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ABSTRACT. A square matrix is said to be totally nonnegative (respectively, positive) if all of its
minors are nonnegative (respectively, positive). Determinantal inequalities have been a popular
and important subject, especially for positivity classes of matrices such as: positive semidefinite
matrices,M−matrices, and totally nonnegative matrices. Our main interest lies in characterizing
all of the inequalities that exist among products of both principal and non-principal minors of
certain subclasses of invertible totally nonnegative matrices. This description is accomplished
by providing a complete list of associated multiplicative generators.
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1. I NTRODUCTION

An n × n matrix A is calledtotally positive, TP (totally nonnegative, TN) if every minor of
A is positive (nonnegative) (see [1, 10, 13]). Ann× n matrixA is calledan oscillatory matrix,
OSC, if A is totally nonnegative and there exists a positive integerk, so thatAk is a totally
positive matrix. Such matrices arise in a variety of applications [11], have been studied most of
the 20th century, and continue to be a topic of current interest.

Relationships among principal minors, particularly inequalities that occur among products
of principal minors, for all matrices in a given class of square matrices have been studied for
various classes of matrices (see [7] and references therein). In the case of positive definite
matrices andM -matrices, many classical inequalities are known to hold (see standard submatrix
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2 XIAO PING L IU AND SHAUN M. FALLAT

notation below):

Hadamard:det A ≤
n∏

i=1

aii;

Fischer:det A ≤ det A[S] · det A[Sc], for S ⊆ {1, 2, . . . , n};
Koteljanskii: det A[S ∪ T ] · det A[S ∩ T ] ≤ det A[S] · det A[T ] for S, T ⊆ {1, 2, . . . , n}.
These inequalities also hold forn× n totally nonnegative matrices, e.g. [1, 10, 14].
For the past few years, multiplicative inequalities have been studied in great detail (see, for

example, the survey paper [7]) for classes such as: positive definite (see [2]);M− and inverse
M− matrices (see [6]); tridiagonalP−matrices (see [8]). In [5] a complete description of all
such inequalities (in the principal case) forn × n totally nonnegative matrices was given for
n ≤ 5.

In this paper our purpose is to better understand all inequalities among products of minors
that hold for general TP matrices. We note that since TN is the closure of the TP matrices
(see [1]), the inequalities in TN are the same as those in the class TP or invertible TN. Thus it
suffices to consider inequalities within the class of invertible TN matrices, and there, because
of the positivity of minors, we may consider ratios of products of minors and ask which are
bounded by a constant independent ofn throughout the entire class of invertible TN matrices.
The classification of all such inequalities for general TP matrices is currently unresolved. Our
plan is to restrict ourselves to a subclass of invertible TN matrices, which we conveniently refer
to as STEP 1.

Here we identify all ratios of products of principal and non-principal minors bounded, and
give a complete description of the generators for the class STEP 1, for eachn. All bounded
ratios that we identify are actually bounded by 1, and thus are all inequalities.

The paper is organized into two parts: In the first part we investigate the principal case, while
the latter part studies the non-principal case.

2. PRELIMINARIES AND BACKGROUND

For ann × n matrix A = [aij] andα, β ⊆ N ≡ {1, 2, . . . , n}, the submatrix ofA lying
in rows indexed byα and columns indexed byβ will be denoted byA[α|β]. If α = β, then
the principal submatrixA[α|α] is abbreviated toA[α]. For brevity, we may also let(S) denote
det A[S].

Let α = {α1, α2, . . . , αp} denote a collection of index sets (repeats allowed), whereαi ⊆ N ,
i = 1, 2, . . . , p. Then we defineα(A) = det A[α1] det A[α2] · · · det A[αp]. If, further, β =
{β1, β2, . . . , βq} is another collection of index sets withβi ⊆ N , for all i, then we writeα ≤
β with respect toC if α(A) ≤ β(A), for everyn× n matrixA in C.

We also consider ratios of products of principal minors. For two given collectionsα andβ

of index sets we interpretα
β

as both a numerical ratioα(A)
β(A)

for a given matrixA in C and as a
formal ratio to be manipulated according to natural rules. Since, by convention,det A[φ] = 1,
we also assume, without loss of generality, that in any ratioα

β
both collectionsα andβ have the

same number of index sets.
Each of the classical inequalities discussed in the introduction may be written in our form

α ≤ β. For example, Koteljanskii’s inequality has the collectionsα = {S ∪ T, S ∩ T} and
β = {S, T}. Our main problem of interest is to characterize, via set-theoretic conditions, all
pairs of collections of index sets such that

α(A)

β(A)
≤ K,
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OSCILLATORY MATRICES 3

for some constantK ≥ 0 (which depends onn) and for alln × n matricesA in C. If such a
constant exists for all matricesA in C, we say that the ratioα

β
is boundedwith respect to the

class ofC matrices.
Let α be any given collection of index sets. Fori ∈ {1, 2, . . . , n}, let fα(i) be the number

of index sets inα that contain the elementi (see also [2, 6]). The next result gives a simple
necessary (but by no means sufficient) condition for a given ratio of principal minors to be
bounded with respect to the TN matrices.

Lemma 2.1. Let α andβ be two collections of index sets. Ifα
β

is bounded with respect to any
subclass of invertible TN matrices that includes all positive diagonal matrices, thenfα(i) =
fβ(i), for everyi = 1, 2, . . . , n.

If a given ratio α
β

satisfies the conditionfα(i) = fβ(i), then we say the ratio satisfies ST0
(set-theoretic) (see also [2, 6]).

The fact that a TN matrix has an elementary bidiagonal factorization (see [3, 4]) seems to be a
very useful fact for verifying when a ratio is bounded. By definition, anelementary bidiagonal
matrix is ann× n matrix whose main diagonal entries are all equal to one, and there is at most
one nonzero off-diagonal entry and this entry must occur on the super- or subdiagonal. To this
end, we denote byEk(µ) = [cij] (2 ≤ k ≤ n), the lower elementary bidiagonal matrix whose
elements are given by

cij =


1, if i = j,

µ, if i = k, j = k − 1,

0, otherwise.
The next result can be found in [12].

