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1. INTRODUCTION

Uncertainty principles play an important role in harmonic analysis and have been studied
by many authors, from many points of view [13,] 19]. These principles state that a furfction
and its Fourier transfornf cannot be simultaneously sharply localized. Many aspects of such
principles have been studied, for example the Heisenberg-Pauli-Weyl inequality [16] has been
established for various Fourier transforms![26, [31, 32] and several generalized forms of this
inequality are given in[[28, 29, 30]. See also the theorems of Hardy, Morgan, Beurling and
Gelfand-Shilov [[7] 15, 23, 25, 26]. The most recent Beurling-Hérmander theorem has been
proved by Hormandef [20] using an idea of Beurling [3]. This theorem states tliasiin
integrable function ofR with respect to the Lebesgue measure and if

[ @iy < +oc,
R2
then f = 0 almost everywhere.
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2 N. MSEHLI AND L.T. RACHDI

A strong multidimensional version of this theorem has been established by Bonami, Demange
and Jaming[[4] (see alsb [19]) who have showed thtif a square integrable function &¥
with respect to the Lebesgue measure, then

DD sy

“Ndxdy < 400, d>0;
// (L + o]+ [y

if and only if f can be written as

f(z) = P(a)e” e/,

whereA is a real positive definite symmetric matrix aftdis a polynomial withdegree(P) <
d—n

2In particular ford < n; f is identically zero.

The Beurling-H6rmander uncertainty principle has been studied by many authors for vari-
ous Fourier transforms. In particular, Triméchel[33] has shown this uncertainty principle for
the Dunkl transform, Kamoun and Trimeche [21] have proved an analogue of the Beurling-
Hoérmander theorem for some singular partial differential operators, Bouattour and Trimeche
[5] have shown this theorem for the hypergroup of Chébli-Triméche. We cite also Yakubovich
[37], who has established the same result for the Kontorovich-Lebedev transform.

Many authors are interested in the Beurling-Hérmander uncertainty principle because this
principle implies other well known quantitative uncertainty principles such as those of Gelfand-
Shilov [14], Cowling Price([7], Morgari [2, 23], and the one of Hardy/[15].

On the other hand, the spherical mean operator is defined.gR x R") (the space of
continuous functions oR x R", even with respect to the first variable) by

AP0) = [ 10 241 don(n.6).

whereS™ is the unit spherd (1, &) € R x R™; n* +|¢]* = 1} inR x R™ ando, is the surface
measure orp™ normalized to have total measure one.
The dual operatotZ of # is defined by

I (ntt
"% (g)(r,x) = (nfl)/ng< r2+\x—y\2,y>dy,

m 2

wheredy is the Lebesgue measure BA.

The spherical mean operat@t and its dual.%Z play an important role and have many appli-
cations, for example; in the image processing of so-called synthetic aperture radar (SAR) data
[17,[18], or in the linearized inverse scattering problem in acoustic¢s [11]. These operators have
been studied by many authors from many points of view![L, 8, 11, 24, 27].

In [24] (see alsol[8, 27]); the second author with others, associated to the spherical mean
operatorZ the Fourier transforn¥ defined by

FOwN) = [ [ 1000 0i.0),

where

o pu(rz) = Z (cos(p.)e™" ) (r,z)
e dv, is the measure defined ¢ +oco[xR" by

1
dvy(r,x) = ———r"dr® du -
27z (=) (2m)2
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They have constructed the harmonic analysis related to the transfofimversion formula,
Plancherel formula, Paley-Wiener theorem, Plancherel theorem).
Our purpose in the present work is to study the Beurling-Hormander uncertainty principle

for the Fourier transforn¥, from which we derive the Gelfand-Shilov and Cowling -Price type
theorems for this transform.

