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ABSTRACT. In this paper, we will investigate the Hyers-Ulam stability of the following func-
tional equations∫

G

∫
K

f(xtk · y)dkdµ(t) = f(x)g(y) + g(x)f(y), x, y ∈ G

and ∫
G

∫
K

f(xtk · y)dkdµ(t) = f(x)f(y)− g(x)g(y), x, y ∈ G,

whereK is a compact subgroup of morphisms ofG, dk is a normalized Haar measure ofK, µ
is a complexK-invariant measure with compact support, the functionsf, g are continuous onG
andf is assumed to satisfies the Kannappan type conditionK(µ)∫

G

∫
G

f(ztxsy)dµ(t)dµ(s) =
∫

G

∫
G

f(ztysx)dµ(t)dµ(s), x, y, z ∈ G.

The paper of Székelyhidi [30] is the essential motivation for the present work and the methods
used here are closely related to and inspired by those in [30].
The concept of the generalized Hyers-Ulam stability of mappings was introduced in the subject
of functional equations by Th. M. Rassias in [20].
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1. I NTRODUCTION

The Hyers-Ulam stability problem for functional equation has its origin in the following
question posed by S. Ulam [41] in 1940.

Given a groupG and a metric group(G′, d) and given a numberε > 0, does there exist a
δ > 0 such that, iff : G −→ G′ satisfies the inequality

d(f(xy), f(x)f(y)) < δ, for all x, y ∈ G,

then a homomorphisma : G −→ G′ exists such that

d(f(x), a(x)) < ε, for all x ∈ G?

The first affirmative answer to Ulam’s question for linear mappings came within a year when
D. H. Hyers [8] proved the following result.

Theorem 1.1([8]). Let B andB′ be Banach spaces and letf : B −→ B′ be a function such
that for someδ > 0

‖ f(x + y)− f(x)− f(y) ‖≤ δ, for all x, y ∈ B.

Then there exists a unique additive functionϕ : B −→ B′ such that‖ f(x) − ϕ(x) ‖≤ δ, for
all x ∈ G.
Furthermore, the continuity off at a point y ∈ B implies the continuity ofϕ on B. The
continuity, for eachx ∈ B, of the functiont −→ f(tx), t ∈ R, implies the homogeneity ofϕ.

After Hyers’s result a great number of papers on the subject have been published, generalizing
Ulam’s problem and Hyers’s theorem in various directions. In 1951 D.G. Bourgin [3] treated
this problem for additive mappings. In 1978, Th. M. Rassias [20] provided a remarkable
generalization of Hyers’s theorem, a fact which rekindled interest in the field of functional
equations.

Theorem 1.2([20]). Let f : V −→ X be a mapping between Banach spaces and letp < 1 be
fixed. Iff satisfies the inequality

‖f(x + y)− f(x)− f(y)‖ ≤ θ(‖x‖p + ‖y‖p)

for someθ ≥ 0 and for all x, y ∈ V (x, y ∈ V \ {0} if p < 0). Then there exists a unique
additive mappingT : V −→ X such that

‖f(x)− T (x)‖ ≤ 2θ

|2− 2p|
‖x‖p

for all x ∈ V (x ∈ V \ {0} if p < 0).
If, in addition,f(tx) is continuous int for each fixedx, thenT is linear.

This theorem of Th. M. Rassias stimulated several mathematicians working in the theory of
functional equations to investigate this kind of stability for a variety of significant functional
equations. By taking into consideration the influence of S. M. Ulam, D. H. Hyers and Th. M.
Rassias on the study of stability problems of functional equations in mathematical analysis,
the stability phenomenon that was proved by Th. M. Rassias is called the Hyers-Ulam-Rassias
stability.