Theorem 2.2.LetA be ann× n invertible TN matrix. ThenA can be written as

(2.1) A = (E2(lk))(E3(lk−1)E2(lk−2)) · · · (En(ln−1) · · ·E3(l2)E2(l1))D

(ET
2 (u1)E

T
3 (u2) · · ·ET

n (un−1)) · · · (ET
2 (uk−2)E

T
3 (uk−1))(E

T
2 (uk)),

wherek =
(

n
2

)
; li, uj ≥ 0 for all i, j ∈ {1, 2, . . . , k}; andD is a positive diagonal matrix.

Further, given the factorization above (2.1), we introduce the following notation:

D = diag(d1, d2, . . . , dn),

L1 = (En(ln−1) · · ·E3(l2)E2(l1)), U1 = (ET
2 (u1)E

T
3 (u2) · · ·ET

n (un−1)),

...

Ln−2 = (E3(lk−1)E2(lk−2)), Un−2 = (ET
2 (uk−2)E

T
3 (uk−1)),

Ln−1 = (E2(lk)), Un−1 = (ET
2 (uk)),

wherek =
(

n
2

)
. Then (2.1) is equivalent to

A = Ln−1Ln−2 · · ·L1DU1 · · ·Un−2Un−1,

and observe that eachLi andUj are themselves invertible bidiagonal TN matrices.
A collection of bounded ratios with respect to a fixed class of matrices is referred to as

generatorsif any bounded ratio with respect to that fixed class of matrices can be written as
products of positive powers of ratios from this collection.

For n = 3, 4, 5 there is a complete description of the generators for the bounded ratios of
principal minors of TP matrices in [5]. For clarity of exposition we state this characterization
in the casen = 4.
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4 XIAO PING L IU AND SHAUN M. FALLAT

Theorem 2.3([5]). Supposeα/β is a ratio of principal minors for TP matrices withn = 4.
Thenα/β is bounded with respect to the totally positive matrices if and only ifα/β can be
written as a product of positive powers of the generators listed below:

(14)(∅)
(1)(4)

,
(2)(124)

(12)(24)
,

(3)(134)

(13)(34)
,

(23)(1234)

(123)(234)
,

(12)(3)

(13)(2)
,

(1)(24)

(2)(14)
,

(2)(34)

(3)(24)
,

(4)(13)

(3)(14)
,

(12)(134)

(13)(124)
,

(13)(234)

(23)(134)
,

(34)(124)

(24)(134)
,

(24)(123)

(23)(124)
,

(14)(23)

(13)(24)
.

3. STEP 1: A CLASS OF OSCILLATORY M ATRICES

By Theorem 2.2, anyA n× n OSC matrixA can be written as

A = Ln−1Ln−2 · · ·L1DU1 · · ·Un−2Un−1.

We consider a special class of invertible TN matrices. Let

A1 = {A|A = L1DU1},
and we refer toA1 as the class STEP 1.

Note that

L1 = (En(ln−1) · · ·E3(l2)E2(l1)), U1 = (ET
2 (u1)E

T
3 (u2) · · ·ET

n (un−1)),

whereli > 0, ui > 0 andD = diag(d1, d2, . . . , dn), di > 0. In fact, eachA ∈ A1 is indeed an
OSC matrix.

The next result is a straightforward computation.

Lemma 3.1. For any A∈ A1, A can be written as follows:

(3.1)



11 11u1 11u1u2 · · · · · · 11u1u2 . . . ui · · · · · · 11u1u2 . . . un−1

l111 12 12u2 · · · · · · 12u2 . . . ui · · · · · · 12u2 . . . un−1

l2l111 l212 13 · · · · · · 13u3 . . . ui · · · · · · 13u3 . . . un−1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
li · · · l2l111 li · · · l212 li · · · l313 · · · · · · 1i · · · · · · 1iui . . . un−1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
ln−1 · · · l2l111 ln−1 · · · l212 ln−1 · · · l313 · · · · · · ln−1 · · · li1i · · · · · · 1n


,

where

11 = d1,

12 = d2 + t1d1,

13 = d3 + t2d2 + t2t1d1,

...

1j = dj + tj−1dj−1 + tj−1tj−2dj−2 + · · ·+ tj−1 · · · t2t1d1,

...

1n = dn + tn−1dn−1 + tn−1tn−2dn−2 + · · ·+ tn−1 · · · t2t1d1,

and wheretj = ljuj for j ∈ {1, 2, . . . , n− 1}.

Further we lay out the following notation:

11 = d1, 22 = d2, 33 = d3, . . . , nn = dn,

ij = dj + tj−1dj−1 + tj−1tj−2dj−2 + · · ·+ tj−1 · · · tidi (1 ≤ i < j ≤ n).
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For example,

35 = d5 + t4d4 + t4t3d3, 14 = d4 + t3d3 + t3t2d2 + t3t2t1d1.

Using the above notation we conclude that

Lemma 3.2. Letα = {i1, i1 +1, . . . , i1 +ki1 ; i2, i2 +1, . . . , i2 +ki2 ; . . . ; ip, ip +1, . . . , ip +kip}
be a subset of{1, 2, 3, . . . , n} with {iq, iq + 1, . . . , iq + kiq} based on contiguous indices for
q ∈ {1, 2, 3, . . . , p}, and i1 ≤ i1 + ki1 < i2 ≤ i2 + ki2 < · · · < ip ≤ ip + kip , kiq ≥ 0 for
q ∈ {1, 2, 3, . . . , p}, then for any matrixA ∈ A1, we have

(3.2) (α) = 1i1

[
(i1 + 1)(i1 + 1) · · · (i1 + ki1)(i1 + ki1)

]
(i1 + ki1 + 1)(i2)[

(i2 + 1)(i2 + 1) · · · (i2 + ki2)(i2 + ki2)
]

(i2 + ki2 + 1)(i3) · · ·

(ip−1 + kip−1 + 1)(ip+1)
[
(ip + 1)(ip + 1) · · · (ip + kip)(ip + kip)

]
.

