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ABSTRACT. In this paper, we will investigate the Hyers-Ulam stability of the following func-
tional equations

//fmy%M)fU(HMWMLMG
and
/G /K f(wtk - y)dkdu(t) = f(z)f(y) — 9(x)g(y), =,y € G,

where K is a compact subgroup of morphisms@®f dk is a normalized Haar measure &f, i
is a complexK -invariant measure with compact support, the functifnsare continuous ot
and f is assumed to satisfies the Kannappan type condiion)

| [ retzspineine) = [ [ petysniuoints). 2.z € 6.

The paper of Székelyhidi [30] is the essential motivation for the present work and the methods
used here are closely related to and inspired by those in [30].

The concept of the generalized Hyers-Ulam stability of mappings was introduced in the subject
of functional equations by Th. M. Rassias(in|[20].
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1. INTRODUCTION

The Hyers-Ulam stability problem for functional equation has its origin in the following
guestion posed by S. Ulam [41] in 1940.

Given a groupG and a metric grougG’, d) and given a number > 0, does there exist a
0 > 0 such that, iff : G — G’ satisfies the inequality

d(f(xy), f(x)f(y) <0, forall z,y € G,
then a homomorphism : G — G’ exists such that

d(f(x),a(x)) <e, forall z € G?

The first affirmative answer to Ulam’s question for linear mappings came within a year when
D. H. Hyers [8] proved the following result.

Theorem 1.1([8]). Let B and B’ be Banach spaces and Igt. B — B’ be a function such
that for some > 0

| fx+y) = f(z)— fly) |< 6, forall z,y € B.

Then there exists a unique additive function B — B’ such that|| f(z) — ¢(z) ||< 6, for
all z € G.

Furthermore, the continuity of at a pointy € B implies the continuity ofp on B. The
continuity, for eachr € B, of the function — f(tz), t € R, implies the homogeneity of

After Hyers’s result a great number of papers on the subject have been published, generalizing
Ulam’s problem and Hyers’s theorem in various directions. In 1951 D.G. Bourgin [3] treated
this problem for additive mappings. In 1978, Th. M. Rassias [20] provided a remarkable
generalization of Hyers’s theorem, a fact which rekindled interest in the field of functional
equations.

Theorem 1.2([20]). Let f : V — X be a mapping between Banach spaces ang letl be
fixed. If f satisfies the inequality

1 Gz +y) = f(2) = F)ll < Oll]” + lly[”)

for somef > 0 and for allz,y € V (z,y € V' \ {0} if p < 0). Then there exists a unique
additive mapping’ : V. — X such that

If(z) =T ()] <

forallz e V (x € V\{0}if p <0).
If, in addition, f(tx) is continuous irt for each fixedr, thenT is linear.

26
2 — 2|

(g

This theorem of Th. M. Rassias stimulated several mathematicians working in the theory of
functional equations to investigate this kind of stability for a variety of significant functional
equations. By taking into consideration the influence of S. M. Ulam, D. H. Hyers and Th. M.
Rassias on the study of stability problems of functional equations in mathematical analysis,
the stability phenomenon that was proved by Th. M. Rassias is called the Hyers-Ulam-Rassias
stability.

The Hyers-Ulam-Rassias stability was taken up by a number of mathematicians and the study
of this area has the grown to be one of the central subjects in the mathematical analysis area. For
more information, we can see for examplés ([3], [7], [81/[10],[12],....] [40]) and the monographs
[4], [9], [11] by D. H. Hyers, G. Isac and Th. M. Rassias, by S.-M. Jung and by S. Czerwik
(ed.).
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L. Székelyhidi in [30], studied the stability property of two well known functional equations:
The sine and cosine functional equations

(1.1) fley) = f(@)g(y) + f(y)g(x), z,y€C
and
(1.2) flzy) = f(2)f(y) — g(x)g(y), =,y€q,

where f, g are complex-valued functions on an amenable grGupMore precisely, he proved
that if f, g : G — C are given functionss is an amenable group, and the functiony) —
f(zy) — f(x)g(y) — f(y)g(z) is bounded, then there exists a solutigi, g) of (1.1) such that
f — fo andg — g, are bounded. An analogous result holds for equafiof (1.2).

