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ABSTRACT. A square matrix is said to be totally nonnegative (respectively, positive) if all of its
minors are nonnegative (respectively, positive). Determinantal inequalities have been a popular
and important subject, especially for positivity classes of matrices such as: positive semidefinite
matrices M —matrices, and totally nonnegative matrices. Our main interest lies in characterizing
all of the inequalities that exist among products of both principal and non-principal minors of
certain subclasses of invertible totally nonnegative matrices. This description is accomplished
by providing a complete list of associated multiplicative generators.
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1. INTRODUCTION

An n x n matrix A is calledtotally positive TP (otally nonnegativeTN) if every minor of
A'is positive (nonnegative) (see [1,/10] 13]). Arx n matrix A is calledan oscillatory matrix
OSC, if A is totally nonnegative and there exists a positive intdgeso thatA* is a totally
positive matrix. Such matrices arise in a variety of applications [11], have been studied most of
the 20" century, and continue to be a topic of current interest.

Relationships among principal minors, particularly inequalities that occur among products
of principal minors, for all matrices in a given class of square matrices have been studied for
various classes of matrices (s€é [7] and references therein). In the case of positive definite
matrices and/-matrices, many classical inequalities are known to hold (see standard submatrix
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notation below):

Hadamarddet A < H Qi

=1
Fischer:det A < det A[S] - det A[S“], for S C {1,2,...,n};
Koteljanskii: det A[S U T - det A[SNT] < det A[S]-det A[T] forS, T C{1,2,...,n}.

These inequalities also hold ferx n totally nonnegative matrices, e.q! [1, 10} 14].

For the past few years, multiplicative inequalities have been studied in great detail (see, for
example, the survey papéri [7]) for classes such as: positive definite (se#/[2]and inverse
M — matrices (see [6]); tridiagondP—matrices (se€ [8]). In 5] a complete description of all
such inequalities (in the principal case) forx n totally nonnegative matrices was given for
n < 5.

In this paper our purpose is to better understand all inequalities among products of minors
that hold for general TP matrices. We note that since TN is the closure of the TP matrices
(seel[1]), the inequalities in TN are the same as those in the class TP or invertible TN. Thus it
suffices to consider inequalities within the class of invertible TN matrices, and there, because
of the positivity of minors, we may consider ratios of products of minors and ask which are
bounded by a constant independent.dhroughout the entire class of invertible TN matrices.
The classification of all such inequalities for general TP matrices is currently unresolved. Our
plan is to restrict ourselves to a subclass of invertible TN matrices, which we conveniently refer
toas STEP 1.

Here we identify all ratios of products of principal and non-principal minors bounded, and
give a complete description of the generators for the class STEP 1, fomeagh bounded
ratios that we identify are actually bounded by 1, and thus are all inequalities.

The paper is organized into two parts: In the first part we investigate the principal case, while
the latter part studies the non-principal case.

2. PRELIMINARIES AND BACKGROUND

For ann x n matrix A = [a;;] anda, 5 € N = {1,2,...,n}, the submatrix of4 lying
in rows indexed byy and columns indexed by will be denoted byA[a|5]. If « = 3, then
the principal submatrixi|«|«] is abbreviated tod[a]. For brevity, we may also I€tS) denote
det A[S].

Leta = {aq, a9, ..., o, } denote a collection of index sets (repeats allowed), where N,

i = 1,2,...,p. Then we definex(A) = det A[ay] det Alas] - - - det Alay,]. If, further, 5 =
{01, B2, ..., B,} is another collection of index sets with C N, for all ;, then we writea <
B with respect t& if «(A) < 5(A), for everyn x n matrix A inC.

We also consider ratios of products of principal minors. For two given collecticausd 3

of index sets we interpre} as both a numerical ratig% for a given matrixA in C and as a

formal ratio to be manipulated according to natural rules. Since, by convedtioA|¢] = 1,
we also assume, without loss of generality, that in any %ﬁmth collectionsy and have the
same number of index sets.
Each of the classical inequalities discussed in the introduction may be written in our form

a < (. For example, Koteljanskii’'s inequality has the collectiens= {S U T,S N T} and
B = {S,T}. Our main problem of interest is to characterize, via set-theoretic conditions, all
pairs of collections of index sets such that

o) _ e

p(A) ~
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for some constank > 0 (which depends omn) and for alln x n matricesA in C. If such a
constant exists for all matrices in C, we say that the rati% is boundedwith respect to the
class ofC matrices.

Let o be any given collection of index sets. Foe {1,2,...,n}, let f,(i) be the number
of index sets iy that contain the element(see alsol[2, /6]). The next result gives a simple
necessary (but by no means sufficient) condition for a given ratio of principal minors to be
bounded with respect to the TN matrices.

Lemma 2.1. Leta and 5 be two collections of index sets.gfis bounded with respect to any
subclass of invertible TN matrices that includes all positive diagonal matrices, then =
fs(i), foreveryi =1,2,... n.