As an illustration of Lemma 3.2, consider the following examples.

Example 3.1.

(1) (3) = 13, (15) = 11 25.
(2) (124) = 11 22 34, (35689) = 13 45 66 78 99.
(3) (23 5 789) = 12 33 45 67 88 99.

Remark 1. Lemma 3.2 demonstrates that any minor is a product of termsij.

It is easy to deduce the following result, from the above analysis.

Lemma 3.3. Supposeα = {α1, α2, . . . , αp} andβ = {β1, β2, . . . , βp} denote two collections
of index sets (repeats allowed) and that the ratioα

β
satisfiesST0. Then with respect to STEP 1,

α
β

can be written as follows:

α

β
=

i1j1 i2j2 · · · ikjk

s1t1 s2t2 · · · sktk
,

where{j1, j2, . . . , jk} = {t1, t2, . . . , tk}. Hereiu ≤ ju for u ∈ {1, 2, 3, . . . , k} andsu ≤ tu for
u ∈ {1, 2, 3, . . . , l}.
Example 3.2.

(1)

α

β
=

(23) (145) (24578)

(124) (345) (2)(57)(8)

=
12 33 11 24 55 12 34 55 67 88

11 22 34 13 44 55 12 15 67 18

=
12 33 24 55 88

22 13 44 15 18
.

(2)

α

β
=

(123) (2345) (567)(8)

(12) (23) (3456)(5)(78)

=
11 22 33 12 33 44 55 15 66 77 18

11 22 12 33 13 44 55 66 15 17 88

=
33 77 18

13 17 88
.
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Remark 2.

(1) In Example 1 (2) we note that the sets{j1, j2, . . . . . . , jk} and{t1, t2, . . . . . . , tk} both
equal{3, 7, 8}, (the fact they are equal follows from STO and Lemma 3.2) and as such
α
β

may be written as33 77 18
13 17 88

in which (j∗ = t∗, ∗ = 3, 7, 8).
(2) Lemma 3.3 will be used to produce the form of the generators for the multiplicative

bounded ratios with respect to the class STEP 1.

4. BOUNDED RATIOS AND GENERATORS FOR STEP 1

Based on Lemmas 3.2 and 3.3 above, we can construct the form of any potential generator.
We begin this construction with the following key lemma.

Lemma 4.1. Supposei, j, u, k, s, l, are natural integers andi ≤ j, u ≤ j, k ≤ l, s ≤ l.

(1) ij

uj
< 1 with respect toA1 if and only ifu < i.

(2) ij

uj
kl
sl

< 1 with respect toA1 whenj < l if and only ifu ≤ k < s ≤ i ≤ j < l.

Proof.

(1)

ij

uj
< 1 ⇔ ij < uj

⇔ dj + tj−1dj−1 + · · ·+ tj−1 · · · tidi < dj + tj−1dj−1 + · · ·+ tj−1 · · · tudu

⇔ u < i.

(2) Enumerating all cases possible on the relations betweenu, i, k, s will result in the de-
sired conclusion.

�

Remark 3. In particular,(i+1)j

ij

i(j+1)

(i+1)(j+1)
< 1 with respect toA1, for all 1 ≤ i < j ≤ n.

Now consider the following terms associated withA1 (the class Step 1):

(?)

11 12 13 14 15 16 · · · 1(n− 1) 1n

22 23 24 25 26 · · · 2(n− 1) 2n

33 34 35 36 · · · 3(n− 1) 3n

44 45 46 · · · 4(n− 1) 4n

55 56 · · · 5(n− 1) 5n

· · · · · · · · ·

(n− 1)(n− 1) (n− 1)n

nn
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From the diagram (?) above we construct a list ofspecialratios, which will be used later.

(4.1)

22
12

13
23

23
13

14
24

24
14

15
25

25
15

16
26

· · · 2(n−1)

1(n−1)

1n
2n

2n
1n

33
23

24
34

34
24

25
35

35
25

26
36

· · · 3(n−1)

2(n−1)

2n
3n

3n
2n

44
34

35
45

45
35

36
46

· · · 4(n−1)

3(n−1)

3n
4n

4n
3n

55
45

46
56

· · · 5(n−1)

4(n−1)

4n
5n

5n
4n

... · · · · · ·
(n−1)(n−1)

(n−2)(n−1)

(n−2)n

(n−1)n

n−1n

(n−2)n

nn

(n−1)n

For comparison sake, the above list can be written in terms of principal minors as follows:

(4.2)

(12)
(13)

(3)
(2)

(13)
(14)

(4)
(3)

(14)
(15)

(5)
(4)

(15)
(16)

(6)
(5) · · · (1(n−1))

(1n))
(n)

(n−1)
(1n)
(1)

(φ)
(n)

(23)
(24)

(14)
(13)

(24)
(25)

(15)
(14)

(25)
(26)

(16)
(15) · · · (2(n−1))

(2n))
(1n)

(1n−1)
(2n)
(1n)

(1)
(2)

(34)
(35)

(25)
(24)

(35)
(36)

(26)
(25) · · · (3(n−1))

(3n))
(2n)

(2n−1)
(3n)
(2n)

(2)
(3)

(45)
(46)

(36)
(35) · · · (4(n−1))

(4n))
(3n)

(3n−1)
(4n)
(3n)

(3)
(4)

· · · (5(n−1))
(5n))

(4n)
(4n−1)

(5n)
(4n)

(4)
(5)

... · · · · · ·

((n−2)(n−1))
((n−3)(n−1))

((n−3)n)
((n−2)n)

((n−2)n)
((n−3)n)

(n−3)
(n−2)

((n−1)n)
((n−2)n)

(n−2)
(n−1)

By Lemma 2, all the above ratios are bounded by 1, which we will show are, in fact,genera-
tors.

