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A square matrix is said to be totally nonnegative (respectively, positive) if all
of its minors are nonnegative (respectively, positive). Determinantal inequalities
have been a popular and important subject, especially for positivity classes of
matrices such as: positive semidefinite matrides;- matrices, and totally non-
negative matrices. Our main interest lies in characterizing all of the inequalities
that exist among products of both principal and non-principal minors of certain
subclasses of invertible totally nonnegative matrices. This description is accom-
plished by providing a complete list of associated multiplicative generators.
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1. Introduction

An n x n matrix A is calledtotally positive TP (otally nonnegativeTN) if every
minor of A is positive (nonnegative) (se&,[10, 13]). An n x n matrix A is called

an oscillatory matrix OSC, if A is totally nonnegative and there exists a positive
integerk, so thatA* is a totally positive matrix. Such matrices arise in a variety of
applications 11], have been studied most of the’2@entury, and continue to be a
topic of current interest.

Relationships among principal minors, particularly inequalities that occur among
products of principal minors, for all matrices in a given class of square matrices have
been studied for various classes of matrices (Zkarid references therein). In the
case of positive definite matrices and-matrices, many classical inequalities are
known to hold (see standard submatrix notation below):

Hadamarddet A < H Qi
=1

Fischer:det A < det A[S] - det A[S¢], forS C {1,2,...,n};
Koteljanskii: det A[S U T] - det A[SNT| < det A[S] - det A[T]
for S, T C {1,2,...,n}.

These inequalities also hold far x n totally nonnegative matrices, e.dl, [10,
14].

For the past few years, multiplicative inequalities have been studied in great detalil
(see, for example, the survey papd) for classes such as: positive definite (S8 [
M — and inversel/ — matrices (seeq]); tridiagonal P—matrices (seeg]). In [5] a
complete description of all such inequalities (in the principal case) fom totally
nonnegative matrices was given for< 5.
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In this paper our purpose is to better understand all inequalities among products
of minors that hold for general TP matrices. We note that since TN is the closure of
the TP matrices (sed]), the inequalities in TN are the same as those in the class TP
or invertible TN. Thus it suffices to consider inequalities within the class of invertible
TN matrices, and there, because of the positivity of minors, we may consider ratios
of products of minors and ask which are bounded by a constant independent of
throughout the entire class of invertible TN matrices. The classification of all such
inequalities for general TP matrices is currently unresolved. Our plan is to restrict
ourselves to a subclass of invertible TN matrices, which we conveniently refer to as
STEP 1.

Here we identify all ratios of products of principal and non-principal minors
bounded, and give a complete description of the generators for the class STEP 1,
for eachn. All bounded ratios that we identify are actually bounded by 1, and thus
are all inequalities.

The paper is organized into two parts: In the first part we investigate the principal
case, while the latter part studies the non-principal case.
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2. Preliminaries and Background

For ann x n matrix A = [a;;] anda, 5 € N = {1,2,...,n}, the submatrix ofd

lying in rows indexed byr and columns indexed by will be denoted byA[«|5]. If

a = (3, then the principal submatrid[a|«] is abbreviated tol|«]. For brevity, we
may also let.S) denotedet A[S].

Let o« = {a,a9,...,a,} denote a collection of index sets (repeats allowed),
whereo; € N,i=1,2,...,p. Thenwe define(A) = det A[oy] det Alay] - - - det Alay,].
If, further, 5 = {31, 0», .. ., B, } is another collection of index sets with C N, for
all 7, then we writenr < 3 with respect t& if a(A) < §(A), for everyn x n matrix
AinC.

We also consider ratios of products of principal minors. For two given collections
« andg of index sets we interpr% as both a numerical rati%% for a given matrix
A'in C and as a formal ratio to be manipulated according to natural rules. Since, by
convention,det A[¢] = 1, we also assume, without loss of generality, that in any
ratio £ both collectionsy and have the same number of index sets.

Each of the classical inequalities discussed in the introduction may be written in
our forma < 3. For example, Koteljanskii’'s inequality has the collectiens=
{SUT,SNT}andp = {S,T}. Our main problem of interest is to characterize, via
set-theoretic conditions, all pairs of collections of index sets such that

o) _

BA) =
for some constank” > 0 (which depends on) and for alln x n matricesA in C.
If such a constant exists for all matricdsin C, we say that the rati% is bounded
with respect to the class Gfmatrices.

Let « be any given collection of index sets. Fog {1,2,...,n}, let f,(i) be the
number of index sets ia that contain the elemen{see alsoZ, 6]). The next result
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gives a simple necessary (but by no means sufficient) condition for a given ratio of
principal minors to be bounded with respect to the TN matrices.

Lemma 2.1. Let « and 3 be two collections of index sets. 4fis bounded with
respect to any subclass of invertible TN matrices that includes all positive diagonal
matrices, thery, (i) = fs(i), foreveryi =1,2,...,n.

If a given ratio2 satisfies the conditiorf, (i) = fs(i), then we say the ratio
satisfies STO (set-theoretic) (see aldod)).