The Hyers-Ulam-Rassias stability was taken up by a number of mathematicians and the study
of this area has the grown to be one of the central subjects in the mathematical analysis area. For
more information, we can see for examples ([3], [7], [8], [10], [12], ..., [40]) and the monographs
[4], [9], [11] by D. H. Hyers, G. Isac and Th. M. Rassias, by S.-M. Jung and by S. Czerwik
(ed.).
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HYERS-ULAM STABILITY 3

L. Székelyhidi in [30], studied the stability property of two well known functional equations:
The sine and cosine functional equations

(1.1) f(xy) = f(x)g(y) + f(y)g(x), x, y ∈ G

and

(1.2) f(xy) = f(x)f(y)− g(x)g(y), x, y ∈ G,

wheref, g are complex-valued functions on an amenable groupG. More precisely, he proved
that if f, g : G −→ C are given functions,G is an amenable group, and the function(x, y) −→
f(xy)− f(x)g(y)− f(y)g(x) is bounded, then there exists a solution(f0, g0) of (1.1) such that
f − f0 andg − g0 are bounded. An analogous result holds for equation (1.2).

The aim of the present paper is to extend the Székelyhidi’s results [30] to the functional
equations

(1.3)
∫

G

∫
K

f(xtk · y)dkdµ(t) = f(x)g(y) + g(x)f(y), x, y ∈ G

and

(1.4)
∫

G

∫
K

f(xtk · y)dkdµ(t) = f(x)f(y) + g(x)g(y), x, y ∈ G,

whereK is a compact subgroup ofMor(G), µ is a complexK-invariant measure with compact
support,f, g are continuous functions onG andf is assumed to satisfy the Kannappan type
conditionK(µ)∫

G

∫
G

f(ztxsy)dµ(t)dµ(s) =

∫
G

∫
G

f(ztysx)dµ(t)dµ(s), x, y, z ∈ G.

Furthermore, in the last subsection we study a superstability result of the generalized quadratical
functional equation

(1.5)
∫

G

∫
K

f(xtk · y)dkdµ(t) = f(x) + f(y), x, y ∈ G.

The result can be viewed as a generalization of the ones obtained by G. Maksa and Z. Páles in
[12].

2. NOTATION AND PRELIMINARY RESULTS

Our notation is described in the following Set Up and it will be used throughout the paper.

Set-Up. We letG be a locally compact group,C(G) (resp.Cb(G)) the complex algebra of all
continuous (resp. continuous and bounded) complex valued functions onG. M(G) denotes
the topological dual ofC0(G): the Banach space of continuous functions vanishing at infinity.
We letK be a compact subgroup of the groupMor(G) of all mappingsk of G onto itself that
are either automorphisms and homeomorphisms (i.e.k ∈ K+), or anti-automorphisms and
homeomorphisms (i.e.k ∈ K−). The action ofk ∈ K on x ∈ G will be denoted byk · x and
the normalized Haar measure onK by dk.

For any functionf onG, we put(k · f)(x) = f(k−1 ·x). For anyµ ∈ M(G), k ∈ K and any
f ∈ Cb(G), we put〈k · µ, f〉 = 〈µ, k · f〉, and we say thatµ is K-invariant ifk · µ = µ, for all
k ∈ K.

A non-zero functionφ ∈ Cb(G) is said to be a solution of Badora’s functional equation if it
satisfies

(2.1)
∫

K

∫
G

φ(xtk · y)dµ(t)dk = φ(x)φ(y), x, y ∈ G.
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Recently the functional equation (2.1) was completely solved in abelian groups by Badora [2]
and by E. Elqorachi, M. Akkouchi, A. Bakali, and B. Bouikhalene [6] in non-abelian groups
and the Hyers-Ulam-Rassias stability of this equation was investigated in [1] and [5].

In the following, we prove some lemmas that we need later.