Lemma 4.2.

(1) If ij

uj
< 1 with respect toA1, then ij

uj
is a product of some of the ratios taken from the

above list (4.1).
(2) Any ratio α

β
overA1 that satisfiesST0 can be written as follows:

(4.3)
α

β
=

n∏
j=2

[(
ij1j ij2j · · · ijpj

uj1j uj2j · · · ujpj

)(
kj1j kj2j · · · kjqj

sj1j sj2j · · · sjqj

)]
,
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whereujt < ijt, for t ∈ {1, 2, . . . , p}; kjt < sjt, for t ∈ {1, 2, . . . , q}, and that satisfies
the requirement that theu’s are distinct from thei’s andk’s, thes’s are distinct from
the i’s and k’s. Therefore any ratioα

β
that satisfiesST0 can be written as a ratio of

products of elements from the list (4.1).

Proof. To establish (1), observe that

ij

uj
=



(
ij

(i−1)j

(i−1)(j+1)

i(j+1)

)
· · · ·

(
in

(i−1)n

)
(

(i−1)j

(i−2)j

(i−2)(j+1)

(i−1)(j+1)

)
· · · ·

(
(i−1)n

(i−2)n

)
· · · · · · · · ·(

(u+1)j

uj

u(j+1)

(u+1)(j+1)

)
· · · ·

(
(u+1)n

(u)n

)


.

For item (2), we note that, by Lemma 3.3, we have (4.3). Finally observe that

kjtj

sjtj
=

1
sjtj

kjtj

,

which completes the proof. �

Example 4.1.The generators forA1 in the casen = 9 are as follows:

22
12

13
23

23
13

14
24

24
14

15
25

25
15

16
26

26
16

17
27

27
17

18
28

28
18

19
29

29
19

33
23

24
34

34
24

25
35

35
25

26
36

36
26

27
37

37
27

28
38

38
28

29
39

39
29

44
34

35
45

45
35

36
46

46
36

37
47

47
37

38
48

48
38

39
49

49
39

55
45

46
56

56
46

47
57

57
47

48
58

58
48

49
59

59
49

66
56

57
67

67
57

58
68

68
58

59
69

69
59

77
67

68
78

78
68

69
79

79
69

88
78

79
89

89
79

99
89

Suppose

α

β
=

(123) (2345) (56)(8)

(12) (23) (3456)(58)
=

33 18

13 68
.

Then

33

13
=


23
13

14
24

24
14

15
25

25
15

16
26

26
16

17
27

27
17

18
28

28
18

19
29

29
19

33
23

24
34

34
24

25
35

35
25

26
36

36
26

27
37

37
27

28
38

38
28

29
39

39
29


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and

68

18
=



28
18

19
29

29
19

38
28

29
39

39
29

48
38

39
49

49
39

58
48

49
59

59
49

68
58

59
69

69
59



.

Therefore

α
β

=


23
13

14
24

24
14

15
25

25
15

16
26

26
16

17
27

27
17

18
28

28
18

19
29

29
19

33
23

24
34

34
24

25
35

35
25

26
36

36
26

27
37

37
27

28
38

38
28

29
39

39
29

28
18

19
29

38
28

29
39

48
38

39
49

58
48

49
59

68
58

59
69

29
19

39
29

49
39

59
49

69
59

 .

Remark 4.
(1) Every generator in (4.1) can be written as follows:

gij =
(i + 1)j

ij

i(j + 1)

(i + 1)(j + 1)
=

(i + 1)j i(j + 1)

(i + 1)j i(j + 1) + ∆ij

,

where∆ij = dj+1 tj−1 · · · ti di, and

(i + 1)j i(j + 1) = (dj + tj−1dj−1 + · · ·+ tj−1 · · · ti+1di+1)(dj+1 + tjdj + · · ·+ tj · · · tidi).

(2) The reciprocal of a generator, given by(i+1)j

ij

i(j+1)

(i+1)(j+1)
, is equal to

1 +
∆ij

(i + 1)j i(j + 1)
= 1 +

s2

(j − i)(2s + j − i)
= O(s).

If we let dj+1 = di = s > 0, and set all other parameters to 1 in (2), then we observe that this
ratio is not bounded ass → +∞. For1 ≤ i ≤ j ≤ n, let di = dj+1 = s, tj+1 = 1

s
. Now we

can rewrite (?) as follows in terms ofs:
1 2 ... i− 1 s + i− 1 ... s + j − 1 2s + j − 1 j−1

s + 3 ... j−1
s +n−j+1

1 ... i− 2 s + i− 2 ... s + j − 2 2s + j − 2 j−2
s + 3 ... j−2

s +n−j+1
... i− 3 s + i− 3 ... s + j − 3 2s + j − 3 j−3

s + 3 ... j−3
s +n−j+1

... ... ...

1 s + 1 ... s + j − i + 1 2s + j − i + 1 j−i+1
s + 3 ... j−i+1

s +n−j+1
s ... s + j − i 2s + j − i j−i

s + 3 ... j−i
s +n−j+1

... j − i s + j − i j−i
s + 2 ... j−i

s +n−j
... ...
2 s + 2 2

s + 2 ... 2
s+n−j

1 s + 1 1
s + 2 ... 1

s+n−j
s 2 ... n− j

1 ... n−j−1
... n−j−2
...