If a given ratio§ satisfies the conditiorf,, (i) = f3(i), then we say the ratio satisfies STO
(set-theoretic) (see also |2, 6]).

The fact that a TN matrix has an elementary bidiagonal factorization (see [3, 4]) seems to be a
very useful fact for verifying when a ratio is bounded. By definitiongéamentary bidiagonal
matrixis ann x n matrix whose main diagonal entries are all equal to one, and there is at most
one nonzero off-diagonal entry and this entry must occur on the super- or subdiagonal. To this
end, we denote by, (1) = [c;;] (2 < k < n), the lower elementary bidiagonal matrix whose
elements are given by

1, ifi=j,
Cij = My |fZ:k,j:k—1,
0, otherwise.
The next result can be found in [12].

Theorem 2.2.Let A be ann x n invertible TN matrix. Them can be written as

(2.1) A= (Ea(l)(Es(lk-1)E2(lk-2)) - - (En(ln-1) - - Es(l2) E2(11)) D
(Es (w1) B3 (uz) -+~ By (up—1)) - - (By (w—2) B3 (1)) (B (wy)),
wherek = (’;) li,u; > 0foralli,j e {1,2,...,k}; and D is a positive diagonal matrix.
Further, given the factorization aboye (2.1), we introduce the following notation:
D = diag(dy,ds, ..., d,),
Ly = (Bu(laet) - B3()Ba(h)), Uy = (BY () E (uz) -+~ EX (w, 1)),

Lyo = (Es(le—1)Es(l—2)),  Up—a = (B3 (up—2)E3 (up1)),
Ly = (Bo(ly)),  Un1 = (B (uy)),
wherek = (). Then [2.1) is equivalent to
A=L, 1L, 5 ---L1DU;---U,_sU,_1,

and observe that eadh andU; are themselves invertible bidiagonal TN matrices.

A collection of bounded ratios with respect to a fixed class of matrices is referred to as
generatorsif any bounded ratio with respect to that fixed class of matrices can be written as
products of positive powers of ratios from this collection.

Forn = 3,4,5 there is a complete description of the generators for the bounded ratios of
principal minors of TP matrices inl[5]. For clarity of exposition we state this characterization
in the casen = 4.
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Theorem 2.3([5]). Supposey/( is a ratio of principal minors for TP matrices with = 4.
Thena/( is bounded with respect to the totally positive matrices if and onty/i# can be
written as a product of positive powers of the generators listed below:

(14)(0) (2(124) (3)(134) (23)(1234) (12)(3) (1)(24)
(1)(4) * (12)(24)" (13)(34)" (123)(234)" (13)
(4)(13) (12)(134) (13)(234) (34)(124) (24
(3)(14)" (

3. STEP 1: A CLASS OF OSCILLATORY MATRICES
By Theorenm 2.2, anyl n x n OSC matrixA can be written as

A=L, 1L, o---LiDU;---U,_3U,_1.
We consider a special class of invertible TN matrices. Let
A, ={A|A=L,DU,},

and we refer tdA; as the class STEP 1.
Note that

Ly = (By(ln-1) - Bs(lo) Ea(lh)),  Ur = (B3 (w1) E5 (us) - - By (u-1)),

wherel; > 0,u; > 0 andD = diag(dy, ds, ... ,d,), d; > 0. In fact, eachA € A, is indeed an
OSC matrix.

The next result is a straightforward computation.
Lemma 3.1. For any A€ A,, A can be written as follows:

(2)(34)

(2)" (2)(14)" (3)(24)°
)(123)  (14)(23)
13)(124)" (23)(134)" (24)(134)" (23)(124)" (13)(24)

ﬁ ﬁul ﬁuﬂj,g ~~~~~~ ﬁ’u:[UQ e U e ﬁuﬂ,tz oo Unp—1
llﬁ ﬁ EUQ ~~~~~~ ﬁuQ...ui ------ ﬁU,Q oo Un—1
lgllﬁ lzﬁ E """" EU3 UG e ﬁu;w, Un—1
(31) .......................................... ,
lL l2l1ﬁ ll lzT lL . l3T3 ~~~~~~ TZ ------ 1zuz Un—1
ln 1 l2l111 l 1212 ln_1 l313 """ ln_l lzl’L """" 1n
where
11 =d,
12 = dy + t1dy,

13 = dg + tzdz + tQtldl,

1_j - dj + tjfldjfl + tjfltjfzdjfg + -+ tj,1 o tztldl,

In=d,+ty1dy 1 +ty 1ty ody o+ -+ 1ty 1 tatrdy,
and wheref; = [ju; forj € {1,2,...,n—1}.
Further we lay out the following notation:
11=d, 22=d,, 33=ds, ..., nm=d,,

ij=dj+tjadia +tatjedi o+t tid; (1<0<j<n).
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For example,
% = d5 + t4d4 + t4t3d3, ﬁ - d4 + t3d3 + tgtgdg + tgtgtldl.
Using the above notation we conclude that