The fact that a TN matrix has an elementary bidiagonal factorization 8sé@ [
seems to be a very useful fact for verifying when a ratio is bounded. By definition,
anelementary bidiagonal matris ann x n matrix whose main diagonal entries are
all equal to one, and there is at most one nonzero off-diagonal entry and this entry Title Page
must occur on the super- or subdiagonal. To this end, we denaig @) = [c;;]
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Further, given the factorization abov 1), we introduce the following notation:
D = diag(dl, dg, N ,dn),

Ly = (Eu(ln) -+ By(lo) Bo(L)),  Ur = (B3 (un) B3 (ug) -+ - By (un-1)),

n

Ln—y = (Es(le—1)Ea(lr—2)),  Un—z = (B3 (up—2)E3 (up_1)),
Loy = (BEx(lp)),  Un—1 = (B3 (ug)),

wherek = (3). Then @.1) is equivalent to

A=Lp 1Ly LiDUy - Up2Upn_1,

and observe that eadh andU; are themselves invertible bidiagonal TN matrices.

A collection of bounded ratios with respect to a fixed class of matrices is referred
to asgeneratordf any bounded ratio with respect to that fixed class of matrices can
be written as products of positive powers of ratios from this collection.

Forn = 3,4,5 there is a complete description of the generators for the bounded
ratios of principal minors of TP matrices iB][ For clarity of exposition we state
this characterization in the case= 4.

Theorem 2.3 (B]). Supposev/3 is a ratio of principal minors for TP matrices with
n = 4. Thena/ 5 is bounded with respect to the totally positive matrices if and only
if /3 can be written as a product of positive powers of the generators listed below:

(14)@) (2)(124) (3)(134) (23)(1234) (12)(3) (1)(24) (2)(34)
(&) © (12)(24)7 (13)(34)" (123)(234)" (13)(2)" (2)(14)" (3)(24)°
(4)(13) (12)(134) (13)(234) (34)(124) (24)(123) (14)(23)
(3)(14)" (13)(124)" (23)(134)" (24)(134)" (23)(124)" (13)(24)
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3. STEP 1: A Class of Oscillatory Matrices

By Theorem2.2, any A n x n OSC matrixA can be written as
A=L, 1L, 5---LiDU;---U,_5U,_;.
We consider a special class of invertible TN matrices. Let
A, ={A|A=L,DU,},

and we refer tdA; as the class STEP 1.
Note that

Ly = (En(ln1) -+ Bs(l) Ea(lh)),  Up = (B3 (u1)Eg (ug) - - Ej (1)),

wherel; > 0,u; > 0 andD = diag(d;, ds,...,d,), d; > 0. In fact, eachd € A, is
indeed an OSC matrix.
The next result is a straightforward computation.

Lemma 3.1. For any A€ A,, A can be written as follows:

11 Tlug Tlugug ~ -veee Tluiug .. oug  oveee Tluius .. Up—1
1111 12 12us oo T2us Ui e 12ug . . . Up_1
loly 11 1212 13 e 13us (77 13usz ... Up_1
(BL) | e s e
l; 120111 l; 1212 lj---1313  -ooenn 10 e liu; Up—1
lp—1 - loli 11 lp_q - 1212 lp_q---1313 v---- R P T AR in
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where

11 = dl,
12 = dy + t1dy,
1_3 - d3 + t2d2 + tQtldl,

1_j — dj + tjfldjfl ‘|— tjfltj72dj72 + e —|— tj,1 st tQtldl,

m - dn + tn—ldn—l + tn—ltn—an—Z +-+ tn—l T t2t1d17
and wheret; = [;u; forj € {1,2,....,n —1}.

Further we lay out the following notation:

ﬁ:dl, 22:d2,

&l
w

:d3, ey m:dn,

j=d;+tj1dj 1+ tjatjedj o+ -+t tid; (1<i<j<n).
For example,

% == d5 + t4d4 + t4t3d3, 14 = d4 + t3d3 + t3t2d2 + tgtgtldl.
Using the above notation we conclude that

Lemma 3.2. Leta = {il,il —+ 1,...,le —+ kil;ig,ig —+ 1,...,i2 —+ kw,,’lp,lp -+
1,...,ip, + ki, } be asubset ofl,2,3,...,n} with {i,, i, + 1,...,i, + k; } based
on contiguous indices for € {1,2,3,...,p}, andiy < iy + k;, < ig <'ig + ki, <
s <y <ip 4 kg, ki, > 0forg e {1,2,3,...,p}, then for any matrixA € Ay,
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we have

(3:2) (o) =Tir |G+ D +1) -+ G+ ko) (in + )| G+ Ky + D)

G2t D02+ 1) -+ G+ ki)liz + k)| T2+ by + D) -

i1+ iy + Dipe) |Gp+ DGp + 1) -+ T+ K, )i+ hiy )

As an illustration of Lemma&. 2, consider the following examples.
Example3.1

1. (3) =13, (15) =11 25.