Lemma 2.1. Let K be a compact subgroup ofMor(G). Let µ be a K-invariant bounded
measure onG. If f ∈ Cb(G) satisfies the Kannappan conditionK(µ):∫

G

∫
G

f(ztxsy)dµ(t)dµ(s) =

∫
G

∫
G

f(ztysx)dµ(t)dµ(s), x, y, z ∈ G,

then we have∫
K

∫
K

∫
G

∫
G

f(zsk · (xtk′ · y))dkdk′dµ(s)dµ(t)

=

∫
K

∫
K

∫
G

∫
G

f(zsk · xtk′ · y)dkdk′dµ(s)dµ(t),

for all x, y, z ∈ G.

Proof. Let x, y, z ∈ G. Let f ∈ Cb(G) be a complex function such thatf satisfiesK(µ). Then

∫
K

∫
K

∫
G

∫
G

f(zsk · (xtk′ · y))dkdk′dµ(s)dµ(t)

=

∫
K+

∫
K

∫
G

∫
G

f(zsk · xk · t(kk′) · y)dkdk′dµ(s)dµ(t)

+

∫
K−

∫
K

∫
G

∫
G

f(zs(kk′) · yk · tk · x)dkdk′dµ(s)dµ(t).

Sinceµ is K-invariant anddk′ is invariant by translation, then we get

∫
K+

∫
K

∫
G

∫
G

f(zsk · xk · t(kk′) · y)dkdk′dµ(s)dµ(t)

=

∫
K+

∫
K

∫
G

∫
G

f(zsk · xtk′ · y)dkdk′dµ(s)dµ(t),

∫
K−

∫
K

∫
G

∫
G

f(zs(kk′) · yk · tk · x)dkdk′dµ(s)dµ(t)

=

∫
K−

∫
K

∫
G

∫
G

f(zsk′ · ytk · x)dkdk′dµ(s)dµ(t)

=

∫
K−

∫
K

∫
G

∫
G

f(zsk · xtk′ · y)dkdk′dµ(s)dµ(t),

becausef satisfiesK(µ).
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Consequently,∫
K

∫
K

∫
G

∫
G

f(zsk · (xtk′ · y))dkdk′dµ(s)dµ(t)

=

∫
K+

∫
K

∫
G

∫
G

f(zsk · xtk′ · y)dkdk′dµ(s)dµ(t)

+

∫
K−

∫
K

∫
G

∫
G

f(zsk · xtk′ · y)dkdk′dµ(s)dµ(t)

=

∫
K

∫
K

∫
G

∫
G

f(zsk · xtk′ · y)dkdk′dµ(s)dµ(t).

This completes the proof. �

The following result is a generalization of the lemma obtained by G. Maksa and Z. Páles in
[12].

Lemma 2.2. Let K be a compact subgroup ofMor(G). Let µ be a K-invariant bounded
measure onG such that〈µ, 1G〉 = 1. Let f ∈ Cb(G) be a complex function which satisfies
K(µ), then the continuous and bounded function

(2.2) L(x, y) = f(x) + f(y)−
∫

G

∫
K

f(xtk · y)dkdµ(t), x, y ∈ G

satisfies the functional equation

(2.3) L(x, y) +

∫
G

∫
K

L((xtk · y), z)dkdµ(t)

= L(y, z) +

∫
G

∫
K

L(x, (ytk · z))dkdµ(t), x, y, z ∈ G.

Proof. The proof is closely related to the computation in ([12, Section 2, Lemma]), whereK is
a finite subgroup ofAut(G) andµ = δe). Let f be a bounded and continuous function onG
which satisfies the Kannappan conditionK(µ) and letL(x, y) be the function defined by (2.2),
then we have

L(x, y)+

∫
K

∫
G

L((xtk · y), z)dkdµ(t)

= f(x) + f(y)−
∫

K

∫
G

f(xtk · y)dkdµ(t)

+

∫
K

∫
G

f(xtk · y)dkdµ(t) + 〈µ, 1G〉 〈dk, 1K〉 f(z)

−
∫

K

∫
G

∫
K

∫
G

f(xtk · ysk′ · z)dkdk′dµ(s)dµ(t)

= f(x) + f(y) + f(z)−
∫

K

∫
G

∫
K

∫
G

f(xtk · ysk′ · z)dkdk′dµ(s)dµ(t).
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On the other hand, we have