1
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10 XIAO PING L IU AND SHAUN M. FALLAT

From the above list, we construct a list of orders for the ratios in(4.1) or (4.2) in terms of the
positive parameters:

(?b)

0
0

0
0
· · · 1

1
2
2

2
2
· · · · · · 2

2
2
2

1
1

0
0

0
0
· · · 0

0

0
0
· · · 1

1
2
2

2
2
· · · · · · 2

2
2
2

1
1

0
0

0
0
· · · 0

0

· · · · · · · · · · · ·
1
1

2
2

2
2
· · · · · · 2

2
2
2

1
1

0
0

0
0
· · · 0

0

2
2

2
2
· · · · · · 2

2
2
2

1
1

0
0

0
0
· · · 0

0

1
1
· · · · · · 1

1
1
2

1
1

0
0

0
0
· · · 0

0

0
0

0
0

1
1

0
0

0
0
· · · 0

0

0
0

1
1

0
0

0
0
· · · 0

0

1
1

0
0

0
0
· · · 0

0

0
0

0
0
· · · 0

0

· · ·

0
0

From the above argument we conclude that

Lemma 4.3. For any 1 ≤ i < j ≤ n, the inverse of the generatorgij = (i+1)j

ij

i(j+1)

(i+1)(j+1)

multiplied by products of any other generators is not bounded with respect to STEP 1.

For any ratioα
β

that satisfiesST0, we can invoke Lemma 2 to deduce

(4.4)
α

β
=

n∏
j=2

[(
ij1j ij2j · · · ijpj

uj1j uj2j · · · ujpj

)(
kj1j kj2j · · · kjqj

sj1j sj2j · · · sjqj

)]
.

Note that for eachj the item
(

ij1j ij2j ··· ijpj

uj1
j uj2

j ··· ujpj

)(
kj1

j kj2
j ··· kjq j

sj1
j sj2

j ··· sjq j

)
consists of two essential

parts: The first part:
(

ij1j ij2j ··· ijpj

uj1
j uj2

j ··· ujpj

)
has each successive ratio bounded. The second part:(

kj1
j kj2

j ··· kjq j

sj1
j sj2

j ··· sjq j

)
has each successive ratio unbounded.

Now using the above argument we define the following sets (repeats allowed) for any ratioα
β
:

IJ

UJ
=

n⋃
j=2

{
ij

uj
:

ij

uj
is a ratio from the first part in Lemma 2 (2)

}
(4.5)

(bounded ratio’s index)

KL

SL
=

n⋃
l=2

{
kl

sl
:
kl

sl
is a ratio from the second part in Lemma 2 (2)

}
(unbounded ratio’s index)
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OSCILLATORY MATRICES 11

and let

I0 = max

{
i|i ∈ IJ

UJ

}
, U0 = min

{
u|u ∈ IJ

UJ

}
,

S0 = max

{
s|s ∈ KL

SL

}
, K0 = min

{
k|k ∈ KL

SL

}
.

Lemma 4.4. For any ratio α
β
, if α

β
< 1 with respect toA1, thenU0 ≤ K0 andI0 ≥ S0.

Proof. By the definitions above and Lemmas 2, 2, and 4.3, this result follows from an applica-
tion of proof by contradiction. �

Theorem 4.5.Any ratio α
β

is bounded with respect toA1 if and only if

(i) α
β

satisfies(ST0); and

(ii) For any kl
sl
∈ KL

SL
, there exists at least one ratio from the collectionIJ

UJ
in (4.5) such that⋃

j ≤ l

u ≤ k
s ≤ i

[u, i] ⊃ [k, s],

where[u, i], [k, s] are intervals.

Proof. (=⇒)
(i) Follows from Lemma 2.1.
(ii) Use Lemma 4.3. (Note (ii) guarantees that all unbounded ratioskl

sl
∈ KL

SL
will be cancelled

in the product presented in (4.4).)
(⇐=) If α

β
satisfies (i) and (ii), by Lemmas 3.3 and 2,α

β
is a product of generators. Therefore

α
β

is bounded. �

Corollary 4.6. For any ratio α
β
, α

β
is bounded with respect toA1 if and only if

(i) α
β

satisfies(ST0); and
(ii) β − α is subtraction free expression in terms of the parametersl’s andu’s in (2) (that

is, there are no subtraction signs in the expression).

Proof. It is sufficient to verify thatα
β

satisfies Theorem 4.5 (ii)⇐⇒ α
β

is a product of generators
⇐⇒ β − α is subtraction free.

Suppose the ratioα
β

is a product of generators. Equivalently, there exist distinct indices
i1j1, . . . , ipjp, such that

α

β
=

p∏
k=1

(
(ik + 1)jk

ikjk

ik(jk + 1)

(ik + 1)(jk + 1)

)

⇐⇒ α

β
=

p∏
k=1

(ik + 1)jk ik(jk + 1)

(ik + 1)jk ik(jk + 1) + ∆ikjk

⇐⇒ α

β
=

p∏
k=1

(
(ik + 1)jk ik(jk + 1)

)
p∏

k=1

(
(ik + 1)jk ik(jk + 1)

)
+ · · ·+

p∏
k=1

∆ikjk

=⇒ β − α is subtraction free .

If β − α is subtraction free, thenβ − α > 0, thusα
β

< 1 is bounded. �
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5. PRELIMINARIES FOR THE NON-PRINCIPAL CASE

For ann × n matrix A = [aij] ∈ A1 andαr, αc ⊆ N ≡ {1, 2, . . . , n}, the submatrix ofA
lying in rows indexed byαr and columns indexed byαc is denoted byA[αr|αc]. For brevity, we
may also let(αr|αc) denotedet A[αr|αc]. ForA ∈ A1, the non-principal minor(αr|αc) may be
zero or non-zero (see Lemma 5.1).

Let α = {α1, α2, . . . , αp} denote a collection of multisets (repeats allowed) of the form,
αi = {αi

r|αi
c}, where for eachi, αi

r denotes a row index set andαi
c denotes a column index

set (|αi
r| = |αi

c|, i = 1, 2, . . . , p). If, further, β = {β1, β2, . . . , βq} is another collection of
such index sets withβi = {βi

r|βi
c} for i = 1, 2, . . . , q, then, as in the principal case, we define

the concepts such as:α ≤ β, the ratio α
β

(assuming the denominator is not zero), bounded
ratios and generators with respect to a subclass of invertible TN matrices. Since, by convention,
det A[φ] = 1, we also assume, without loss of generality, that in any ratioα

β
both collections

α andβ have the same number of sets. Non-principal determinantal inequalities with respect
to general TN matrices have been investigated by others (see [9, 15]), although our approach is
slightly different.