2. (124) =11 22 34, (35689) =13 45 66 78 99.
3. (235 789) — 1233 15 67 88 0.

Remarkl. Lemma3.2 demonstrates that any minor is a product of tefjs
It is easy to deduce the following result, from the above analysis.
Lemma 3.3. Supposer = {ay,az,...,a,} and 3 = {f, bs, ..., ,} denote two

collections of index sets (repeats allowed) and that the rgt'ﬂatisfiesS*TO. Then
with respect to STEP I can be written as follows:

a g1 G2 Uklk

B sty Saty -+ Sgly

where{ji,j2, ..., jr} = {t1,t2,...,t;}. Herei, < j, foru € {1,2,3,...,k} and
sy < t,forue{l,2,3,... 1}
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Example3.2

1.
o (23) (145) (24578)
B (124) (345) (2)(57)(8)
1233 11 24 55 12 34 55 67 S8
11 22 34 13 44 55 12 15 67 18
1233245 88
2134415 18°
2.
a  (123) (2345) (567)(8)
B (12) (23) (3456)(5)(78)
11 22 33 12 33 44 55 15 66 77 18
© 11 22 12 33 13 44 55 66 15 17 88
3377 18
I3 17T ]
Remark2.
1. In Examplel (2) we note that the se{g, jo, .. .. .. Jerand{ty, te,...... )

both equal3, 7, 8}, (the fact they are equal follows from STO and Leming
and as sucl} may be written ags—T—2 in which (j, = t.,% = 3,7,8).

2. Lemma3.3 will be used to produce the form of the generators for the multi-
plicative bounded ratios with respect to the class STEP 1.
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4. Bounded Ratios and Generators for STEP 1

Based on Lemmas.2 and 3.3 above, we can construct the form of any potential
generator. We begin this construction with the following key lemma.

Lemma4.1. Suppose, j, u, k, s, [, are natural integers and < j,u < j, k <[l,s <
L.

1. 2L < 1 with respect t@A if and only ifu < i.

&l

Z]% < 1 with respect toA; whenj < [ifandonly ifu <k <s<i<j <.

=

2.

<

Proof.
1.

<leij<uj

&gl

S u <t

2. Enumerating all cases possible on the relations betwegérk, s will result in
the desired conclusion.

]

Remark3. In particular,(”i?jl)jm

Sy <1 with respecttdA, forall 1<i<j<n.
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Now consider the following terms associated wAh (the class Step 1):

11 12 13 14 15 16 --- I(n—1) in
22 23 24 25 26 2(n — 1) 2n
33 34 35 36 3(n—1) 3n
M 15 4% - 4An-1) In _ _
( *) Oscillatory Matrices
_5 % 5(n _ 1) 5_71, Xiao Ping Liu and Shaun M. Fallat
vol. 9, iss. 4, art. 92, 2008
(n—=1Mn-1) (n—1)n Title Page
nn Contents
From the diagram+) above we construct a list @pecialratios, which will be <« »
used later.
4 >
BB BU AL B 20D Tn I
12 23 13 24 14 25 15 26 1(n—1) 2n 1n Page 13 of 34
ES Pz 1 S 5(n—1) 2n £
23 34 2435 25 36 2(n—1) 3n 2n Go Back
h% B35 in—1) 3n In
3445 35 46 3(n—1) 4n 3n Full Screen
(4.1) 5 16 5(n—1) Tn 5n
45 56 4(n—1) 5n 4n Close
(n—1)(n—1) (n—2)n n—In journal of inequalities
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For comparison sake, the above list can be written in terms of principal minors as
follows:

(12) (3) (13) (4) (14) (5) (15) (6) (1(n—1)) (n) (an) (¢)

(13) (2) (14) (3) (15) (4) (16) (5) (In)) (n-1) (1) (n)

(23) (14) (24) (15) (25) (16) (2(n=1)) (1n) (2n) (1)

(24) (13) (25) (14) (26) (15) (2n)) (In-1) (In) (2)

(34) (25) (35) (26) B(n-1)) (2n) (83n) (2)

(35) (24) (36) (25) (3n))  (2n-1) (2n) (3)

(45) (36) . (4(n—1)) (3n) (4n) (3)

.2) (46) (35) (4n))  (3n—1) (3n) (4)

' (5(n—=1)) _(4n) (5n) (4) . )

.. ((gn)) (4(7:1) (4;‘) EET) Oscillatory Matrices
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((n=2)(n=1)) ((n=3)n)

((n=2)n) (n—3)

((n=3)(n—1)) ((n—2)n)

By Lemma2, all the above ratios are bounded by 1, which we will show are, in

fact, generators

Lemma 4.2.

1.0f ;l < 1 with respect toA,, then% is a product of some of the ratios taken

fror% the above list4.1).