L(y, z)+

∫
K

∫
G

L(x, (ytk · z))dkdµ(t)

= f(y) + f(z)−
∫

K

∫
G

f(ytk · z)dkdµ(t)

+ 〈µ, 1G〉 〈dk, 1K〉 f(x) +

∫
K

∫
G

f(ytk · z)dkdµ(t)

−
∫

K

∫
G

∫
K

∫
G

f(xsk′ · (ytk · z))dkdk′dµ(s)dµ(t)

= f(y) + f(z) + f(x)−
∫

K

∫
G

∫
K

∫
G

f(xsk′ · ytk · z)dkdk′dµ(s)dµ(t).

This ends the proof of Lemma 2.2. �

3. STABILITY OF EQUATION (1.3)

In this section, we investigate the stability properties of the functional equation (1.3), it’s a
generalization of the stability of equation (1.1) proved by Székelyhidi in [30].

Theorem 3.1. Let K be a compact subgroup ofMor(G), and letµ be aK-invariant measure
with compact support. Letf, g be continuous complex-valued functions such thatf satisfies
K(µ) and the following function

(3.1) (G, G) 3 (x, y) −→
∫

K

∫
G

f(xtk · y)dkdµ(t)− f(x)g(y)− f(y)g(x)

is bounded. Then

i) f = 0, g arbitrary in C(G) or
ii) f, g are bounded or

iii) f is unbounded,g is a bounded solution of Badora’s equation or
iv) There existsϕ a solution of Badora’s equation, there existsb a continuous bounded

function onG andγ ∈ C such thatf = γ(ϕ− b) andg = ϕ+b
2

or
v) f, g are solutions of (1.3).

Proof. If f = 0, theng can be chosen arbitrarily inC(G). This is case (i). Iff 6= 0 is bounded,
then the functionG 3 x 7−→ f(x)g(y) + f(y)g(x) is bounded for ally ∈ G, sog is bounded.
This is case (ii). Iff is unbounded andg is bounded, the function

G 3 x 7−→
∫

K

∫
G

f(xtk · y)dkdµ(t)− f(x)g(y)

is bounded, for ally ∈ G. In view of [5, Theorem 3.1], we get thatg is a solution of Badora’s
equation. This is case (iii). Iff, g are unbounded functions, we distinguish two cases:
First case.We assume that there existα, β ∈ C\{0} such thatαf + βg is bounded, theng can
be written asg = f

2γ
+ b, whereb is a bounded function andγ ∈ C\{0}. Consequently, the

function

G 3 x 7−→
∫

K

∫
G

f(xtk · y)dkdµ(t)−
(

f(y)

γ
+ b(y)

)
f(x)

is bounded, for ally ∈ G. Hence by [5, Theorem 3.1], it follows thatϕ(y) = f(y)
γ

+ b(y) is a
solution of Badora’s equation. This is case (iv).
Second case.For all α, β ∈ C \ {0}, αf + βg is an unbounded function onG. In this case
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we shall prove thatf, g are solutions of (1.3). The idea of the proof is closely inspired by some
good computations used in [30, Lemma 2.2]. We define the mapping

F (x, y) =

∫
K

∫
G

f(xtk · y)dkdµ(t)− f(x)g(y)− f(y)g(x), x, y ∈ G

and we will prove thatF (x, y) = 0, for all x, y ∈ G. By assumption, there existγ, δ, λ ∈ C and
a ∈ G such that

(3.2) g(x) = γf(x) + δ

∫
K

∫
G

f(xtk · a)dkdµ(t) + λF (x, a), x ∈ G.