Lemma 3.2.Leta = {il,’i1+1,...,i1+ki1;i2,i2+1,...,’i2+ki2;...;ip,ip+1,...,ip+kip}
be a subset of1,2,3,...,n} with {i,,i, +1,...,i, + k;, } based on contiguous indices for
q € {1,2,3,...,]9}, andi1 < i1+ki1 < 19 < i2+l€i2 < 0 < ip < ip+kip; kiq > 0 for
q€{1,2,3,...,p}, then for any matrix4d € A, we have

(3@(@:3}ﬁh+mm+m.u(h+%xu+%ﬂ(u+m+4wg

(ot i+ 1) - (ot hi)ia k)| Gt By + 1)(ia) -

i1+ iy + Dip) G+ Dp+1) -+ Gip+ ks )iy + By

As an illustration of Lemmp 3|2, consider the following examples.
Example 3.1.
(1) (3) =13, (15) =11 25.

(2) (124) =11 22 34, (35689) =13 45 66 78 99.

(3) (235 789) =12 33 45 67 88 99.
Remark 1. Lemmd 3.2 demonstrates that any minor is a product of téfms
It is easy to deduce the following result, from the above analysis.

Lemma 3.3. Supposer = {1, s, ...,q,} and§ = {4, (s, ..., 5,} denote two collections
of index sets (repeats allowed) and that the r%ieatisfiesSTO. Then with respect to STEP 1,

% can be written as follows:

o _ Wl f - e
B sity saty o+ sty
where{ji, j2, ..., jxt = {t1,t2,...,tx}. Herei, < j, foru e {1,2,3,... k} ands, < ¢, for

uwe{1,2,3,...,1}

Example 3.2.
1)
a (23) (145) (24578)
G (124) (345) (2)(57)(8)
1233 11 24 55 12 34 55 67 88
112234 13 4455 12 15 67 18
1233 24 55 88
22 13 44 15 18
2)

(123) (2345) (567)(8)
(12) (23) (3456)(5)(78)

e e
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Remark 2.

(1) In Example[1 (2) we note that the seltf ., jo, - - - . . . JJerand{ty ta, .. ... ,tr} both
equal{3 7,8}, (the fact they are equal follows from STO and Lenjma 3.2) and as such
4 may be written a%%éﬁ in which (j, = t,,* = 3,7,8). -

(2) Lemma[3.B will be used to produce the form of the generators for the multiplicative

bounded ratios with respect to the class STEP 1.

4. BOUNDED RATIOS AND GENERATORS FOR STEP 1
Based on Lemmds 3.2 apd 3.3 above, we can construct the form of any potential generator.
We begin this construction with the following key lemma.
Lemma 4.1. Suppose, j, u, k, s, [, are natural integers and < j,u < j, k <[, s <.
(1) % < 1 with respect taA, if and only ifu < .
(2) %% < 1 with respecttdA; whenj < lifandonlyifu <k <s<i<j <l

Proof.

(1)
Y veij<wy
uj

S u < 1.

(2) Enumerating all cases possible on the relations betwegrk, s will result in the de-
sired conclusion.

O

Remark 3. In particular, ’*;“ % < 1 with respecttoAy, forall 1 <i < j < n.

Now consider the following terms associated wih (the class Step 1):

11 12 13 4 15 16 --- 1(n—1) In

22 23 24 25 26 2(n—1) 2n

33 34 35 36 3(n—1) 3n

44 45 46 4(n—1) an

(*) o o
55 56 .-~ 5(n—1) 5n

(n—=1)(n—-1) (n—1)n
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From the diagramnjs) above we construct a list specialratios, which will be used later.

®»E  BE UL B 2=1) 1 %
1223 1324 1425 1526 1(n—1) 2n in
3324 3425 35 26 3(n—1) 2n 3n
2334 24 35 25 36 2(n—1) 3n 2n
un  nm D) 3 m
3145 3546 3(n_1) in 3n
(@.1) 55 g 5
45 56 4(n—1) 5n 4in

(n—1)(n—1) (n—2)n n—1n

(n—2)(n—1) (n—1)n (n—2)n
nn

(n—1)n

For comparison sake, the above list can be written in terms of principal minors as follows:

(12) (3) a3) 4 (14) (5) (15) (6) An=1) (n) an) (¢)

(13) (2) (14) (3) (15) (4) (16) (5) (In)) (n-1) 1) (n)

(23) (14) (24) (15) (25) (16) (2(n=1)) _(1n) (2n) (1)

(24) (13) (25) (14) (26) (15) (2n))  (In—1) (In) (2)

(34) (25) (35) (26) B(n=1)) (2n) (83n) (2)

(35) (24) (36) (25) Bn)) @n=1) 2n) (3)

(45) (36) (4(n—1)) (3n) (4n) (3)

(46) (35) (4n)) (Bn-—1) 3n) (4)

L (5(n—1)) (4n) (5m) (4)

(4.2) Bn)) (an=1) (n) (3)

((n—2)(n—1)) ((n—3)n) ((n—2)n) (n—3)
((n=3)(n—1)) ((n—2)n) ((n=3)n) (n—2)

((n=1)n) (n—2)
(n=2)n) (n=1)

By Lemmd 2, all the above ratios are bounded by 1, which we will show are, irgiaegra-
tors.

