn < c(lrgggthkHoo) max | )  aih

The constant is independent af, and the sequences mvolved here.

As observed in4], this can also be obtained as a consequencElpf [n addition,
see [].

The following is a paraphrase of the last page 18][ For the special case of
Fourier series on the unit circle, see Proposition 1.6.9#h [

Corollary 3.3. Suppose thath,,):- , is an orthonormal sequence it¥ (X, 1) con-
sisting of essentially bounded functlons with, ||, < M for all n > 1. For each
decreasing sequence,,) -, of positive numbers and eaeh> 1,

k

max E a;h;
1<k<n

j=1

k

> ajh

j=1

2 2
a, logn)” <cM max
(an logn)” < Jnax

1

1

and
k

Z a;h;

1<k<n
J=1

a, logn < CM‘ max

1
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In particular, if (a, logn) -, is unbounded then

k
E agh;
=t 1/ n=1

The constant is independent af, and the sequences involved here.

max is unbounded.

1<k<n

, ) ) Bi-orthogonal Pairs
3.2. Salem’s Approach to the Littlewood Conjecture _
Christopher Meaney

We concentrate on the case whéfe= L? (T) and the orthonormal sequence is a vzl 9004 155, 6 B 8, 20
subset of(e™* : n € N}. Let

m; < mg < mg<--- Title Page
be an increasing sequence of natural numbers and let Contents
hi(x) = ™" «“ »
forall k > 1 andz € T. In addition, let < >
D(z) = Z ke Page 11 of 16
k=—m
. . . Go Back
be them™ Dirichlet kernel. For allN > m > 1, there is the partial sum
Full Screen
Z aghy(z) = D,y * ( Z akhk> (z). Close
mE<m mEp<N
It is a fact thatD,, is an even function which satisfies the inequalities: journal of inequalities
in pure and applied
2m +1 forall z, mathematics
(3.1) | D ()| < 1 £ 1 9 1 issn: 1443-575k
/|z| Of 57 <o <27 — 5. :
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Lemma 3.4. If p is a trigonometric polynomial of degre¥€, then the maximal func-
tion of its Fourier partial sums

S*p(x) = sup | Dy, * p()|

m>1

satisfies
[S57pll, < clog (2N +1) [Ipll, -

Proof. For such a trigonometric polynomig) the partial sums are all partial sums

of p x Dy, and all the Dirichlet kernel®,, for 1 < m < N are dominated by a

function whosel! norm is of the order ofog(2N + 1). O
We can combine this with the inequalities in Coroll&ry, since

k

> ajh,

=1

m

> ajh;

j=1

max < clog (2m,, + 1)

1<k<n

1 1

We then arrive at the main result ih4].

Corollary 3.5. For an increasing sequenden,,) -, of natural numbers and a se-
quence of non-zero complex numbers) ~ , the partial sums of the trigonometric

. n=1
series .
Zakeim”
k=1
satisfy
k
i, o s < s [3 s
<k< g(2m, + 1) sksn |93 .

This was Salem’s attempt at Littlewood’s conjecture, which was subsequently

settled in p] and [8].
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3.3. Linearly Independent Sequences

Notice thatif{v1, ..., v,} is an arbitrary linearly independent subsefbthen there
is a unique subset

{w} : 1<j<n} Cspan{v,...,v.})

so that{vy,...,v,} and{w}, ..., w"} are a bi-orthogonal pair. See Theorem 15 in
Chapter 3 of ]. We can apply Theorerf.1to the pair in either order.

Corollary 3.6. For eachn > 2 and linearly independent subsgt;, ..., v,} in an
inner-product spacé, with dual basis{wy, ..., w"},

k

2.

J=1

<
logn < ¢ max |lwil; max

and
k

n
ij

j=1

logn <c¢ max ||vk||H Iax

H
The constant > 0 is independent of,, /, and the sets of vectors.

3.4. Matrices

Suppose thatl is an invertiblen x n matrix with complex entries and columns
ai,...,a, € C"

Letb,, ..., b, bethe rows ofd~!. From their definition

n
E bijajr = i
=1
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and so the two sets of vectors
{f,,@} and {ay,...,a,}

are a bi-orthogonal pair i€™. Theorem?.1then says that

k
log(n) < ¢ max ||by| max Z;aj
=
The norm here is the finite dimensiorfalnorm. This brings us back to the material

in [6]. Note that B] has logarithmic lower bounds fdt-norms of column vectors of
orthogonal matrices.
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