The aim of the present paper is to extend the Székelyhidi’s results [30] to the functional
equations

(1.3) / / fath - y)dkdu(t) = [(2)g(y) + 9(@)f(y), z.y€G
and
(1.4) / / fath - y)dkdu(t) = F(2)f(4) + 9(x)g(y), .y € G,

whereK is a compact subgroup éf or(G), p is a complexis -invariant measure with compact
support, f, g are continuous functions o and f is assumed to satisfy the Kannappan type
condition K (u

//f ztxsy)du(t)du(s //f ztysx)du(t)du(s), z,y,z € G.

Furthermore, in the last subsection we study a superstability result of the generalized quadratical
functional equation

(15) | [ stk parant) = @)+ 1. aec

The result can be viewed as a generalization of the ones obtained by G. Maksa and Z. Pales in
[12].

2. NOTATION AND PRELIMINARY RESULTS
Our notation is described in the following Set Up and it will be used throughout the paper.

Set-Up. We letG be a locally compact grou(G) (resp.Cy(G)) the complex algebra of all
continuous (resp. continuous and bounded) complex valued functiofs avf (G) denotes
the topological dual o€, (G): the Banach space of continuous functions vanishing at infinity.
We let K be a compact subgroup of the groMpr(G) of all mappingsk of G onto itself that
are either automorphisms and homeomorphisms @.es K*), or anti-automorphisms and
homeomorphisms (i.ek € K~). The action oft € K onx € G will be denoted by - = and
the normalized Haar measure &nby dk.

For any functionf on G, we put(k - f)(x) = f(k~'-z). Foranyu € M(G), k € K and any
€ Cy(G), we put(k - pu, f) = (u, k- f), and we say that is K-invariant ifk - © = p, for all
ke K.

A non-zero functiony € C,,(G) is said to be a solution of Badora’s functional equation if it
satisfies

(2.1) || otath-sautiar = s@ot). a.y€G.
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Recently the functional equation (2.1) was completely solved in abelian groups by Badora [2]
and by E. Elgorachi, M. Akkouchi, A. Bakali, and B. Bouikhalené [6] in non-abelian groups
and the Hyers-Ulam-Rassias stability of this equation was investigated in [1]land [5].

In the following, we prove some lemmas that we need later.

Lemma 2.1. Let K be a compact subgroup dflor(G). Letp be a K-invariant bounded
measure orty. If f € Cy,(G) satisfies the Kannappan conditidf(y):

//f ztwsy)du(t)du(s //f ztysx)du(t)du(s), =,y,z € G,

then we have

/K /K /G /G f(zsk - (xth' - y))dkdk dp(s)dp(t)
= /K /K /G /G f(zsk - wth! - y)dkdk du(s)du(t),

forall z,y,z € G.

Proof. Letz,y, z € G. Let f € C,(G) be a complex function such thétsatisfieskK (). Then

/K /K /G /G Fzsh - (wth - ) dkdk du(s)dp(t)
_ /K + /K /G /G F(zsk - ak - LK) - g)dkdk dp(s)du(t)
+ /K ) /K /G /G Fs(kk) - gk - th - 2)dkdk dpu(s)dp(t).

Sincep is K-invariant andik’ is invariant by translation, then we get

/K . /K /G /G f(zsk - ak - t(kK') - y)dkdk dp(s)dp(t)
= /K . /K /G /G fzsk - atk - y)dkdk'du(s)du(t),

/K ) /K /G /G F(s(kH) - gk - th - o) dkdi dpu(s)du(t)
_ /K _ /K /G /G 2k - yth - ) dkdk dyu(s)dp(t)
_ /K 7 /K /G /G sk - ath' - y)dkdi dyu(s)dp(t),

becausef satisfiesK ().
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Consequently,

/K /K /G /G Fsk - (ath' - y))dkdi du(s)du(t)
_ /K ) /K /G /G Flzsk - ot - y)dkdk du(s)dp(t)
n /K _ /K /G /G Fashk - otk - y)dbdk du(s)dpu(t)
_ /K /K /G /G Fzsk - otk - y)dkdk du(s)du(t).

This completes the proof. O

The following result is a generalization of the lemma obtained by G. Maksa and Z. Pales in
[12].