Lemma 4.2.

Q) If ;l < 1 with respect tA,, then% is a product of some of the ratios taken from the

above list [(4.1L).
(2) Any ratio% over A, that satisfiess’T0 can be written as follows:

(4 3) g: - ijlj Z'jzj /l:jpj kj1j kj2j quj
' 5
j=2

Uj ] Ujp] = UjpJ Si1] Sjad o Sjgd
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,p}, kjt < Sjs fort e {1,2,

,q}, and that satisfies

the requirement that the’s are distinct from the’s and k's, the s’s are distinct from
thei's and k's. Therefore any ratic? that satisfiesS7’0 can be written as a ratio of

products of elements from the li

).

Proof. To establish (1), observe that

&l

< (ut1)j
. uj

() ()
i i(i+1) —1)n
(es) - (&)

J(Z 1 (i—2)n

u(i+1) ) <@>
(u+1)(j+1) (u)n

J

For item (2), we note that, by Lemrpa B.3, we hgve|(4.3). Finally observe that

which completes the proof.

kig 1
Sjtj Sjtj, 7
k3

Example 4.1. The generators foA; in the caser = 9 are as follows:

2213 2314 24
1223 1324 1
3324 34
2332 2
P
31
Suppose
(8%
Then
_ 2314 2415
33 1324 1425
13 332 3%
2332 2435

g5 Sl

Sl

25 16 2617 2718
1526 16 27 1728
3526 36 21 3728
25 36 26 37 27 38
45 36 16 37 4738
35 46 36 47 37 48
55 16 56 7 5718
45 56 46 57 47 58
66 57 67 58
56 67 57 68
768
67 78
(123) (2345) (56)(8) 33 18
(12) (23) (3456)(58) 13 68
25 16 2617 2718
15 26 16 27 17 28
35 26 3627 3728
25 36 26 37 27 38

J. Inequal. Pure and Appl. Mat}9(4) (2008), Art. 92, 18 pp.
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&5

BH B
1829 19
/D B
28 39 29
B 1
38 49 39
BD 50
48 59 49
5w
58 69 59
B 1
68 79 69
WO
78 89 79
%
89
19 29
29 19
29 39
39 29
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and
(2819 29 )
829 i
3829 39
2839 29
68 4839 1
— ={ 3D 39
18
5819 59
1859 s
6859 69
5869 59
\ W
Therefore
2314 415 2516 2617 2718 2819 29
1324 1425 1526 16 27 17 28 829 10
3324 3425 35 26 36 27 3728 3829 39
o _ |_2331 2435 2536 2637 2738 2839 29
] 2819 38 29 48 39 58 49 68 59
1829 2839 3819 1859 5869
29 39 49 59 69
i 29 39 19 59
Remark 4.
(1) Every generator irf (4]1) can be written as follows:
@+ i@+ G+L)ja(+1)

ij

ij DG+ (1) i+ 1)+ Ay
WhereA,-j = dj+1 tj—l -t d;, and

(Z + 1)] Z(j + 1) - (d —|— tjfldjfl + ttt + t];l e ti+1di+1)(dj+1 + tjdj ‘|’ te + tj A tldz)

(2) The reciprocal of a generator, given W%, is equal to
JAVY 2
+ = — e ~ = O(s).
(i+1)ji(j+1) (j—9)(2s+7—1)
Ifwe letd;,, = d; = s > 0, and set all other parameters to 1 in (2), then we observe that this
ratio is not bounded as — +oo. Forl <i < j < n,letd; = d;;; = s, tj11 = % Now we
can rewrite[f)) as follows in terms o:

12 . i—1 s+i—1 .. s+j—1  2s+j—-1 43 . Elip g4
1. i—2 s+i-2 .. s+j-2  2s+j-2 243 . 2ipji
i—3 s+i—3 .. s+j-3  2s+j-3 243 lapjtl
1 s+1 woosHj—i+l 2s4j—itl 43 En gy
s e SHj—1i 2s+ 75 —1 = Z+3 - ’+n—j+1
j—i s+j—1 ”+2 8—|-n]
2 s+2 §+2 %—l—n—j
S 2 R
1 e n—j—1
. n—j—2
1
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From the above list, we construct a list of orders for the ratiqg.ifj) or (4.2)) in terms of the
positive paramete:

0 0 12 o2 2 2 1 0 0 0
0 O 1 2 2 2 2 1 0 O 0

0 122 2 2 1 0 0 0

0 1 2 2 2 2 1 0 0 0

122 2 2 1 0 0 0

1 2 2 2 2 1 0 0 0

2 2 2 2 1 0 0 0

2 2 2 2 1 0 0 0

[ 111 0 0 0

1 1 2 1 0 O 0

(xb) 00 10 0 0
O O 1 0 O 0

01 0 0 0

0O 1 0 O 0

10 0 0

1 0 O 0

0 0 0

0 O 0

0

0

From the above argument we conclude that
Lemma 4.3.For any1 < i < j < n, the inverse of the generatas; — %%
multiplied by products of any other generators is not bounded with respect to STEP 1.

For any ratio% that satisfie$70, we can invoke Lemn‘@ 2 to deduce

By [\wid upd o uid ) \S$id Sind tc 84,
Note that for each the item< i1 J Gipd ifpj,) (’“?17 Kipd qu]) consists of two essential
Ui J Ujpd v Ujpd 551 Sjad  SiqJ
parts: The first part( ”1]] “2]] Z’“J.) has each successive ratio bounded. The second part:
Ujpd Ujpd - Ujp

( 5 Fd J‘”) has each successive ratio unbounded.

Sj1J Sjpd v Siqd

Now using the above argument we define the following sets (repeats allowed) for ar%cratio
(4.5) U {— : Z— is a ratio from the first part in Lemmf| 2 (%

(bounded ratio’s index

KL " [kl kK
<L = U {E l is a ratio from the second part in Lemma 2 %)

(unbounded ratio’s indegx

J. Inequal. Pure and Appl. Matt9(4) (2008), Art. 92, 18 pp. http://jipam.vu.edu.au/
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and let

[ |€IJ U — ]EIJ
0 = max-< %|7 77 0 = min < u|u 77

KL KL
So = max{s]sESL} Ky = m1n{k|k€SL}

Lemma 4.4. For any ratio g, if 5 < 1 with respect toA4, thenU, < K, and ], > So.

Proof. By the definitions above and Lemnigg 2, 2, 4.3, this result follows from an applica-
tion of proof by contradiction. O

Theorem 4.5. Any ratio% is bounded with respect tA, if and only if
0) %satisfies(STO)' and
(i) Forany® € XL there exists at least one ratio from the collectibhin (4.5) such that

U [ o[k,

Jj<l
u<k
s <1

wherelu, i|, [k, s] are intervals.

Proof. (=)
(i) Follows from Lemma 2 /1.
(i) Use Lemm . (Note (ii) guarantees that all unbounded rée}les will be cancelled

in the product presented in(4.4).)
(«—=)If & satlsfles (i) and (ii), by Lemm. 3 zﬂd%s a product of generators. Therefore

ﬁ is bounded O

Corollary 4.6. For any ratio
(i) %satisfies(STO); an
(i) B — « is subtraction free expression in terms of the parameferand «’s in (2) (that

is, there are no subtraction signs in the expression).

Proof. Itis sufficient to verify thatQ satisfies Theore@ 5 (H§:> is a product of generators

< [ — « Is subtraction free.
Suppose the ratl(% is a product of generators. Equivalently, there exist distinct indices

i1J1,- - -, ipJp, SUCh that

o q (et bt D
B - ik (ip + 1)k + 1)
a - (i + 1)jr i (jr + 1)
= B ,H (i + D (e +1) + Ay,

' 5 is bounded with respect tA, if and only if

Q o

p

[T (G D e+ 1)

(0] _
Al Ry —— ;
[T (G Dk G+ D)+ + 11 Aus
k=1 k=1
= [ —a is subtraction free .
If 5 — « is subtraction free, thefi — o > 0, thus% < 1is bounded. O

J. Inequal. Pure and Appl. Matt9(4) (2008), Art. 92, 18 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

12 XIAO PING LIU AND SHAUN M. FALLAT

5. PRELIMINARIES FOR THE NON-PRINCIPAL CASE

For ann x n matrix A = [a;;] € Ay ando,.,a. C N = {1,2,...,n}, the submatrix of4
lying in rows indexed byy, and columns indexed hy. is denoted byA |« |a.]. For brevity, we
may also le{«,|a.) denotedet Ao, |a.]. ForA € A4, the non-principal minofa,|a.) may be
zero or non-zero (see Lemmals.1).

Let « = {o,a9,...,a,} denote a collection of multisets (repeats allowed) of the form,
a; = {a'|a'}, where for each, o' denotes a row index set amd denotes a column index
set (o] = ||, ¢ = 1,2,...,p). If, further, 3 = {B4, (e, ..., 3,} is another collection of
such index sets withy; = {3:|5:} fori = 1,2,...,q, then, as in the principal case, we define
the concepts such ast < (3, the ratio% (assuming the denominator is not zero), bounded
ratios and generators with respect to a subclass of invertible TN matrices. Since, by convention,
det A[¢] = 1, we also assume, without loss of generality, that in any rgttmth collections
« and g have the same number of sets. Non-principal determinantal inequalities with respect
to general TN matrices have been investigated by others|(se€ [9, 15]), although our approach is
slightly different.