((n=3)n) (n—2)

((n=1)n) (n—2)
((n=2)n) (n=1)

2. Any ratio 5 over A, that satisfies57'0 can be written as follows:

kj,J

Ujy ] Uje] = Uj,J Sj1] Sjad

(43) % _ H ( V1] T5s] ijj ) 1J RijaJ
j=2

whereu;, < i;,fort € {1,2,...,p} k;, <s;,, fort € {1,2,...
satisfies the requirement that thés are distinct from the’s and k’s, the s’s
are distinct from the’s and k’s. Therefore any ratic% that satisfiesST0 can

be written as a ratio of products of elements from the lst)

SjqJ

,q}, and that
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Proof. To establish (1), observe that

( ( i J+1)> < w ) )
(i— 11 Z(JH (i—1)n
— ((z 1] a+1>) ((z’—l)n)
;:Jj: (i-2)j —)(j+1) (i-2n) o .

((u+1)j u(+1) ) (W)
\ uj  (ut1)(+1) (u)n ) Oscillatory Matrices

Xiao Ping Liu and Shaun M. Fallat

For item (2), we note that, by Lemnia3, we have {.3). Finally observe that
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kjg 1
SjJ Sl Title Page
kj.j
. Contents
which completes the proof. O]
, <« >
Example4.1 The generators foA ; in the caser = 9 are as follows:
< >
213 281 415 2516 2617 2718 2819 29
1223 152 142 1526 1627 1728 1829 9 Page 15 of 34
3324 3425 3526 36 27 3728 3829 39
2334 2435 25 36 26 37 2738 2839 29
- I N - . - Go Back
435 1536 16 37 1738 4839 e
3115 3516 3647 3748 3819 39 FullS
5516 %4 HEB 0 %I 5 o Sereen
1556 16 57 17 58 1859 19
G5  &E  ®x Close
56 67 5768 58 69 59
7768 78 69 i) journal of inequalities
6778 %% % in pure and applied
=39 75 mathematics
99 issn: 1443-575k
89
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Suppose
(123) (2345) (56)(8) 33 18

B (12) (23) (3456)(58) 13 68

Then
— 2314 2415 2516 2617 2718 2819 29
33 1324 1125 15 26 1627 1728 1829 19
13 33 3135 3526 36 27 37 38 3829 39 Oscillatory Matrices
2334 2435 2536 26 37 2738 28 39 29 Xiao Ping Liu and Shaun M. Fallat
and vol. 9, iss. 4, art. 92, 2008
(B9 29 )
1829 19
3829 39 Title Page
@ 28 39 29
— — ] 1839 49
in 315 39 Contents
58 19 59
=59 o 44 44
68 59 69
\ 55060 59 < >
Therefore Page 16 of 34
2314 2415 2516 2617 2718 2819 29
321 1125 1526 16 27 728 1829 10 G e
3324 3425 3526 3627 3728 3829 39
o _ | 2334 2435 9536 2637 2738 9839 29 Full Screen
B 2819 38 29 48 39 2849 68 59
18 29 28 39 3849 4859 58 69
29 39 49 59 69 Close
19 29 39 49 59
Remarka. journal of inequalities
in pure and applied
1. Every generator in4 1) can be written as follows: mathematics
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@+1)j dG+1) @G+ ji(+1)
oG+ 0G+1) (+1j i+ +A,
WhereAij = dj+1 tj,1 <ot d;, and

gij =

(Z + 1)] Z(] + 1) = (dj—th,ldjfl—i" ‘ '+tj71 e ti+1di+l)(dj+1+tjdj+' ° '+tj ..

j_ig+l)
2. The reciprocal of a generator, given Bgf—m, is equal to
JAVE 2
14— =9 47 _0s).
(i+1)j i(j+1) (j—i)(2s+ 5 — 1)

If we letd;y, = d; = s > 0, and set all other parameters to 1 in (2), then

we observe that this ratio is not boundedsas- +oco. Forl < i < j < n, let

di=dj1 =58, tj = % Now we can rewrite«) as follows in terms of:

12 . =1 s4+i—1 .. s+j—1 25+j—1 Elyg L Eliegh
1. i—2 s+i—2 .. s+j—2 2547 —2 =243 L El4ngil
i—3 s+i—3 .. s+j—3 2s+j—3 243 L gt
1 s+1 v SHjoidl 2s4j—i4+1l EH 43 L g
s e SH+j—1 2s+j—1 =43 . gl
j—i s+j—i R |
5+2 242 . 24n—j
1 s+1 S+2 - stn—j
s 2 n—j
1 . n—j—1
. n—j—2
1

Oscillatory Matrices
Xiao Ping Liu and Shaun M. Fallat
vol. 9, iss. 4, art. 92, 2008

Title Page
Contents
44 44
< >
Page 17 of 34
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:swasowicz@ath.bielsko.pl
http://jipam.vu.edu.au