More precisely, we collect some basic harmonic analysis results for the Fourier trangform

In the third section, we establish the main result of this paper, that is, from the Beurling
Hormander theorem:

e Let f be a measurable function @ x R"; even with respect to the first variable and
such thatf € L*(dv,). If

JI [ [ D e ) < oo >0
v Jo Ju (U [(ry )] + [0, A A = e =

then

. Ford<n+1; f=0;

ii. Ford > n + 1; there exists a positive constantand a polynomialP onR x R"™ even
with respect to the first variable, such that

flr, @) = P(r, z)e "+l
with degree(P) < %;
where
e [, isthe set given by
Iy = [0, +oo[xR" U {(ip, N); (1, A) € R xR™; 0 < pu < [A[}
e 0 is the bijective function defined dn, by

= (VTP 3)

e d7, is the measure defined @h by

J[ st ) = \/2 —

pdpd A ududA
n \/ 112 +)\2 n 9lin: X ,u '

The last section of this paper is devoted to the Gelfand-Shilov and Cowhng Price theorems
for the transform# .

e Let p, ¢ be two conjugate exponents; ¢ €]1,+o0[. Letn, & be two positive real
numbers such that) > 1. Let f be a measurable function &x R"; even with respect
to the first variable such thgte L?(dv,,).

If

|f |5p\(\
r,x)le P

dvy(r,x) <
//ﬂ Lt (o)) Up(r, x) < 400

&9 (r,x)|?
T D
dAn(i, \) < 400: d >0,
// 1+\e yE Dnlie A) < oo
then

i. Ford <™ f=0.
ii. Ford > ™tL; we have

and
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— f=0forén>1
— f=0forén=1andp # 2
— f(r,x) = P(r,x)e "+ for ¢n = 1 andp = ¢ = 2, wherea > 0 and P
is a polynomial oR x R™ even with respect to the first variable, withgree
(P) <d— "t
e Letn, & w; andw, be non negative real numbers such that> i Let p, ¢ be two
exponentsp, ¢ € [1,4o00] and letf be a measurable function d x R"™, even with
respect to the first variable such thfae L?(dv,,).

If
ef'(i)P
—_ < 400
A+1CD™ |,
and
.
a0 ) <t
q,'Yn
then

I. Forén > i; f=0.
ii. Forén = %; there exists a positive constanand a polynomiaP onR x R", even with
respect to the first variable such that

f(r,w) = P(r,x)e 04,

2. THE SPHERICAL MEAN OPERATOR
For all (1, A) € C x C"; if we denote byp,, » the function defined by
P, ) = 2 (cos(u.)e ") (r,),
then we have
(2.1) ou(r,x) = Jnza (r\/m> i)
where
e M =X 4 ..+ 2 A= (\,...,\,) €C

o (\Nx)=Mx1+ -+ X\p; v = (21,...,2,) ER™;
® jus is the modified Bessel function given by

n—i—l) Juo1(s)

n—1

S 2

n4+1Y\ — (—1)* s\ 2k
(5 e (0
2 %k!l“(lwr%l) (2)
andJnT_l is the usual Bessel function of first kind and ordg# [9, 10,22/ 36].

Also, the modified Bessel functioﬁ% has the following integral representation, for all
z e C:

(2.2) joi(s) =271 ( ;

] _—2F(”T+1) 1 — ?)2 " cos(z
o (2) = s | =i costeae

Thus, for allz € C; we have

(2.3)

. | Im 2]
JnT—l(Z)’ < el
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Using the relatio 1) and the properties of the funcj’l@, we deduce that the functiap), »
satisfies the following properties [24,127]:

(2.4) sup ‘gou,,\(r, x)} =1
(r,x) ERXR"™

if and only if (i, \) belongs to the sdt defined by

(2.5) L =RxR" U {(in,\); (n,A) € RXR"; |u| < [A[}.
e Forall(x, \) € C x C; the functiony,,  is a unique solution of the system
ge(rz) = —idju(rz); 1<j<n
Lu(r,z) = —p? u(r, )

u(0,0) = 1; g—ﬁ((O,xl,...,xn):(); YV (z1,...,2,) € R”

2 nd K/ 0)\
Lo gt (ar)

J=1

where

In the following, we denote by
e dm, 1 the measure defined ¢f +oco[xR"; by

2 1
dmy 1 (r,z) = \/;Wdr ® dz,

wheredz is the Lebesgue measure Bi.
e [P(dmy,41); p € [1, +00], the space of measurable functighen [0, +-oco[xR™ satisfy-

ing
(fooo fRn |f(r, )| dmnﬂ(r,m)); < +oo, If1<p< +oo;

17 llpms = ess sup |f(r,z)| < +oo, if p=+4oc0.