Forj =1,2,...,n we definef,(j|-) to be the number of row sets inthat contain the index
J, and similarly,f, (-|7) counts the multiplicity ofj in the column sets at. If f,(j|-) = f3(j|-)
andf.(-[j) = fs(:|j) foreveryj =1,2,...,n, we say that; satisfies (STO).

Lemma5.1.For A € A4, if « = a(A) # 0, then there exists such that% satisfies (ST0), and
B = B(A) #0.
With Lemm , We may assume that for any r%iwe haves = 5(A) # 0.

The next lemma provides a simple necessary (but by no means sufficient) condition for a
given ratio of non-principal minors to be bounded.

Lemma 5.2. If a given ratio% is bounded with respect tA, then% satisfies (STO).

6. COMPUTATION OF NON-PRINCIPAL MINORS AND CONSTRUCTION OF THE
GENERATORS

Let A € Ay, anda = {iyis- - - ix|j172 - - - jx } be any non-principal minor oft. To evaluate
a = a(A) we have the next result. Recall the form of atiye A, in (2).

Lemma 6.1(Computation of non-principal minorsp non-principal minor
(ar|ae) = (indg - - ig|grge - - Jk)
is a product of the following factors:
(1) Each factor has the form:

I'_yly oo l2_17@uy Uy q,

(2) We proceed from left to right. We first compute for the index aajx, (s = 1), then the
second index paif; |72, (s = 2), and so on.

(3) Fors=1,x=1, andy = min{il,jl}. If 11 > J1, multlplyl_y bylj1 s lilfl; if 11 = J1,
multiply 1y by 1; if iy < ji, multiply 1y by w;, - - - uj, 1.

(4) For s = 2, setr = max{iy, j1} + 1, andy = min{iy, jo} and suppose < y. If iy > jo,
thenzy is multiplied byl,, - - - l;,_1; if io = j2, thenzy is multiplied by 1; ifi; < jo,
thenzy is multiplied by, - - - uj,_;. Whenz > y, this step stops.

(5) Continue in this manner fos = 3,4, ..., k, we simply multiply all of the factors to-
gether to evaluatéo, |a..).

J. Inequal. Pure and Appl. Matt9(4) (2008), Art. 92, 18 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

OSCILLATORY MATRICES 13

(6) If any of the above steps (4-5) cannot be carried out (that is, if every in step 4) we
conclude thata, |a.) = 0.

Consider the following illustrative examples outlining the algorithm in Lernmp 6.1.

Example 6.1.

(1) Supposga,|a.) = (1,2,3|2,3,4). Fors = 1, we haver = 1, y = min{1,2} = 1,

x = y, which implieslyu; = 11u,. On the other hand for = 2,
r=max{l,2} +1=3, y=min{2,3} =2, and z >y.

Hence this step stops and we conclude thata.) = (1,2,3(2,3,4) = 11u; x 0 = 0.

(2) Let (a|ae) = (1,4,7,10|3,5,6,8). Fors =1,z = 1, y = min{1,3} = 1, z = y,
1 < 3, we have a factor of 1w u,. Similarly, s = 2, # = max{1,3} + 1 = 4,
y =min{4,5} = 4, z = y, 4 < 5, we have a factor of4u,. Continuing in this manner
for s =3, 2 = max{4,5} +1 =6,y = min{7,6} = 6, x = y, 7 > 6, we have a factor
66l and fors = 4, z = max{7,6} + 1 = 8, y = min{10,8} =8, z =y, 10 > 8, we
have a factoBSIgl,.

Multiplying all of the factors above yields

(Oér|Oéc> = (]_,4, 7, ].0|3, 5,0, 8) = ﬁUﬂLQ X MU4 X %lﬁ X @lglg.

We introduce three types of ratios:

Type Iy: v Examplez, 5.

ig—1big T UGy Uiy —1

l . . 1o
Type I, — (i1 < iy). Example,bl?lg%.
. ziy . 68
Type I4,: T Rer— (iz <'i1). Example, ="

For Typel,, and Typel,, ratios thenumbersof /'s andu’s attached on the left and right are
the same, which we refer to as tfeandu’s in pairs. Note that the number é% or u’s is equal
to i, — 4, for TypeI,, (ori; — iy for I,,), and in this case we say that the numbelf'®br u’s
is matched

Lemma 6.2. For any ratio% that satisfies (STO) with # 0, 5 # 0, 3 can be written as:

5 = T Tt T] ()

with respect tA ;, and the numbers @& andu’s in the above product are in pairs and matched.