From the above list, we construct a list of orders for the ratigs in) or (4.2) in
terms of the positive parameter

o o .. L 2 2 ... 2 2 1 0 0 0
0 0 1 2 2 2 2 1 0 0 0
o ... 1 2 2 ... 2 2 1 0 0 0
0 1 2 2 2 2 1 0 0 0
------ s Oscillatory Matrices
1 2 2 2 2 1 0 0 0 U
i 3 3 "~ 5 3 1. 0 0 0 Xiao Ping Liu and Shaun M. Fallat
vol. 9, iss. 4, art. 92, 2008
22 . 2 2 1 0 0 0
2 2 2 2 1 0 0 0
1o 111 0 0 0 Title Page
1 1 2 1 0 0 0
Contents
(x0) 0 0 1 0 0 0
0 0 1 0 0 0 <« »
0 1 0 0 0
0 1 0 0 0 < 4
1 0 0 9 Page 18 of 34
1 0 0 0
0 0 0 Go Back
0 0 0
Full Screen
Close
0 . . o
0 journal of inequalities
in pure and applied
From the above argument we conclude that mathematics

Lemma4.3.Foranyl < i < j < n, the inverse of the generatgy, = %% pssni LA43-STSE
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multiplied by products of any other generators is not bounded w.r.t. STEP 1.
For any ratiog that satisfie$7'0, we can invoke Lemma to deduce

(4.4) 5 H [(

Note that for eacly the item(
two essential parts: The first par(

bounded. The second pa(

1, 15yJ

ZJpJ

© kj,J

Uj J UjyJ

ol ) kjlj k]éj
’ ujpj Sjlj szj

i1 J 7’]2]

T S

kjpd - k

jqj

31] k]2j

Ui J uJ2-7

ijpj k:jlj
UjpJ 8517

i1 J 7‘]2] " Ypd
UjpJ Ujpd v Ujp
Jq-7

5j1d Sjgd

(bounded ratio’s index

(unbounded ratio’s indgx

anyratlo—.
J " ij
45) — -
(4.5) UJ U{ug uj
KL " (Kl
s-UlS
and let
Iy =maxqii € — 1
0 = max-< 1|t 077
KL
So = max{s|s€ 57

77}
i

Up = min {u\u € —

Ky = min {kz|k € ——

Sipd

1J
uJ

KL
SL

!

~ j> consists of

has each successive ratio

has each successive ratio unbounded.
Now using the above argument we deflne the following sets (repeats allowed) for

— is a ratio from the first part in Lemma (2)}

ki
i is a ratio from the second part in Lemnﬂa(Z)}
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Lemma 4.4. For any ratio %, if % < 1 with respect toA,, thenU, < K, and
I() Z S().

Proof. By the definitions above and Lemmas2, and4.3, this result follows from
an application of proof by contradiction. O

Theorem 4.5. Any ratio% is bounded with respect tA, if and only if
(i) 5 satisfiesST0); and
(i) Forany e £L there exists at least one ratio from the collectihin (4.5)

S_L’
such that
U il o[k,

jst
k

w &
INIAIA
S

wherelu, i|, [k, s] are intervals.

Proof. (=)

(i) Follows from Lemma2. 1. B

(i) Use Lemma4.3. (Note (ii) guarantees that all unbounded ral%bs{ % will
be cancelled in the product presented4nrl).)

(<) If 3 satisfies (i) and (ii), by Lemmas3and?2, 3 is a product of generators.

Therefore% is bounded. O

Corollary 4.6. For any ratio 3 is bounded with respect tA, if and only if

3

(i) 5 satisfies.ST0); and

(i) B — « is subtraction free expression in terms of the parametterand«’s in
(2) (that is, there are no subtraction signs in the expression).
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Proof. It is sufficient to verify that“ satisfies Theorem.5 (i) <— % 3 is a product

of generators—=- 3 — a Is subtractlon free.
Suppose the I’atI% is a product of generators. Equivalently, there exist distinct
indicesiy ji, . . ., i,J,, SUch that

a 11 (i + Djr a(r +1)
6 k Zk]k (lk + 1)(]k + 1) Oscillatory Matrices

p . . Xiao Ping Liu and Shaun M. Fallat
« (i + 1)jr @ +1
< — H k jk k(jk ) vol. 9, iss. 4, art. 92, 2008
B G+ Ve (e +1) + Ay,
P
H <(2k + 1)jk Zk(jk + 1)) Title Page
o _ k=1
P - — P Contents
& [1 ((’lk + 1)jk ix(Jx + 1)) + 4 T Qi
k=1 k=1 44 44
— [ — « is subtraction free .
4 | 4
If 5 — « is subtraction free, thefi — o > 0, thus% < 1is bounded. O
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5. Preliminaries for the Non-principal Case

For ann x n matrix A = [a;;] € Ay anda,,a. C N = {1,2,...,n}, the submatrix
of A lying in rows indexed byy, and columns indexed hy. is denoted by [« |a.].
For brevity, we may also leto,|«.) denotedet Ala,.|a]. For A € A;, the non-
principal minor(«,.|a.) may be zero or non-zero (see Lemma).
Let o = {o,a9,...,a,} denote a collection of multisets (repeats allowed) of

the form,a; = {a'|a’}, where for each, o' denotes a row index set and denotes Oscillatory Matrices
a column index sefdy| = [ag/, i = 1,2,...,p). If, further, 3 = {1, B2, ..., B} IS Xiao Ping Liu and Shaun M. Fallat
another collection of such index sets with= {5!|5.} fori = 1,2, ..., ¢, then, asin vol. 9, iss. 4, art. 92, 2008

the principal case, we define the concepts suclas:j3, the ratio% (assuming the
denominator is not zero), bounded ratios and generators with respect to a subclass
of invertible TN matrices. Since, by conventioist A[¢] = 1, we also assume,
without loss of generality, that in any ratg)both collectionsy andj have the same Contents
number of sets. Non-principal determinantal inequalities with respect to general TN