Lemma 2.2. Let K be a compact subgroup oflor(G). Let . be a K-invariant bounded
measure orG such that(u,15) = 1. Let f € C,(G) be a complex function which satisfies
K (u), then the continuous and bounded function

(2.2) L(z,y) = / / f(xtk - y)dkdu(t), z,yeG

satisfies the functional equation

(2.3) L(:L‘,y)—i-/G/ L((xtk - y), z)dkdu(t)
// , (ytk - 2))dkdu(t), =,y,z € G.

Proof. The proof is closely related to the computation in {[12, Section 2, Lemma]), wkiese
a finite subgroup ofiut(G) andu = §.). Let f be a bounded and continuous function@n
which satisfies the Kannappan conditiiff.) and letZ(z, y) be the function defined by (2.2),
then we have

L(:U,y)—l-/K/GL((xtk-y),z)dkd/,c(t)
— f(@) + f(y) /K /G f(ath - y)dkdp(t)

+ /K /G f(wth - y)dkdu(t) + (u, 1) (dk, 1k) f(2)

_ /K /G /K /G Fath - ysk' - 2)dkdk du(s)dp(t)
— @+ £+ 1) = [ [ ] st sk 2ydkadutspange)
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On the other hand, we have

Liy, = / / (ytk - 2))dkdu(t)
//fytk 2)dkdp(t)

+ G 1a) (0 1) f) + | /G Flyth - =)dkda(t)

- / / / [ Stk ot =) dka au(s)dutt
— f(y) + D= [ [ [ sk gt darasin).

This ends the proof of Lemna 2.2. O

3. STABILITY OF EQuATION (1.3)

In this section, we investigate the stability properties of the functional equatign (1.3), it's a
generalization of the stability of equatidn ([L.1) proved by Szeékelyhidi in [30].

Theorem 3.1. Let K be a compact subgroup &for(G), and lety be a K-invariant measure
with compact support. Lef, g be continuous complex-valued functions such thaatisfies
K (u) and the following function

31  (C.C)3 (ry) — /K /G F(ath - y)dkdp(t) — F(2)g(y) — F(y)glx)

is bounded. Then
i) f=0,garbitraryin C(G) or
i) f,g are bounded or
iii) fis unboundedy is a bounded solution of Badora’s equation or
iv) There existsp a solution of Badora’s equation, there exista continuous bounded
function onG. and~y € C such thatf = y(¢ — b) andg = “"T“’ or
V) f,g are solutions of(1]3).

Proof. If f =0, theng can be chosen arbitrarily ifi (G). This is case (i). Iff # 0 is bounded,
then the functiorG > = — f(z)g(y) + f(y)g(z) is bounded for ally € G, sog is bounded.
This is case (ii). Iff is unbounded and is bounded, the function

G /K /G Fath - y)dkdu(t) — f(2)g(y)

is bounded, for ally € G. In view of [5, Theorem 3.1], we get thatis a solution of Badora’s
equation. This is case (iii). If, g are unbounded functions, we distinguish two cases:
First case.We assume that there exist € C\{0} such thatvf + 3¢ is bounded, thep can
be written agyy = % + b, whereb is a bounded function angd € C\{0}. Consequently, the
function

f(y)

G5 /K /G f(wth - y)dkdp(t) — (7 " b<y>) /(@)

is bounded, for ally € G. Hence byl[5, Theorem 3.1], it follows tha{y) = @ +b(y) is a
solution of Badora’s equation. This is case (iv).
Second caseFor alla, 5 € C\ {0}, af + (g is an unbounded function o@. In this case
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we shall prove thaf, g are solutions of (1]3). The idea of the proof is closely inspired by some
good computations used in [30, Lemma 2.2]. We define the mapping

Flz,y) = /K / fath - y)dkdu(t) — F(@)g(y) — FW)g(e), w.y e C

and we will prove that'(z,y) = 0, for all z,y € G. By assumption, there exist ), A € C and
a € G such that

(3.2) g(x) =~vf(x) + (5/K /G f(xtk - a)dkdp(t) + A\F(z,a), z€G.