For allx, y, z ∈ G, we have∫
K

∫
K

∫
G

∫
G

f((xtk · y)sk′ · z)dkdk′dµ(t)dµ(s)

= g(z)

∫
K

∫
G

f(xtk · y)dkdµ(t) + f(z)

∫
K

∫
G

g(xtk · y)dkdµ(t)

+

∫
K

∫
G

F ((xtk · y), z)dkdµ(t)

= g(z)f(x)g(y) + g(z)f(y)g(x) + g(z)F (x, y) + γf(z)

∫
K

∫
G

f(xtk · y)dkdµ(t)

+ δf(z)

∫
K

∫
K

∫
G

∫
G

f(xtk · ysk′ · a)dkdk′dµ(s)dµ(t)

+ λf(z)

∫
K

∫
G

F ((xtk · y), a)dkdµ(t) +

∫
K

∫
G

F ((xtk · y), z)dkdµ(t).

In view of Lemma 2.1, we get∫
K

∫
K

∫
G

∫
G

f((xtk · y)sk′ · z)dkdk′dµ(t)dµ(s)

= g(z)f(x)g(y) + g(z)f(y)g(x)

+ g(z)F (x, y) + γf(z)

∫
K

∫
G

f(xtk · y)dkdµ(t)

+ δf(z)

∫
K

∫
K

∫
G

∫
G

f(xtk · ysk′ · a)dkdk′dµ(s)dµ(t)

+ λf(z)

∫
K

∫
G

F ((xtk · y), a)dkdµ(t) +

∫
K

∫
G

F ((xtk · y), z)dkdµ(t)

= g(z)f(x)g(y) + g(z)f(y)g(x) + g(z)F (x, y) + γf(z)f(x)g(y)

+ γf(z)f(y)g(x) + γf(z)F (x, y) + δf(z)f(x)

∫
K

∫
G

g(ysk′ · a)dk′dµ(s)

+ δf(z)g(x)

∫
K

∫
G

f(ysk′ · a)dk′dµ(s) + δf(z)

∫
K

∫
G

F (x, ysk′ · a)dk′dµ(s)

+ λf(z)

∫
K

∫
G

F ((xtk · y), a)dkdµ(t) +

∫
K

∫
G

F ((xtk · y), z)dkdµ(t).
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By using again Lemma 2.1, we obtain∫
K

∫
K

∫
G

∫
G

f((xtk · y)sk′ · z)dkdk′dµ(t)dµ(s)

=

∫
K

∫
K

∫
G

∫
G

f(xtk · (ysk′ · z))dkdk′dµ(t)dµ(s)

= f(x)

∫
K

∫
G

g(ysk′ · z)dk′dµ(s) + g(x)

∫
K

∫
G

f(ysk′ · z)dk′dµ(s)

+

∫
K

∫
G

F (x, (ysk′ · z))dk′dµ(s).

Hence, it follows that

f(x)

[
g(y)g(z) + γg(y)f(z) + δf(z)

∫
K

∫
G

g(ysk′ · a)dk′dµ(s)

−
∫

K

∫
G

g(ysk′ · z)dk′dµ(s)

]
+ g(x)

[
f(y)g(z) + γf(y)f(z)

+ δf(z)

∫
K

∫
G

f(ysk′ · a)dk′dµ(s)−
∫

K

∫
G

f(ysk′ · z)dk′dµ(s)

]
=

∫
K

∫
G

F (x, (ysk′ · z))dk′dµ(s)− g(z)F (x, y)− γf(z)F (x, y)

− δf(z)

∫
K

∫
G

F (x, (ysk′ · a))dk′dµ(s)− λf(z)

∫
K

∫
G

F ((xtk · y), a)dkdµ(t)

−
∫

K

∫
G

F ((xtk · y), z)dk′dµ(s).

Since the right-hand side is bounded as a function ofx for all fixedy, z ∈ G, then we get

g(z)F (x, y) + f(z)

[
γF (x, y) + δ

∫
K

∫
G

F (x, ysk′ · a))dk′dµ(s)

+ λ

∫
K

∫
G

F ((xtk · y), a)dkdµ(t)

]
=

∫
K

∫
G

F (x, (ysk′ · z)))dk′dµ(s)−
∫

K

∫
G

F ((xtk · y), z)dkdµ(t).