Title Page

matrices have been investigated by others (8ed4]), although our approach is K LY
slightly different. < >
Forj = 1,2,...,n we definef,(j|-) to be the number of row sets im that
contain the indey, and similarly,f.(-|7) counts the multiplicity ofj in the column Page 22 of 34
sets ofa. If f,(j]-) = fs(j]-) and fo(-]j) = fs(:|j) for everyj = 1,2,...,n, we Go Back
say that;—; satisfies (STO).
; . . L Full Screen
Lemma5.1.For A € Ay, if a = a(A) # 0, then there exists such thatj satisfies
(STO), and? = 3(A) # 0. Close
With Lemmab. 1, we may assume that for any ratjove haves = 5(A) # 0. ~ joumnal of inequalities
The next lemma provides a simple necessary (but by no means sufficient) condi-  in pure and applied
tion for a given ratio of non-principal minors to be bounded. mathematics

Lemma5.2. If a given ratio% is bounded with respect tA,, then% satisfies (STO). issn: 1443-5756
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6. Computation of Non-principal Minors and Construction of
the Generators

Let A € Ay, anda = {iyisy---ix|j1J2 - - - jx} be any non-principal minor afil. To
evaluaten = a(A) we have the next result. Recall the form of afye A; in (2).
Lemma 6.1 (Computation of non-principal minors). A non-principal minor
(ar|ae) = (ivig -~ ig|jrja - - - Ji)
is a product of the following factors:
1. Each factor has the form:
TYly - L1, TYUy -+ U,
2. We proceed from left to right. We first compute for the index gajx, (s = 1),
then the second index paif|j2, (s = 2), and so on.

3. Fors =1,z =1, andy = min{iy, j1 }. If 4y > ji, multiply 1y by l;, - - 1;, _1;
if i, = j1, multiply Ty by 1; if iy < j;, multiply Ty by w;, - - - uj, 1.

4. For s = 2, setr = max{iy, j1} + 1, andy = min{is, jo} and suppose < y.
If iy > jo, thenzy is multiplied byl,, - - - ;,_1; if i3 = jo, thenzy is multiplied
by 1, if iy < jo, thenzy is multiplied byw;, - - - uj,_;. Whenz > vy, this step
stops.

5. Continue inthis manner for = 3,4, . . ., k, we simply multiply all of the factors
together to evaluatex,.|a.).

6. If any of the above steps (4-5) cannot be carried out (that is, if every in
step 4) we conclude that,|a.) = 0.
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Consider the following illustrative examples outlining the algorithm in Lemma
6.1

Example6.1

1. Supposéa,|a.) = (1,2,3|2,3,4). Fors = 1,we haver = 1,y = min{1,2} =
1, z = y, which implieslyu; = 11u;. On the other hand for — 2,
T = max{l’ 2} +1= 37 Yy = min{27 3} = 27 and z > Y. Oscillatory Matrices
. Xiao Ping Liu and Shaun M. Fallat
Hence this step stops and we conclude thata,.) = (1,2,3]2,3,4) = 11u; X vol. 9, iss. 4, art. 92, 2008
0=0.
2. Let(ay]a.) = (1,4,7,10[3,5,6,8). Fors =1,z = 1,y = min{1,3} = 1,z = Title Page
y, 1 < 3, we have a factor of lujus. Similarly, s = 2, z = max{1,3}+1 = 4,
y = min{4,5} = 4,z = y, 4 < 5, we have a factor of4u,. Continuing Contents
in this manner fors = 3, + = max{4,5} + 1 = 6, y = min{7,6} = 6, « »
r =y, 7 > 6, we have a facto66/; and fors = 4, z = max{7,6} + 1 = 8,
y =min{10,8} = 8, x =y, 10 > 8, we have a factoz8/zl,. < 4
Multiplying all of the factors above yields Page 24 of 34
(a]ee) = (1,4,7,10]3,5,6,8) = TTuquy x 44uy x 66l x S8lsly. Go 2Edx
We introduce three types of ratios: Full Screen
m 66 24
Type Ij: Example,56 = Close
ol Diq TEL UGy U4 uu
Typelup- PRSI (i) < ). Example B, journal of inequalities
: i 68 in pure and applied
Typeldn' li171'-'li297'21%‘2“'uz‘171 (22 < Zl>' Example’lﬂalsﬁuwewl mc?themctics PP

For Typel,, and Typel,, ratios thenumbersof I’s andu’s attached on the left

and right are the same, which we refer to asites@ndu’s in pairs. Note that the tssn 4A35TSE
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number ofl’s or u’s is equal toi, — ¢ for TypeI,, (or i, — iy for I,), and in this
case we say that the numberisfor v’s is matched

Lemma 6.2. For any ratiog that satisfies (STO) with £ 0, 5

as.

with respect taA ;, and the numbers dfs andu’s in the above product are in pairs
and matched.