(r,x)€[0,400[xR™

e dv, the measure defined ¢f, +oo[xR" by

r™ dr dx

n—lo nii ® o27)5

272 F(T> ( W)2

e LP(dv,), p € [1,40¢], the space of measurable functiof®n [0, +oo[xR™ such that

[ £llpw, < +00.
e [, the subset of’, given by

Iy = [0, +oo[xR" U {(ip, N); (1, A) € RxR™; 0 < pu < |M}.
o %r, theo—algebra defined oh; by
(2.6) PBr, = {07'(B); B € Hor([0,+o0[xR")},
whered is the bijective function defined dn, by

0, 3) = (ViIZ + AP, ) .

e dv, the measure defined a#r, by
VA € Br.;m(A) = v,(6(A)).

dv,(r,x) =
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e LP(dv,), p € [1,+0c], the space of measurable functianenI'.. such that|g||,, <

+00.
e d7, the measure defined a#r, by

25T (%51) _dra(p, )
VT (2 AP)E
o LP(d7,), p € [1,+00], the space of measurable functianen I, such that|g||, 5, <
+00.
e S.(R x R™) the Schwarz space formed by the infinitely differentiable function® on

R"™, rapidly decreasing together with all their derivatives, and even with respect to the
first variable.

dﬁ/n (Vw /\) =

Proposition 2.1.

I. For all non negative measurable function®n ', (respectively integrable ofi, with
respect to the measurg),,), we have

//F+ 9k A)dyn (e, A)

1
= F(i27r2(// 90 N (i + (AP pdpe

A 1
+//0 g(w,k)(lk\z—uz)n?ududA))

ii. For all non negative measurable functiofison [0, +oo[xR™ (respectively integrable
on [0, +oco[xR™ with respect to the measuten,, ), the functionf o § is measurable
onI', (respectively integrable ofi, with respect to the measude,,) and we have

// £ 000, Ny (1, \) / [ @i (r.2).

iii. For all non negative measurable functiofison [0, +oo[xR™ (respectively integrable
on [0, +oo[xRR™ with respect to the measudennﬂ) we have

(2.7) // 1 0 6001, A (1, / [ aydma(r.a),

wheref is the function given by the relatiop (2.6).

In the sequel, we shall define the Fourier transform associated with the spherical mean oper-
ator and give some properties.

Definition 2.1. The Fourier transforn¥ associated with the spherical mean operator is defined
on L'(dv,) by

N et FNEN = [ [ o),
0 R”
wheregp,,  is the function given by the relatiop (2.1) afids the set defined by (2.5).

Remark 1. For all (u, \) € I', we have

(2.8) F () A) = F(f) 0 8, ),
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where

(2.9) F (), A) = / Fr.@)jocs (r)e” " du, (1, x)
0o Jre 2

andjanl Is the modified Bessel function given by the relati(2.2).

Moreover, by the relatiorj (2.4), the Fourier transfogiis a bounded linear operator from
L'(dv,) into L*>°(d~,) and for allf € L(dv,):

(2.10) 1 (Pllsorn < M 11

Theorem 2.2(Inversion formula) Let f € L'(dv,) such that# (f) € L'(d~,), then for almost
every(r,z) € [0, +oo[xR", we have

(2.11) f(r,z) //r+ N)un (7, ) dyn (11, \)
- /0 o ﬁ(f)(/% /\)j% (rlu)eio\/r)dyn(m ).