Since the right-hand side is bounded as a function ofz for all fixed x, y ∈ G, then we obtain
F (x, y) = 0, for all x, y ∈ G. This is case (v) and the proof of Theorem 3.1 is completed.�

4. STABILITY OF EQUATION (1.4)

In this section, we study the problem of the Hyers-Ulam stability of equation (1.4). It is a
generalization of the stability of equation (1.2) proved by Székelyhidi in [30].

Theorem 4.1. Let K be a compact subgroup ofMor(G), let µ be aK-invariant measure with
compact support. Letf, g be continuous complex-valued functions such thatf satisfiesK(µ)
and the function

(4.1) (G, G) 3 (x, y) −→
∫

K

∫
G

f(xtk · y)dkdµ(t)− f(x)f(y) + g(x)g(y)

is bounded. Then,

i) f, g are bounded or
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ii) f is a solution of Badora’s equation,g is bounded, or
iii) f, g are unbounded,f + g or f − g are bounded solutions of Badora’s equation or
iv) There existsϕ a solution of Badora’s equation, there existsb a continuous bounded

function onG andγ ∈ C \ {±1} such that

f =
γ2ϕ− b

γ2 − 1
, g =

γ

γ2 − 1
(ϕ− b)

or
v) f, g are solutions of (1.4).

Proof. If g is bounded, then we obtain that the function

G×G 3 (x, y) 7−→
∫

K

∫
G

f(xtk · y)dkdµ(t)− f(x)f(y)

is bounded. So by [5, Theorem 3.1], we have eitherf is bounded orf is a solution of Badora’s
equation. This is cases (i) and (ii). Ifg is unbounded, thenf is unbounded. As in the preceding
proof, we distinguish two cases.
First case.Assume that there existα, β ∈ C \ {0} such thatαf + βg is a bounded function on
G, then there exists a constantγ ∈ C \ {0} such thatf = γg + b, whereb is a bounded function
onG. Hence the function

G 3 x 7−→
∫

K

∫
G

g(xtk · y)dkdµ(t)− (γ2 − 1)g(y) + γb(y)

γ
g(x)

is bounded for ally ∈ G. It follows from [5, Theorem 3.1] thatϕ = γ2−1
γ

g + b is a solution of
Badora’s equation. Hence, we obtain case (iii) forγ2 = 1 and (iv) forγ2 6= 1.
Second case.For allα, β ∈ C \ {0}, αf + βg is an unbounded function onG. We put

H(x, y) =

∫
K

∫
G

f(xtk · y)dkdµ(t)− f(x)f(y) + g(x)g(y), x, y ∈ G

and follow some computation used by Székelyhidi in [30]. There existsγ, δ, λ ∈ C anda ∈ G
such that

g(x) = γf(x) + δ

∫
K

∫
G

f(xtk · a)dkdµ(t) + λH(x, a), x ∈ G.

Now, for all x, y, z ∈ G, we get∫
K

∫
K

∫
G

∫
G

f((xsk · y)tk′ · z)dkdk′dµ(t)dµ(s)

= f(z)

∫
K

∫
G

f(xsk · y)dkdµ(s)− g(z)

∫
K

∫
G

g(xsk · y)dkdµ(s)

+

∫
K

∫
G

H((xsk · y), z)dkdµ(s)

= f(x)f(y)f(z)− g(x)g(y)f(z) + f(z)H(x, y)− γf(x)f(y)g(z)

+ γg(x)g(y)g(z)− γg(z)H(x, y)− δg(z)f(x)

∫
K

∫
G

f(ytk′ · a)dk′dµ(t)

+ δg(x)g(z)

∫
K

∫
G

g(ytk′ · a)dk′dµ(t)− δg(z)

∫
K

∫
G

H(x, (ytk′ · a))dk′dµ(t)

− λg(z)