B#0,% 5 can be written

Proof. By Lemma6.1the numbers of's and oru’s that appear irg are completely
determined by the index pairs fromor 3. Therefore we can split all the minors in

« andg into row-column index pairs, and by induction we can establish the matched
property of% for all cases. O

Example6.2 Let

={(1,3,71,5,7),(5,8]3,8), (4]4) },

To evaluates we first compute each minor in the collectiomsand 5 via Lemma
6.1 In this case:
1,3,7|1,5,7) = 11 23u567,

B = {(17 3|17 3)7 (47 8|7’ 8)7 (5|5)7 (7|4)}

(1,

(5.8]3,8) — 13151468,
(4]4) = 14,

(1,3]1,3) =11 23,

(4, 8’ ) = ﬁU5U688,
(5[5) = _5,

(7]4) = Tal,lsls.
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Second, we put them together, simplify, and re-order to produce

a {(1,3,7]1,5,7),(5,8]3,8), (4]4) }

B {(1,3]1,3),(4,8]7,8),(5]5), (7[4)}
. {ﬁ ﬁu?,ﬁ El3l4@ ﬁ} . lgﬁ'dg % W E
N {ﬁﬁﬁu;,%@%ﬁlddf;} N ﬂ l6l5EU5U6 88

oo

oo

Note:

1. For the factorgz3u: 57 there is exactly 1 and 1u (attached ta3)

l6l5ﬁ115_u(;
and 2/’s andu’s (attached td 5). This is what is meant as tlis andu’s arein
pairs.

2. For the factor%, the span on the indices of tlis andu’s starts at 3 and
there are exactly — 3 = 1 of them, which means thiés andu’s arematched

Similarly for Lﬁ there ar&r — 5 = 2 [’'s andw’s starting from 5

lsls15usu

We are now in a position to construct a list of generators in the non-principal case.
Before we proceed to this construction, we need an additional lemma on the forms
of special bounded ratios.

Lemma 6.3.

1. y; < 1 with respect taA; if and only ifz > .

2. %tz ---t;_1 < 1 with respecttoA ifand only ifz > y (z < i,y < j,i < j).

3. tat is not bounded with respect #; for anyz,y (x < i,y < j, 7 < 1).

Wt
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Using Lemmab. 3, we construct a list of bounded ratios (see page

Inthe list on page1the left part are the generators from the principal case, which
we call Typel, generators, while the right part are generators which are called Type
I, generators. We will verify that the union of Tyggand Typel,, are generators
for the non-principal case.

Lemma 6.4. For any ratio% that satisfies (STO), we have

a _ [10o) [T(up) [T(Uan)

B 110 [T(Uup) TT(Lan)

with respect toA,, where[[(/,) are products of Typd, generators: %

[[(14.) are products of the

[1(Z.,) are products of Typd,, generators: z(mulz).
reciprocals of Typd,, generators.

Lemma 6.5. For any ratio% that satisfies (ST0), g is bounded with respect tA,

then§ = [[(/o) [[(1.p). Thatis, there are no Typk, ratios in 5, and Typel, and
Typel,, generators do not appear in the denominato%of

Proof. We establish the proof by verifying it in all the possible cases below:

2= [1(w) 2) % = M’ 3) ¢ [1(o) IT(up)

5T ) 23T VBT )

o M) o M) .o [0
V3="m > V3" wm Y3 d0)
B i (LS EN NS i (AN 1 (9301 (0]

BT ) VBT W) VBT (o))

[Hup)

The notation% = 7.5 means that the numerator of the ratios are products of Type
I,,, generators and the denominator is a fixed generator from theJypehich is
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necessarily different from any of the generators appearing in the numerator. Similar
meanings are intended for the other cases.

]u Iu 7 t
Consider case 1). Suppoge= Y H( f)’) = Hiijtj"), an Z(jH ¢ U(yp) (that is,
G
there are no generators in the same colum%?é% among the union of generators

U(Zp) in the numerator of the ratig).

Letd,,; = t, and set all other parameters to be 1. Then the right part of the list Oscillatory Matrices
on page31 will have the following form in terms of the nonnegative parameter Xiao Ping Liu and Shaun M. Fallat
vol. 9, iss. 4, art. 92, 2008
(j column)
00 --- 0 empty i i
Title P
o --. 0 empty 1 i itle Page
R T T Contents
(i row) e 0 : i i
0 empty 1 i <44 >
empty s ce p N
1 1
R Page 28 of 34
1
1 Go Back
From the above argument we conclude that O(t) — oo (t — co). Therefore Full Screen
is unbounded.
Similar arguments may be applied in the other cases. ] Close
For any bounded Typé,, ratio aiti- tJ L (twy = LUy, w =1,...,7 — 1), we have journal of inequalities
in pure and applied
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When% is of Typel,.