Lemma 2.3. LetRanl be the mapping defined for all non negative measurable functiams
[0, +00[xR™ by

(2.12) Ron- 1( )r,z) = %Tl_” /OT(T2 — 32 g(t, x)dt
= T/I‘Eg?;g /01(1 — )2 g(tr, x)dt

then for all non negative measurable functighsy on [0, +00[xR™, we have

@1’ [ [ Rea@a)fadn i)

= [ [ stta s ()t )t

WhereWn 1 IS the classical Weyl transform defined for all non negative measurable fungtions
on [0, +oo[><R” by
1
2ET(3)

Proposition 2.4. For all f € L'(dv,), the function’._.(f) given by the relation4) is
defined almost every where, belongs to the sga¢eém,, ;) and we have

(2.14) Wosa (f)(t ) = /too(r2 — )27 f(r, ) 2rdr.

(2.15) | <l
Moreover,
(2.16) F ()1 A) = Ay 0 Waa () (11, V),

whereA,, ,; is the usual Fourier cosine transform defined bt{dm,,, ) by
M@V = [ [ gty costrp)e N 1.,
0 n

and.Z is the Fourier-Bessel transform defined by the relat (2.9).
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Remark 2. It is well known [34,35] that the Fourier transfornis andA,, ., are topological
isomorphisms from, (R x R") onto itself. Then, by the relatioh (2]16), we deduce that the
classical Weyl transforrf% 1 is also a topological isomorphism frofi (R x R™) onto itself,

and the inverse |somorph|sm Is given by![24]

(341
(2.17) Wi (N 2) = (=1 gy g ((%) f> (r,z),

whereF,; a > 0 is the mapping defined ofi.(R x R") by
1

2 2\a—1
2“F( ) /T (t T ) (t, [L’) tdt
and—an is the singular partial differential operator defined by

3. THE BEURLING -HORMANDER THEOREM FOR THE SPHERICAL MEAN OPERATOR

(2.18) Fa(f)(r,x) =

This section contains the main result of this paper, that is the Beurling-Hoérmander theorems
for the Fourier transforn¥ associated with the spherical mean operator.

We firstly recall the following result that has been established by Bonami, Demange and
Jaming [4].

Theorem 3.1.Let f be a measurable function dhx R", even with respect to the first variable
such thatf € L?*(dm,,.,) and letd be a real number] > 0. If

L/ 2)[[ A1 ()5, y>|e|<m>|\sy\ o (2 ) (5 -
/ /n/ /n (L+ |(r,2)] + |(s,y)])? ld i1 (1, 2)dmy, (s, y) < +

then there exist a positive constanand a polynomialP onR x R™ even with respect to the
first variable, such that

flr,z) = P(r,z)eet "),
with degree(P) < %.
In particular, f = 0ford < (n+1).

Lemma 3.2. Let f € L*(dv,) and letd be a real numbex/ > 0. If

f (r, 2)|[-7 () (m, A)Ie\rmueuA)\dV s N
I ([l + el e

then the functiory belongs to the spacg'(dv,,).
Proof. Let f € L?(dv,), f # 0. From the relationg (2/7) and (2.8), we obtain

‘f ks ”g( ) )’ JEDIOEN g (1 VA (10 A

/ /n/ /n ’f r ||y P, M) DNy, (1, ) (1, A) < 0.

(14 |(r, )| + | (s M)
Then for almost everypu, \) € [0, +-00[xR™,

~ f 7" ﬁC ‘€|(TI H(N >\)|
35 , ‘/ / | —dvp (1, ) < +o0.
o2 T+ [ )+ 1Ge )
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In particular, there exist§u, \g) € [0, +0o[xR™\ {(0,0)} such that
f 74 :C €|(7‘$)H(/Ao >‘0)|
, o) # 0 and / / | —dvp (r,z) < 4o0.
()(,UO 0 7& . 1+\TIE\+\(N0,)\0)D ( )
Let i be the function defined 0, +oo[ by
s|(po0,A0)]
h(S) — ¢ 4’
(14 s+ |(ko; Mo)l)
then the functiork has an absolute minimum attained at:

d . .
5o = { ooy — L= [(ko, M)l 1 sy Ao)| > 14 |(10, Ao)|;
0; if |(MO,A0)\ < 1+ (0, Ao)|-