For j = 1, 2, . . . , n we definefα(j|·) to be the number of row sets inα that contain the index
j, and similarly,fα(·|j) counts the multiplicity ofj in the column sets ofα. If fα(j|·) = fβ(j|·)
andfα(·|j) = fβ(·|j) for everyj = 1, 2, . . . , n, we say thatα

β
satisfies (ST0).

Lemma 5.1. For A ∈ A1, if α = α(A) 6= 0, then there existsβ such thatα
β

satisfies (ST0), and
β = β(A) 6= 0.

With Lemma 5.1, we may assume that for any ratioα
β

we haveβ = β(A) 6= 0.
The next lemma provides a simple necessary (but by no means sufficient) condition for a

given ratio of non-principal minors to be bounded.

Lemma 5.2. If a given ratioα
β

is bounded with respect toA1, thenα
β

satisfies (ST0).

6. COMPUTATION OF NON-PRINCIPAL M INORS AND CONSTRUCTION OF THE

GENERATORS

Let A ∈ A1, andα = {i1i2 · · · ik|j1j2 · · · jk} be any non-principal minor ofA. To evaluate
α = α(A) we have the next result. Recall the form of anyA ∈ A1 in (2).

Lemma 6.1(Computation of non-principal minors). A non-principal minor

(αr|αc) = (i1i2 · · · ik|j1j2 · · · jk)

is a product of the followingk factors:

(1) Each factor has the form:

xyly · · · lz−1, xyuy · · ·uz−1,

(2) We proceed from left to right. We first compute for the index pairi1|j1, (s = 1), then the
second index pairi2|j2, (s = 2), and so on.

(3) For s = 1, x = 1, andy = min{i1, j1}. If i1 > j1, multiply1y by lj1 · · · li1−1; if i1 = j1,
multiply1y by 1; if i1 < j1, multiply1y byui1 · · ·uj1−1.

(4) For s = 2, setx = max{i1, j1}+1, andy = min{i2, j2} and supposex ≤ y. If i2 > j2,
thenxy is multiplied bylj2 · · · li2−1; if i2 = j2, thenxy is multiplied by 1; ifi2 < j2,
thenxy is multiplied byui2 · · ·uj2−1. Whenx > y, this step stops.

(5) Continue in this manner fors = 3, 4, . . . , k, we simply multiply all of the factors to-
gether to evaluate(αr|αc).
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(6) If any of the above steps (4-5) cannot be carried out (that is, if everx > y in step 4) we
conclude that(αr|αc) = 0.

Consider the following illustrative examples outlining the algorithm in Lemma 6.1.

Example 6.1.
(1) Suppose(αr|αc) = (1, 2, 3|2, 3, 4). For s = 1, we havex = 1, y = min{1, 2} = 1,

x = y, which implies1yu1 = 11u1. On the other hand fors = 2,

x = max{1, 2}+ 1 = 3, y = min{2, 3} = 2, and x > y.

Hence this step stops and we conclude that(αr|αc) = (1, 2, 3|2, 3, 4) = 11u1 × 0 = 0.
(2) Let (αr|αc) = (1, 4, 7, 10|3, 5, 6, 8). For s = 1, x = 1, y = min{1, 3} = 1, x = y,

1 < 3, we have a factor of11u1u2. Similarly, s = 2, x = max{1, 3} + 1 = 4,
y = min{4, 5} = 4, x = y, 4 < 5, we have a factor of44u4. Continuing in this manner
for s = 3, x = max{4, 5}+ 1 = 6, y = min{7, 6} = 6, x = y, 7 > 6, we have a factor
66l6 and fors = 4, x = max{7, 6} + 1 = 8, y = min{10, 8} = 8, x = y, 10 > 8, we
have a factor88l8l9.

Multiplying all of the factors above yields

(αr|αc) = (1, 4, 7, 10|3, 5, 6, 8) = 11u1u2 × 44u4 × 66l6 × 88l8l9.

We introduce three types of ratios:
TypeI0: xi

yi
. Example,66

56
, 24

34
.

TypeIup:
li2−1···li1xi1ui1

···ui2−1

yi2
(i1 < i2). Example,l3l212u2u3

23
.

TypeIdn: xi1
li1−1···li2yi2ui2

···ui1−1
(i2 < i1). Example, 68

l7l6l525u5u6u7
.

For TypeIup and TypeIdn ratios thenumbersof l’s andu’s attached on the left and right are
the same, which we refer to as thel’s andu’s in pairs. Note that the number ofl’s or u’s is equal
to i2 − i1 for TypeIup (or i1 − i2 for Idn), and in this case we say that the number ofl’s or u’s
is matched.

Lemma 6.2. For any ratio α
β

that satisfies (ST0) withα 6= 0, β 6= 0, α
β

can be written as:

α

β
=
∏

(I0)
∏

(Iup)
∏

(Idn)

with respect toA1, and the numbers ofl’s andu’s in the above product are in pairs and matched.

Proof. By Lemma 6.1 the numbers ofl’s and oru’s that appear inα
β

are completely determined
by the index pairs fromα orβ. Therefore we can split all the minors inα andβ into row-column
index pairs, and by induction we can establish the matched property ofα

β
for all cases. �

Example 6.2.Let

α = {(1, 3, 7|1, 5, 7), (5, 8|3, 8), (4|4)}, β = {(1, 3|1, 3), (4, 8|7, 8), (5|5), (7|4)}.
To evaluateα

β
we first compute each minor in the collectionsα andβ via Lemma 6.1. In this

case:
(1, 3, 7|1, 5, 7) = 11 23u367,
(5, 8|3, 8) = 13l3l468,
(4|4) = 14,
(1, 3|1, 3) = 11 23,
(4, 8|7, 8) = 14u5u688,
(5|5) = 55,
(7|4) = 14l4l5l6.
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Second, we put them together, simplify, and re-order to produce

α

β
=

{(1, 3, 7|1, 5, 7), (5, 8|3, 8), (4|4)}
{(1, 3|1, 3), (4, 8|7, 8), (5|5), (7|4)}

=
{11 23u367 13l3l468 14}

{11 23 14u5u688 55 14l4l5l6}
=

l313u3

14
× 67

l6l515u5u6

× 68

88
.

