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1. Introduction

The wavelet transforril” of a functionf with respect to the wavelet is defined by

(1.1) f(a;b) = (Wyf)(a,b) = - F@)ap(t)dt = (f * ha)(b),

wherey, , = a=2¢(%2), h(z) = ¢¥(—x), b € R" anda > 0, provided the integral
exists. In view of (.1) the wavelet transforniV,, f)(a, b) can be regarded as the
convolution of f andh, . The existence of convolutiofix g has been investigated
by many authors. For this purpose Triebé] flefined the spacéz?v’“ and showed
that for certain weight function, f x g € L**, wheref,g € L¥* 0 < p <

1. Convolution theory has also been developed by Hérmander in the generalized

Sobolev spac#s, ,(R"), 1 < p < oo.

In Section2 of the paper, a definition and properties of the spby%é are given
and a boundedness result for the wavelet transfdinf is obtained. In SectioAwe
recall the definition and properties of the generalized Sobolev sBagER™) due
to Hormander I] and obtain a certain boundedness resultligrf. Finally, using
Young’s inequality a third boundedness result is also obtained.
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2. Boundedness ofV in Li}’f

Let us recall the definition of the spaég* by Triebel [6].
Definition 2.1 Let Q2 be a bounded’>-domain inR". If k(x) is a non-negative

weight function inR™ and0 < p < oo, then
(2.1) Lg’k = {f|f €. supp Ff C Q;
I £ pg=l kS Nz, = ( I f(:r:)|pdx> < oo}.

If k(x) = 1thenL}* = L.

We need the following theoreng[p. 369] in the proof of our boundedness result.

Theorem 2.1 (Hans Triebel).If £ is one of the following weight functions:

(2.2) k(x) = |z|%, a>0
(2.3) k() =] lelv, ;>0
7j=1
(2.4) k(z) = kpo(z) =€ B>0,0<y<1

and0 < p < 1, then

(2.5) Lo* s LY c LY
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and there exists a positive numb@rsuch that for allf, g € Li}v’f,

(2.6) 1 % gll g < Al Nl

Using the above theorem we obtain the following boundedness result for the
wavelet transformiVy, f.

Theorem2.2.Letf € L¥* andy € L¥*, 0 < p < 1,then for the wavelet transform
Wy f we have the estimates:

@7 Weh)@b) < Ca 3 | fllgl s for (22
@8) | (Wul)@d) i< Ca*E | £ Il ¥ s for 2.3
@9) 1| (Wal)(@b) Iy, < CaFe ™ | £ 1| |16 |ty Tor 24,

whereb € R" anda > 0.
Proof. Fork(z) = |z|*, o > 0,we havek(az) = a®k(z) and

ltaollg = ([ @@ n(Dprar)’
az ( / ) k:p(az)|h(z)|pdz);
— of ( / n apak:p(z)|h(z)|pdz);
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=q3t (/ k;p(z)|h(z)|pdz>;

= a™ | |
= a3t | ¥ ||L§ :

Fork(z) =TT} |z;|*, a; > 0, we havek(az) = al*/k(z) and

P

ltually = ( [ @t rac)

a: ( / ) kp(az)\h(z)\pdz);
a® ( / ) ap"‘|k:p(z)|h(z)|pdz);
— g2t (/n k;p(z)|h(z)|pdz);

= af ™ || bl
= a1 | 9|l

Next, fork(z) = ks, (z) = e’ 3> 0,0 < v < 1, we have

a7 4227

l{:gﬁ(az) — ePlazl” — paY|z| < P2

— 3Ba® o5flz*

e e%ﬁ(l?}/ ]{:B’Q,Y(Z),
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and

=

a0

o (Lo b )
/Rn kgﬁ(az)|h(z)|pdz> ’

/R e%pﬁ“%kgm(zﬂh(z)|pdz>

1

S
o
e

P

P
= % e2f” (/ krg,Z'y(zﬂh(z)lde)
n
= a3 ezfa” | h ||Lk,3,2,y
P
n 1,2
azex" |y ”L‘:ﬂ,% :

The proofs of £.7), (2.8) and ¢.9) follow from (2.6). 1
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3. Boundedness ofV in B, ;.

The spaceB, . (R") was introduced by Hormandet][ as a generalization of the

Sobolev spacé?®(R"), in his study of the theory of partial differential equations.

We recall its definition.

Definition3.1 A positive functionk defined inR™ will be called a temperate weight
function if there exist positive constantsand N such that

(3.1) KE+n) < (1+CIENYk(n);  &neRr,

the set of all such functioniswill be denoted by#". Certain properties of the weight
functionk are contained in the following theorem whose proof can be fount]in [

Theorem 3.1.1f k; andk, belong to7” ;thenk; + ko, k1 ko, sup(ky, ko), inf (K1, ko),
are also inz". If k € Z we havek® € % for every reals,and if 1 is a positive
measure we have eithar« k = oo or elseu x k € #.

Definition3.2 If k£ € 2 and1l < p < oo, we denote by5, ;. the set of all distribu-
tionsu € .’ such that: is a function and

32 = 20" ( / |k(§)ﬂlpd€>p<oo, | <p< oo

(3.3) |t [loo = esssup [k(£)a(S)].
We need the following theorem [p.10] in the proof of our boundedness result.
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Theorem 3.2 (Lars Hormander). If u; € B, ;, () &’anduy € Bo i, thenu; xus €
B 1y k,» @and we have the estimate

(3.4) | ur * ug ||p gk, <I| v llpa |l w2 ook, 1< p < o0
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Using the above theorem we obtain the following boundedness result.

Theorem 3.3.Let k; and k, belong to.#?". Assume thaf € B,;, (& andy €
B i, then the wavelet transforV,, f)(a,b) = (f * ha0)(b), defined by {.1) is in

B
N
(1 + gtz) U(t)

p,k1k2s and

35) | Wof(ab) ||pk1k2<ak2( )||f||m

Proof. Since

Moasll oy = €55 50D k() (€)

ka(€)a¥ d(a)|

Ba2)(0)]
(1 + §t2> ) U(t)

= esssup

n
< az2esssup

n 1
< azks <ﬁ> €ss sup
a

on using B.1). Hence by Theoreri.2 we have

W f (@, 00, gy =1 (F % Pa0(B) [k

<t (5 ) 1/ o

This proves the theorem.

(1 + gﬂ) ' h(t)

o0

Wavelet Transform
R.S. Pathak and S.K. Singh
vol. 8, iss. 1, art. 9, 2007

Title Page
Contents
44 44
< 14
Page 9 of 11
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: L443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au

J
4. A General Boundedness Result “\v el

. . : . . e
Using Young'’s inequality for convolution we obtained a general boundedness result L
for the wavelet transform. In the proof of our result the following theorem will be P A
used B, p. 90].
Theorem 4.1.Letp,¢,r > 1and; + . + ; = 2. Letk € LP(R"), f € LY(R") and
g c LT(Rn), then Wavelet Transform
R.S. Pathak and S.K. Singh
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/ / Y)g(y )dxdy‘ Title Page
C
< Cpgrn 1 B lpll £ llgll g 1l - ontents
1 <« »
The sharp constart, ., = (C,C,C,)", whereC} = —i with ( + > = 1). p R

Using Theoremtl.1 and following the same method of pr f as for Theoriemwe

obtain the following boundedness result. Page 10 of 11
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