Consequently,
| [ 1o <
0 Rn

Lemma 3.3. Let f € L?(dv,) and letd be a real numbey/ > 0. If

|f (r, @) || (f) (s, ) el 211062 ~
//F+/0 /n (14 |(r,z)| + |0(p, A)])? Avp (1, 2)dYn (11, A) < +00,

then there exists > 0 such that the functior# (f) is analytic on the set
{(t,\) e Cx C" |Imp| < a, [ImA;| < a; Vje{l,...,n}}.
Proof. From the proof of Lemmia 3.2, there exists, \o) € [0, +oo[xR™ \ {(0,0)} such that

[(r,2) || (0, 0)]
| e dva(r, ) < +o0.

(14 [(r, 2)| + (1o, Xo) )7
Let a be a real number such thait (n + 1)a < |(¢o, Ao)|- Then we have

|(r,2)|[(10,20)]
/ / . z)le Sdvy(r, @)
o (L4 |(r, @) + [ (10, Ao) )
:/ |f(r, z)|emFDalra)l
o Jre

Let g be the function defined 0, +oo| by
e5((1o,20)|=(n+1)a)
g(s) =

(1+ s+ (1o, Xo) )"
theng admits a minimum attained at
d . H d
oo —mrma — L e 2ol 1T mssarma > 1+ (o, M)l

K [ N [P 1)

|f 74 :C ‘€|(7‘$ ‘(/LO >‘0)|

o (L[ (r @) ]+ [(r0; Ao) )

Sdvp(r, v) < +oo.

O

el ()| ([(1o;20)[—(n+1)a)

(14 [(r, )] + | (10, Ao) )?

dvy,(r, z) < +o0.

S —
Consequently,

(3.1) / rf<r,x>|e<"+1>a'<m>'dun<r,x)
0 R”

|f /r x |e‘ ||(//'O )\0)‘

n (14 [0, Ao)| + [ (r, z)[)?

dvy,(r, x) < +00.
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On the other hand, from the relatign (2.2), we deduce that fofrall) € [0, +oo[xR"; the
function
(1. 2) — o (rp)e /)

is analytic onC x C" [6], even with respect to the first variable and by the relation (2.3), we
deduce tha¥ (r,z) € [0, +o0o[xR", V(u, A) € C x C",

(3.2) Juzs (rp)e 0| < rImAT m sl
< [l mmul+ 3, m ]

Then the result follows from the relatioris (2.9), (3.L), [(3.2) and by the analyticity theorem.

Corollary 3.4. Let f € L?(dv,), f # 0 and letd be a real numbe/ > 0. If

// / / |f (r, ) [|7 () (s A e EDNOGN gy, () 1) dA (1, A) < +00,
r, n

(L4 [(r ) + 16, M)

then for all real numbers, a > 0, we haven,,.1(A,) > 0, where

(3.3) Ag={(1X) €R X R F(f)(1\) # 0 and| (s, )] > a}.

Proof. Let f be a function satisfying the hypothesis. From Lenima 3.2, the fungtioelongs
to L' (dv,) and consequently the functiaf (f) is continuous ofR x R”, even with respect to
the first variable. Then for all > 0, the set4, given by the relatior (3]3) is an open subset of
R x R".

So, if my41(A,) = 0, then this subset is empty. This means that for eyery\) € R x
R", (1, \)| > a, we haveZ (f)(u, \) = 0.

From Lemm, and by analytic continuation, we deduce ﬁaf) = 0, and by the
inversion formula[(2.11), it follows that = 0. O

Remark 3.

i. Let f be a function satisfying the hypothesis of Corollgry] 3.4, then for all real numbers
a, a > 0, there existg g, o) € [0, +oo[xR"™ such that (o, Ao)| > a and

/OO £ )‘ el ()| (10,20)
r,x
o Jrn (L +[(r,2)| + [ (10, Ao)|)?

ii. Letd ando be non negative real numbets;- o > d. Then the function

dvy,(r,x) < +o0.

eat

t— —
(1+t+o0)?
is not decreasing off), +oo.