Forallz,y, z € G, we have

| [tk st - 2yanar autyans)
=9 [ [ stk pavan®)+ 1) [ [ atoth-)anante
+ [ [ PGty aran
= 9 (@)alw) +9(:) 1 Wala) + o) F @) + 20 [ [ statk- vty
+Of(2) ////fxtk-ysk’-adkdk’du(s)du(t)
FAf(2 // ((wth - y), a)dkdu(t) // (xth - y), 2)dkdu(t).

In view of Lemmg 2.]L, we get

////f ((wth - y)sk' - 2)dkdk' dpu(t)dp(s)

=g(2)f(x)g(y) + 9(2) f(y)g(x)
T+ g()F(z,9) +1f(2) /K /G F(wth - y)dkdp(t

+df(2) ////fxtk~ysk’-a Ydkdk'du(s)du(t)
FAf( // (wth - y), a)dkdu(t) // (wth - ), 2)dkdp(t)

=g(2)f(x) (2)f(W)g(x) +g(2)F(z,y) +vf(2)f(x)9(y)
A f () ()g(@) -1 f () () + 6f(2 / / (ysk' - a)d'dpu(s

+0f(z //fysk' YAK' du(s) + 0 f (2 // (x,ysk’ - a)dk'du(s)
FAf( // (wth - y), a)dkdu(t) // (wth - y), 2)dkdpu(t).
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By using again Lemmpa 2.1, we obtain

/K /K /G /G F((ath - y)sk' - 2)dkdk dp(t)du(s)
- /K /K /G / F(ath - (ysk' - 2))dkdk du(t)dp(s)
= 1@ [ [ otwst' 2 duts) + @) [ [ susi - arauts)

// , (ysk - 2))dK du(s).
Hence, it follows that

f(x) [g<y>g<z> 0 () +35C) [ /G glysk' - a)dk du(s)
- [ otwst - pawants) +g<x>[f<y>g<z>+vf<y>f<z>

+Of(z //fysk; a)dk'du(s //fysk’ )dk dpu(s )}

/ / (ysk' - 2))dK'dp(s) — g(2)F () — 1F(=)F(z,y)

—5f(z // (ysk' - a))dk'du(s) — Mf(z // ((wtk - y), a)dkdu(t)
—/K/GF((xtk-y),z)dk dp(s).

Since the right-hand side is bounded as a function foir all fixedy, z € GG, then we get

9(:)Fe,y) + (2) [wm, 0+ [ [ Pl

A / / F((a:tk~y),a)dkdu(t)}
// (ysk' - 2)))dK du(s // ((ztk - y), z)dkdu(t).

Since the right-hand side is bounded as a function fafr all fixed =,y € G, then we obtain
F(z,y) =0, forallz,y € G. This is case (v) and the proof of Theorem|3.1 is completed

4. STABILITY OF EQuATION (1.4)

In this section, we study the problem of the Hyers-Ulam stability of equdfion (1.4). Itis a
generalization of the stability of equatidn ([1.2) proved by Székelyhidi in [30].

Theorem 4.1. Let K be a compact subgroup dfor(G), let 4 be aK-invariant measure with
compact support. Lef, g be continuous complex-valued functions such yhaatisfiesi (1)
and the function

@1  (G.C)3 (ry) — /K /G F(ath - y)dkdu(t) — F(2)f(y) + gla)g(y)

is bounded. Then,
1) f,g are bounded or
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i) fis a solution of Badora’'s equation,is bounded, or

iii) f, g are unboundedf + g or f — g are bounded solutions of Badora’s equation or

iv) There existsp a solution of Badora’s equation, there exista continuous bounded
function onGG andy € C\ {£1} such that

2
Te—b gl
= = —_ b
or
V) f,g are solutions of[(1/4).

Proof. If ¢ is bounded, then we obtain that the function

GxG>(x,y) — /K/Gf(xtk -y)dkdu(t) — f(z)f(y)

is bounded. So by [5, Theorem 3.1], we have eithés bounded of is a solution of Badora’s
equation. This is cases (i) and (ii). dfis unbounded, thefi is unbounded. As in the preceding
proof, we distinguish two cases.