Proof. By Lemm the numbers 6§ and oru’s that appear ir% are completely determined
by the index pairs fromx or 3. Therefore we can split all the minorsanand into row-column
index pairs, and by induction we can establish the matched prope%tymfall cases. O
Example 6.2. Let

a={(1,3,71,5,7),(5,83,8),(4/4)}, B =1{(1,3]1,3),(4,8|7,8),(5]5),(7|4)}.

To evaluate% we first compute each minor in the collectionsand 5 via Lemm@. In this
case:

(1,3,7]1,5,7) = 11 23u367,
(57 8|3, 8) - 1_l3l4_8,

(4]4) = 14,

(1,3]1,3) = 11 23,

(47 8| s 8) = ﬁU5U688,

(5/5) = 55,

(7]4) = Talsls
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Second, we put them together, simplify, and re-order to produce
o {(1,3,7]1,5,7),(5,83,8), (4]4)}

B {(1,3]1,3),(4,8]7,8), (5[5), (T14)}

. {ﬁ %u;))ﬁ Elgl4@ ﬁ} . Z3EU3 % ﬁ % @
B {H 2_3 EU@UG@ % El4l5l6} B ﬁ 16l5]__5’LL5U6 @
Note:
cl 13u 67 H g9 )
(1) For the factors®=3, PO v there is exactly 1 and 1u (attached td3) and 2i’s

andu’s (attached td5). This is what is meant as tlis andw’s arein pairs.

(2) For the factor%, the span on the indices of tli's andu’s starts at 3 and there are
exactly4 — 3 = 1 of them, which means thiés andu’s arematched
Similarly for —%— there arf — 5 = 2 I's andu’s starting from 5

lgls15usug

We are now in a position to construct a list of generators in the non-principal case. Before
we proceed to this construction, we need an additional lemma on the forms of special bounded
ratios.

Lemma 6.3.

(2) % < 1 with respect taA; if and only ifx > y.

(2) %tl .--t;_y < 1 with respect taA; if and only ifz > y (z <4,y < j,i < j).

(3) wtﬁti,l is not bounded with respect #; for anyz,y (x <1,y < j, j < ).

Using Lemma 63, we construct a list of bounded ratios (see[page 16):

In the list on pagé 16 the left part are the generators from the principal case, which we call
Type I, generators, while the right part are generators which are called/Jypenerators. We
will verify that the union of Type, and Typel,,, are generators for the non-principal case.

Lemma 6.4. For any ratio% that satisfies (ST0), we have

a _ [1Uo) [T(up) [T(an)

B T10o) [T(Uup) TTUan)

with respect toA ;, where[] (1) are products of Typé generators:%%; [1(1.,) are

products of Typd,, generators: % [1(Zan) are products of the reciprocals of Tygg,
generators.

Lemma 6.5. For any ratio% that satisfies (STO), % is bounded with respect td, then

«

5 = II({o) [I(Zp). That is, there are no Typé&,, ratios in g, and Typel, and Typel,,
generators do not appear in the denominato%of

Proof. We establish the proof by verifying it in all the possible cases below:

B | (PRI | (O (0] 1 (0

—_
P

w2 e L
S

(Lup) B (L)’ B (Lp)
H(quo) o [1(1o) a [1(1o) H(]up)
V5= V= V5T a)

J
~—
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The notatlorfl H(II‘”)’) means that the numerator of the ratios are products of Typgener-
ators and the denominator is a fixed generator from the Typeavhich is necessarily different

from any of the generators appearing in the numerator. Similar meanings are intended for the
other cases.

i H(I’up) _ H(I’up) ijts .
Consider case 1). Suppo§e= Ly = S andi(jjTJl) ¢ J(I,) (thatis, there are no

_ i(j+1)
generators in the same columnﬁ% among the union of generatdr§ /,,,) in the numerator
of the ratio3).

Letd;,, = t, and set all other parameters to be 1. Then the right part of the list ol page 16
will have the following form in terms of the nonnegative parameter

(j column)
00 --- 0 empty 1 i
0O --- 0 empty % %
(i row) 0 3 i i
0 empty T 1
empty

N e L

1
1

From the above argument we conclude that= O(t) — oo (t — oo). Thereforeg is un-
bounded.

Similar arguments may be applied in the other cases. O
For any bounded Typ#,, ratio Ztti-1 (tw = Ly, w =1,...,7 — 1), we have
Ilti s tj—l . Etz i+ 1ti+1 l’j — 1t] 1 ZE]
yJ w1l wi+2 zj yj

when% is of Typel,.