Lemma 6.6. Any bounded rati(% with respect toA, that satisfies (STO), can be

uniquely written as follows:
a xi zj : :
() ()T
( J

Proof. Apply the above factorization to each typg ratio.

As in the principal casq,[ ()’ can be decomposed into two classes:

kl
](’)>:Z:‘7,,i>u, I.:=k<s.
uj sl

Let

1J' ij KL ki Kl
e IV A — ) =ur cI_»s.
(7)ot () -unl{gen)

We now come to our main observations for describing all of the multiplicative

non-principal determinantal inequalities for the class STEP 1.
Theorem 6.7. Any ratio% is bounded with respect tA, if and only if:
3 satisfies (ST0),

2. There are no Typé,, ratios in ¢ 3

3. For any% € (%') , there exists at least one ratio from the coIIectié%')

above such that
Uj<tu<k,s<ilt, 1) D [k, s].

II\',
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Proof. By Lemmas5.2, 6.5, and6.6along with the definitions of’ and%£L" above,
we can apply similar arguments as in the principal case to establish this redult.

Corollary 6.8. For any ratio § is bounded with respect t4, if and only if
. 3 satisfies (STO0),
2. There are no Typé,, ratios in %,
3. # — «ais subtraction free.
Note that

Lwiug (v —lile — 1i+1)(x — 1i + 1]z — 1i)
zi+1 (z—lijz — 1) (z — Li+ 1|z — Li + 1)

forx > 1,

and o

Llivg  (i)i+ 1)(i + 1]4)

G+1  (i))G+1i+1)
so we can rewrite the list of generators in their original forms as minors (see page
32).

Theorem 6.9. Any ratio% is bounded with respect td, if and only if% can be
written as a product of generators from the listsi) and (7.15).
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J
7. Conclusion ||\v M
S

In this paper we set out to characterize all of the multiplicative determinantal in-
equalities for a certain class of invertible totally nonnegative matrices. Due to the
nature of the proof techniques developed, this characterization involves construct-
ing a complete (finite) list of multiplicative generators for all such determinantal
inequalities. However, to describe these generators we needed to carefully analyze
various factorizations of ratios of minors, which in turn required an exhaustive study
of all possible ratio types and eventually construction of the key generators.

It is evident that these factorizations or decompositions require plenty of nota-
tion, and hence can be viewed as cumbersome to read. Notwithstanding this, we feel

Oscillatory Matrices
Xiao Ping Liu and Shaun M. Fallat
vol. 9, iss. 4, art. 92, 2008

that an important feature of our paper is the resulting description of the complete list Title Page
of generators (both in the principal and non-principal cases). This list of generators

is both simple to read and naturally laid out. In our opinion, it is this remark that Gz
points to the potential applicability of our work, particularly for future research on <« »
determinantal inequalities for more general subclasses of totally nonnegative matri-

ces. We also feel that more study is required on this important problem, not just for ) >

TN matrices but for other classes of matrices as well. Page 31 of 34

2213 2314 2(n—1) In 2n ln—1ln—Tuy,_y I212up  1311ug
12 23 13 24 1(n—1) 2n in in 13 12 Go Back
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2331 2(n_1) 3n 2n 2n 23
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3(n—1) 4n 3n 3n
. o Close
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a2 - (13)(4) (14)(5)
13)(2)  (1AHB) (15)(4)

23)(14) 24)(15)
(24)(13) (25)(14)

34)(25)
(35)(24)

(7.1a)

(n—1|n)(n|n—1)
(n—1|n—1)(n|n)

{1(n=1)[1n}{In|1(n—1)}
{1(n—1)]1(n—1)}(1n|1n)

{2(n=1)|2n}{2n|2(n-1)}
(7.1b) {(2(n=1)[2(n—1)}(2n[2n)

{(n=2)(n=D)|(n=2)n}{(n=2)n|(n=2)(n—-1)}
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{(n)(n=1)} {(M ()}
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{3(n=1)}(2n Bn)(2
Bn){2(n—-1)} (2n)(3)

{n=2)(n=DH{((n=3)(m)}  {(n=2)n}(n—=3)

{(n=3)(n—1)}H{(n—2)n} {(n=3)n}(n-2)
{(n=1)n}(n-2)
{(n=2)n}(n—-1)

(n—2ln—1)(n—1|n—2) CaReE
(n—2[n—2)(n—1|n—1) amee)

{I(n=2)[1(n=1) }{1(n—=1)[1(n=2)}

{1(n=2)[1(n=2)}{1(n-1)[1(n—1)}
{2(n=2)]2(n—=1)}{2(n—1)|2(n—2)}

{(n=2)(n-1)[(n—2)(n—1) H(n—2)n|(n—2)n}

(2(n—2)[2(n—2)}{2(n—1)[2(n—1)}
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