∫
K

∫
G

H((xsk · y), a)dkdµ(s) +

∫
K

∫
G

H((xsk · y), z)dkdµ(s).
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On the other hand, we have∫
K

∫
K

∫
G

∫
G

f(xsk · ytk′ · z)dkdk′dµ(t)dµ(s)

=

∫
K

∫
K

∫
G

∫
G

f(xsk · (ytk′ · z))dkdk′dµ(t)dµ(s)

= f(x)

∫
K

∫
G

f(ytk′ · z)dk′dµ(t)

− g(x)

∫
K

∫
G

g(ytk′ · z)dk′dµ(t) +

∫
K

∫
G

H(x, (ytk′ · z))dk′dµ(t).

Consequently, we obtain

f(x)

[
f(y)f(z)− γf(y)g(z)− δg(z)

∫
K

∫
G

f(ytk′ · a))dk′dµ(t)

−
∫

K

∫
G

f(ytk′ · a))dk′dµ(t)

]
− g(x)

[
g(y)f(z)− γg(y)g(z)

− δg(z)

∫
K

∫
G

g(ytk′ · a))dk′dµ(t)−
∫

K

∫
G

g(ytk′ · z)dk′dµ(t)

]
=

∫
K

∫
G

H(x, (ytk′ · z))dk′dµ(t)− f(z)H(x, y) + γg(z)H(x, y)

+ δg(z)

∫
K

∫
G

H(x, (ytk′ · a))dk′dµ(t)

+ λg(z)

∫
K

∫
G

H((xsk · y), a)dkdµ(s)

−
∫

K

∫
G

H((xsk · y), z)dkdµ(s).

Since the right hand side is bounded as a function ofx for all fixedy, z ∈ G, then we get

f(z)[−H(x, y)] + g(z)

[
γH(x, y) + δ

∫
K

∫
G

H(x, (ytk′ · a))dk′dµ(t)

+λ

∫
K

∫
G

H((xsk · y), a)dkdµ(s)

]
=

∫
K

∫
G

H(xsk · y), z)dkdµ(s)−
∫

K

∫
G

H(x, (ytk′ · z))dk′dµ(t).

Since the right-hand side is bounded as a function ofz for all fixedx, y ∈ G, we conclude that
H(x, y) = 0, for all x, y ∈ G, which is case (v). This ends the proof of the theorem. �

5. SUPERSTABILITY OF EQUATION (1.5)

In this subsection, we study a superstability of the functional equation

(5.1)
∫

K

∫
G

f(xtk · y))dkdµ(t) = f(x) + f(y) x, y ∈ G.

Theorem 5.1. Letµ be aK−invariant measure with compact support. Letδ : G×G 7−→ R+

be an arbitrary function and assume that there exists a sequence(un) ∈ G such that

lim
n−→+∞

δ(unx, y) = 0, for all x, y ∈ G (uniform convergence).
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Letf : G 7−→ C be a continuous function, which satisfies the Kannappan type conditionK(µ).
If f satisfies the inequality

(5.2)

∣∣∣∣∫
K

∫
G

f(xtk · y))dkdµ(t)− f(x)− f(y)

∣∣∣∣ ≤ δ(x, y), for all x, y ∈ G,

thenf is a solution of equation (5.1).

Proof. Assume thatf ∈ C(G) is such thatf satisfiesK(µ) and inequality (5.2). It follows that
there exists a sequenceun such thatlimn−→+∞ L(unx, y) = 0 (uniformly). Now, by Lemma
2.2, we get

(5.3) L(unx, y) +

∫
G

∫
K

L((unxtk · y), z)dkdµ(t)

= L(y, z) +

∫
G

∫
K

L(unx, (yt · z))dkdµ(t),

for all x, y, z ∈ G andn ∈ N. By lettingn −→ +∞, we deduce the desired result and the proof
of the theorem is complete. �

Remark 5.2. If K is a compact subgroup ofAut(G), the conditionK(µ) is not necessary.
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