Note:

(1) For the factorsl313u3

14
, 67

l6l515u5u6
, there is exactly 1l and 1u (attached to13) and 2l’s

andu’s (attached to15). This is what is meant as thel’s andu’s arein pairs.
(2) For the factorl313u3

14
, the span on the indices of thel’s andu’s starts at 3 and there are

exactly4− 3 = 1 of them, which means thel’s andu’s arematched.
Similarly for 67

l6l515u5u6
, there are7− 5 = 2 l’s andu’s starting from 5

We are now in a position to construct a list of generators in the non-principal case. Before
we proceed to this construction, we need an additional lemma on the forms of special bounded
ratios.

Lemma 6.3.

(1) xi
yi

< 1 with respect toA1 if and only ifx > y.

(2) xi
yj

ti · · · tj−1 < 1 with respect toA1 if and only ifx ≥ y (x ≤ i, y ≤ j, i < j).

(3) xi
yjtj ···ti−1

is not bounded with respect toA1 for anyx, y (x ≤ i, y ≤ j, j < i).

Using Lemma 6.3, we construct a list of bounded ratios (see page 16):
In the list on page 16 the left part are the generators from the principal case, which we call

TypeI0 generators, while the right part are generators which are called TypeIup generators. We
will verify that the union of TypeI0 and TypeIup are generators for the non-principal case.

Lemma 6.4. For any ratio α
β

that satisfies (ST0), we have

α

β
=

∏
(I0)

∏
(Iup)

∏
(Idn)∏

(I0)
∏

(Iup)
∏

(Idn)

with respect toA1, where
∏

(I0) are products of TypeI0 generators: (i+1)ji(j+1)

ij(i+1)(j+1)
;
∏

(Iup) are

products of TypeIup generators: lixiui

x(i+1)
;
∏

(Idn) are products of the reciprocals of TypeIup

generators.

Lemma 6.5. For any ratio α
β

that satisfies (ST0), ifα
β

is bounded with respect toA1, then
α
β

=
∏

(I0)
∏

(Iup). That is, there are no TypeIdn ratios in α
β
, and TypeI0 and TypeIup

generators do not appear in the denominator ofα
β
.

Proof. We establish the proof by verifying it in all the possible cases below:

1)
α

β
=

∏
(Iup)

(Iup)
, 2)

α

β
=

∏
(I0)

(Iup)
, 3)

α

β
=

∏
(I0)

∏
(Iup)

(Iup)
,

4)
α

β
=

∏
(Iup)

(I0)
, 5)

α

β
=

∏
(I0)

(I0)
, 6)

α

β
=

∏
(I0)

∏
(Iup)

(I0)
,

7)
α

β
=

∏
(Iup)

(I0)(Iup)
, 8)

α

β
=

∏
(I0)

(I0)(Iup)
, 9)

α

β
=

∏
(Iup)

∏
(I0)

(I0)(Iup)
.
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The notationα
β

=
∏

(Iup)

(Iup)
means that the numerator of the ratios are products of TypeIup gener-

ators and the denominator is a fixed generator from the TypeIup, which is necessarily different
from any of the generators appearing in the numerator. Similar meanings are intended for the
other cases.

Consider case 1). Supposeα
β

=
∏

(Iup)

(Iup)
=

∏
(Iup)
ijtj

i(j+1)

, and ijtj

i(j+1)
6∈
⋃

(Iup) (that is, there are no

generators in the same column asijtj

i(j+1)
among the union of generators

⋃
(Iup) in the numerator

of the ratioα
β
).

Let dj+1 = t, and set all other parameters to be 1. Then the right part of the list on page 16
will have the following form in terms of the nonnegative parametert:

(j column)
0 0 · · · 0 empty 1

1
· · · 1

1
0 · · · 0 empty 1

1
· · · 1

1
· · · · · · · · · · · · · · · · · ·

(i row) · · · 0 1
0

1
1

· · · 1
1

· · · 0 empty 1
1

· · · 1
1

· · · empty · · · · · · · · ·
1
1

· · · 1
1

· · · · · · · · ·
1
1

From the above argument we conclude thatα
β

= O(t) → ∞ (t → ∞). Thereforeα
β

is un-
bounded.

Similar arguments may be applied in the other cases. �

For any bounded TypeIup ratio xiti···tj−1

yj
(tw = lwuw, w = i, . . . , j − 1), we have

xiti · · · tj−1

yj
=

xiti

xi + 1

xi + 1ti+1

xi + 2
· xj − 1tj−1

xj

xj

yj
,

when xj

yj
is of TypeI0.

Lemma 6.6. Any bounded ratioα
β

with respect toA1 that satisfies (ST0), can be uniquely
written as follows:

α

β
=
∏

i

(
xi

yi

)∏
j

(
zj

zj + 1

)
=
∏

(I0)
′
∏

(Iup)
′.

Proof. Apply the above factorization to each typeIup ratio. �

As in the principal case,
∏

(I0)
′ can be decomposed into two classes:

I ′0> :
ij

uj
, i > u, I ′0< :

kl

sl
, k < s.

Let (
IJ

UJ

′)
= ∪n

j=2

{
ij

uj
,
ij

uj
∈ I ′0>

}
,

(
KL

SL

′)
= ∪n

l=2

{
kl

sl
,
kl

sl
∈ I ′0<

}
.

We now come to our main observations for describing all of the multiplicative non-principal
determinantal inequalities for the class STEP 1.