First case.Assume that there exist 5 € C\ {0} such thatxf + (¢ is a bounded function on
G, then there exists a constant C\ {0} such thatf = vg + b, whereb is a bounded function
on G. Hence the function

G /K/Gg(xtk gydkdp(t) — O 1)9(3) * 7b(y)g(q;>

is bounded for aly € G. It follows from [5, Theorem 3.1] thap = = ¢ + b is a solution of

Badora’s equation. Hence, we obtain case (iii)for= 1 and (iv) fory # 1.
Second caseFor allo, 3 € C\ {0}, af 4+ B¢ is an unbounded function ad. We put

H(z,y) //fﬂkyMWU(ﬂVU+ﬂhm%ww€G

and follow some computation used by Székelyhidiin [30]. There exisis\ € C anda € G
such that

g(x) =~vf(x) + (5/}(/Gf(xtk ~a)dkdp(t) + AH(z,a), x€G.

Now, for all x,y, z € G, we get

/K /K /G /G f(wsk - y)tk' - z)dkdk du(t)du(s)
:f(z)/ /f(xsk;.y)dkdu(s)—g(z)/K/Gg(xsk.y)dde(S)
//H ((xsk - y), z)dkdpu(s)

2) — g(@)g W) (2) + F(2)H (z,y) - o(2)
+9(@)g(w)g(z) — v9(2) H(z,y) — 59(2) //wa )k du()

+ dg(x // (ytk' - a)dk'du(t) — dg(z //H (ytk' - a))dk' du(t)
— A\g(z //H ((xsk - y),a)dkdu(s //H ((xsk - y), z)dkdu(s).
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On the other hand, we have

/K /K /G /G Fask -yt - 2)dkdk du(t)du(s)
_ /K /K /G /G Flask - (yth! - 2))dkdk du(t)du(s)
= 1@ [ [ ki)
e // (ytk’ - =)k du(t) //H ik’ - 2))d'd(2).

Consequently, we obtain
) [10072) = 110)0(2) ~dat2) [ [ stons’ - panante
[/ f<ytk/-a>>dk’du<t>] —g(x)[g(y)f(Z)—vg(y)g(Z)

— dg(z / / (ytk' - a))dk' du(t) / / (ytk' - 2)dk'du(t)

= | H k- )akdnv) - £ H ) + 99 H )
+ 6g(2) /K /G Hz, (yth' - a))dk du(t)
—i—)\g(z)/K/GH((xsk-y),a)dkd,u(s)

_/K/GH((msk:-y),Z)dde(S)-

Since the right hand side is bounded as a function fofr all fixedy, z € G, then we get

)= Hz.p)] + 9(2) {wfz(az, y)+ 6 /K /G H(x, (yth' - a))dk'du(t)

A / / H((xsk.y),a)dkdu(s)]
//Hxsk: y), 2)dkdpu(s //H (ytk' - 2))dK du(t).

Since the right-hand side is bounded as a functionfof all fixed z, y € G, we conclude that
H(z,y) =0, forall x,y € G, which is case (v). This ends the proof of the theorem. [

5. SUPERSTABILITY OF EQUATION (1.5)

In this subsection, we study a superstability of the functional equation
5.1) | [ stath - p)ikdute) = @) + ) 2.9 € G.
KJG

Theorem 5.1. Let u be aK —invariant measure with compact support. betG x G — R*
be an arbitrary function and assume that there exists a sequenge= G such that

lim d(u,z,y) =0, forall x,y € G (uniform convergence).

n—--+00
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Let f : G — C be a continuous function, which satisfies the Kannappan type conditjpn.
If f satisfies the inequality

A;Lﬂﬂky»%wﬁfaﬂ@—f@)éﬂaw,Wﬁ”%yea

then f is a solution of equatiorj (5.1).

Proof. Assume thaif € C'(G) is such thaff satisfiesk (1) and inequality[(5]2). It follows that
there exists a sequenag such thatlim,, .., L(u,z,y) = 0 (uniformly). Now, by Lemma

[2.3, we get
(5.3) L(upz,y) —i—/G/KL((unxtk ), 2)dkdu(t)

:Lm@+ééﬁmmwrMMmm,

forall z,y, 2 € G andn € N. By lettingn — +o0, we deduce the desired result and the proof
of the theorem is complete. O

(5.2)

Remark 5.2. If K is a compact subgroup ofut(G), the condition/ () is not necessary.
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