Lemma 6.6. Any bounded ratio% with respect toA; that satisfies (STO), can be uniquely
written as follows:

Q i zj , ,
_:”:” :”I ”[u
R (yz) : (zj+1) o L1
Proof. Apply the above factorization to each typg, ratio. O

As in the principal casd,[ ()’ can be decomposed into two classes:

ij kl
Ié>:Z:‘7,,i>u, I.:=k<s.
uj sl

1J' ij Z] ' KL’ kl Kl '
(@) -l eny  (5) vl e

We now come to our main observations for describing all of the multiplicative non-principal
determinantal inequalities for the class STEP 1.

Let

Theorem 6.7. Any ratio% Is bounded with respect tA, if and only if:

J. Inequal. Pure and Appl. Matt9(4) (2008), Art. 92, 18 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

16 XIAO PING LIU AND SHAUN M. FALLAT

Q) 3 satisfies (STO0),
(2) There are no Typé,, ratios in 3
(3) For any% € (ﬁ') , there exists at least one ratio from the coIIectiéﬁ%') above

SL
such that
Uj<tusk,s<i|t, 7] D [k, s].

Proof. By Lemma5, a.6 along with the definition%@f and %/ above, we can

apply similar arguments as in the principal case to establish this result. O

Corollary 6.8. For any ratio  is bounded with respect t4, if and only if
(1) § satisfies (STO),
(2) There are no Typé,, ratios in 5
(3) B — «ais subtraction free.
Note that
Liviu;  (z — lilx — 1i+ 1) (2 — 1i + 1] — 14)

—_— = forx > 1,
Zitl (z—lilz—Li)(z—Li+ Lz —1i+1) *

and _
liliu; ()i + 1) (2 + 1))
+1 (i) +1i+1)
so we can rewrite the list of generators in their original forms as minors (se¢ page 17).

Theorem 6.9. Any ratio% is bounded with respect tA, if and only if% can be written as a
product of generators from the lis{s (7]1a) apd (7.1b).

7. CONCLUSION

In this paper we set out to characterize all of the multiplicative determinantal inequalities for a
certain class of invertible totally nonnegative matrices. Due to the nature of the proof techniques
developed, this characterization involves constructing a complete (finite) list of multiplicative
generators for all such determinantal inequalities. However, to describe these generators we
needed to carefully analyze various factorizations of ratios of minors, which in turn required an
exhaustive study of all possible ratio types and eventually construction of the key generators.

It is evident that these factorizations or decompositions require plenty of notation, and hence
can be viewed as cumbersome to read. Notwithstanding this, we feel that an important feature of
our paper is the resulting description of the complete list of generators (both in the principal and
non-principal cases). This list of generators is both simple to read and naturally laid out. In our
opinion, it is this remark that points to the potential applicability of our work, particularly for
future research on determinantal inequalities for more general subclasses of totally nonnegative
matrices. We also feel that more study is required on this important problem, not just for TN
matrices but for other classes of matrices as well.

2213 1314 2(n-1) In 2n paln—lun—1 = 112us  Lllwy
12 23 13 24 1(n—1) 2n In In 13 12
3324 3(n_1) 2n 3n n—12n—lun—1 = 122w
23 34 2(n—1) 3n 2n n 23
4(n—1) E g ln,13n7—1un,1
3(n—1) 4n 3n 3n

n=1(n—=1)n=39n n—In In-1n—2n—Ilup_1

n—2(n—1)n—1n n—2n n—2n
nn ln—1n—In—1un—1
n—1n n—1n
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(12)(3)  (13)4)  AHh) . {1(n=1)}(n) (In)
(13)(2)  (149)@3)  (15)(4) {(In)(n—-1)} HOION
(23)(14)  (24)(15) {2(n—1)}(1n) (2n)(1)
(24)(13)  (25)(14) (2n){1(n—-1)} (In)(2)
(34)(25) . {3(n—1)}(2n) (3n)(2)
(7.1a) (35)(24) (3n){2(n—-1)} (2n)(3)
{in=2)(n=D)}H{((n=3)(n)}  {(n=2)n}(n—3)
{(n=3)(n—DH(n—2)n}  {(n—3)n}(n—2)
{(n=1)n}(n—2)
{(n—2)n}(n—1)
(n—1|n)(n|n—1) (n=2[n—1)(n—1|n—2) Lapep
(n—1[n—1)(nln) (n—2n—2)(n—Ljn—1) ID(P2)
{1(n—1)[1n}{1n|1(n—1)} {1(n=2)[1(n=1)}{1(n—1)[1(n—2)}
{1(n—1)[1(n—1)}(In|1n) {1(n—2)[1(n—2) H{1(n—1)[1(n—1)}
{2(n—1)[2n}{2n[2(n—1)} {2(n=2)[2(n—1)}{2(n—1)[2(n—2)}
(7.1b) {2(n—1)12(n—1) }(2n]2n) 2(n—2)2(n—2){2(n-1)2(n—1)}

{(n=2)(n=1)|(n=2)n}{(n=2)n|(n=2)(n—1)}
{(n=2)(n=1)[(n=2)(n—1) H{(n—2)n|(n—-2)n}
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