Theorem 6.7.Any ratio α
β

is bounded with respect toA1 if and only if:
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(1) α
β

satisfies (ST0),
(2) There are no TypeIdn ratios in α

β
,

(3) For any kl
sl
∈
(

KL
SL

′
)

, there exists at least one ratio from the collection
(

IJ
UJ

′
)

above

such that
∪j≤l,u≤k,s≤i[u, i] ⊃ [k, s].

Proof. By Lemmas 5.2, 6.5, and 6.6 along with the definitions ofIJ
UJ

′
and KL

SL

′
above, we can

apply similar arguments as in the principal case to establish this result. �

Corollary 6.8. For any ratio α
β

is bounded with respect toA1 if and only if

(1) α
β

satisfies (ST0),
(2) There are no TypeIdn ratios in α

β
,

(3) β − α is subtraction free.

Note that
lixiui

xi + 1
=

(x− 1i|x− 1i + 1)(x− 1i + 1|x− 1i)

(x− 1i|x− 1i)(x− 1i + 1|x− 1i + 1)
for x > 1,

and
li1iui

1i + 1
=

(i|i + 1)(i + 1|i)
(i|i)(i + 1|i + 1)

,

so we can rewrite the list of generators in their original forms as minors (see page 17).

Theorem 6.9. Any ratio α
β

is bounded with respect toA1 if and only if α
β

can be written as a
product of generators from the lists (7.1a) and (7.1b).

7. CONCLUSION

In this paper we set out to characterize all of the multiplicative determinantal inequalities for a
certain class of invertible totally nonnegative matrices. Due to the nature of the proof techniques
developed, this characterization involves constructing a complete (finite) list of multiplicative
generators for all such determinantal inequalities. However, to describe these generators we
needed to carefully analyze various factorizations of ratios of minors, which in turn required an
exhaustive study of all possible ratio types and eventually construction of the key generators.

It is evident that these factorizations or decompositions require plenty of notation, and hence
can be viewed as cumbersome to read. Notwithstanding this, we feel that an important feature of
our paper is the resulting description of the complete list of generators (both in the principal and
non-principal cases). This list of generators is both simple to read and naturally laid out. In our
opinion, it is this remark that points to the potential applicability of our work, particularly for
future research on determinantal inequalities for more general subclasses of totally nonnegative
matrices. We also feel that more study is required on this important problem, not just for TN
matrices but for other classes of matrices as well.

22
12

13
23

23
13

14
24

· · · 2(n−1)

1(n−1)

1n
2n

2n
1n

ln−11n−1un−1

1n
· · · l212u2

13
l111u1

12

33
23

24
34

· · · 3(n−1)

2(n−1)

2n
3n

3n
2n

ln−12n−1un−1

2n
· · · l222u2

23

· · · 4(n−1)

3(n−1)

3n
4n

4n
3n

ln−13n−1un−1

3n
· · ·

· · · · · · · · · · · ·
n−1(n−1)

n−2(n−1)

n−2n
n−1n

n−1n
n−2n

ln−1n−2n−1un−1

n−2n

nn
n−1n

ln−1n−1n−1un−1

n−1n

J. Inequal. Pure and Appl. Math., 9(4) (2008), Art. 92, 18 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


OSCILLATORY MATRICES 17

(7.1a)

(12)(3)
(13)(2)

(13)(4)
(14)(3)

(14)(5)
(15)(4) · · · {1(n−1)}(n)

{(1n)(n−1)}
(1n)

{(1)(n)}

(23)(14)
(24)(13)

(24)(15)
(25)(14) · · · {2(n−1)}(1n)

(2n){1(n−1)}
(2n)(1)
(1n)(2)

(34)(25)
(35)(24) · · · {3(n−1)}(2n)

(3n){2(n−1)}
(3n)(2)
(2n)(3)

· · · · · · · · ·

{(n−2)(n−1)}{((n−3)(n)}
{(n−3)(n−1)}{(n−2)n}

{(n−2)n}(n−3)
{(n−3)n}(n−2)

{(n−1)n}(n−2)
{(n−2)n}(n−1)

(7.1b)

(n−1|n)(n|n−1)
(n−1|n−1)(n|n)

(n−2|n−1)(n−1|n−2)
(n−2|n−2)(n−1|n−1) · · · (1|2)(2|1)

(1|1)(2|2)

{1(n−1)|1n}{1n|1(n−1)}
{1(n−1)|1(n−1)}(1n|1n)

{1(n−2)|1(n−1)}{1(n−1)|1(n−2)}
{1(n−2)|1(n−2)}{1(n−1)|1(n−1)} · · ·

{2(n−1)|2n}{2n|2(n−1)}
{2(n−1)|2(n−1)}(2n|2n)

{2(n−2)|2(n−1)}{2(n−1)|2(n−2)}
{2(n−2)|2(n−2)}{2(n−1)|2(n−1)}

· · · · · ·

{(n−2)(n−1)|(n−2)n}{(n−2)n|(n−2)(n−1)}
{(n−2)(n−1)|(n−2)(n−1)}{(n−2)n|(n−2)n}
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[14] D.M. KOTELJANSKĬI, A property of sign-symmetric matrices (Russian),Mat. Nauk (N.S.),8
(1953), 163–167; English transl.:Translations of the AMS, Series 2,27 (1963), 19–24.

[15] M. SKANDERA, Inequalities in products of minors of totally nonnegative matrices,Journal of
Algebraic Combinatorics, 20(2) (2004), 195–211.

J. Inequal. Pure and Appl. Math., 9(4) (2008), Art. 92, 18 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/

	1. Introduction
	2. Preliminaries and Background
	3. STEP 1: A Class of Oscillatory Matrices
	4. Bounded Ratios and Generators for STEP 1
	5. Preliminaries for the Non-principal Case
	6. Computation of Non-principal Minors and Construction of the Generators
	7. Conclusion
	References