Lemma 3.5. Let f be a measurable function d x R™ even with respect to the first variable,
and f € L*(dv,). Letd be real number/ > 0. If

el (ro)[10(u, )] i
I 0o e 05 ) < o

then the functior?.. (f) defined by the relatio4) belongs to the spaégim,, ).
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Proof. From the hypothesis and the relations{2.7) and (2.8), we have
oo r, )| el o106 ) 3
I 1z A v, (1, )50 1. )
r+Jo R"

(1+I(T‘,1‘)|+I9(u, A
AL

|f(7«7 x) |el(w)ll(u7%)|
< +00.

(1 + ()| + (i, M)
In the same manner as the proof of the inequdlity (3.1) in Lefnnja 3.2, theretexisks b > 0
such that

Z(f

an(r7 x)dmn—I—l (:ua >‘>

| [ 10 N 1,) < oo,
0 R™

Consequently, the functiof (f) belongs to the spack'(dv,) and by the inversion formula
for #, we deduce that

fra) = [ [ F 00N () 0. 2

In particular, the functiorf is bounded and

(3.4) [l < |20
By virtue of the relation[(2.74), we get
1 o0 n
W < — S S E 2rd
[Hes (0] < g [ €2 =5 S orar
r" o
= — D27 flry, z)|2ydy.
22F(%)/1 (v = 1)z f(ry, =) |2ydy

Using Minkowski’s inequality for integrals [12], we get:

o9 () L
T [/ [ ([ =05 1s >|2ydy)2dmn+1<r,x>]
s (L L= v nPan o) 2
=2—1<) [Ty wy} [ [ st fimun s, 0]

2 F 2n+1 |:/ /" 2n|f S T | dmn-i-l(s l’):|

Using the relahons{‘(_?}lmA) ard (B.5), we deduce that

pesol,,...- ([ L.

< Kn/ ]f(s,m)\e(”ﬂ)“‘(s’x”dvﬂ(s,x) < +00,
0o Jrn

Vos (1)) :1:)) :

[

IN

’1

1
2

Wn 1 ( (ryx)dmy,1(r, x))
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where

T (i) T n+1 n—1 2
_ o e n_ —(n+1)as
Ky = 25T (27?1) ( QF ( 5 2 Iilzag{(S e MW lloown |
Theorem 3.6.Let f € L?*(dv,); f # 0 and letd be a real numberg > 0.

If
(r, )| |-Z (f) (e, N)| e 20l ) ‘
L L ot ) < s
then

oLk

os (1)) | Z (£ )

el (o)1 (,2)]
X
(L4 [(r, 2)[ + (1, A)])
WhereWanl is the Weyl transform defined by the relati.14).

Sdmy, 1 (r, T)dmy 1 (1, A) < 400

Proof. From the hypothesis, the relatiofs (2.7), [2.8) and Fubini’s theorem, we have

el () [10(, )]
eo [[ [ [ realFzm g v, 2) 50 (11 )

R IRaGIeIE
A

(r, )|l
)| [ e 2, ), )
< +o00.

(L4 {(r ) + (s, )]

i. If d =0, then by the relatiorj (2.13) and Fubini’s theorem, we get

6 J, L /n
| LI
</ /né‘(f)w y

However, by|(2.12), we deduce that for @il ) € [0, +oco[xR",

6N g, (v, 2)dimn (1, )

n1 r:z:Hﬁ ), A)

( / [ Hacs (1)) 0 x>) I (1 N)

(/OOO |£(r, 2)| s () II(AM)|>(7‘,x)dyn(r,x))dmnﬂ(ﬂj)\)‘

(3.8) Rt (elCMENN (7 ) < D]

Combining the relation$ (3.6], (3.7) arjd (3.8), we deduce that

J. Inequal. Pure and Appl. Mathl0(2) (2009), Art. 38, 22 pp. http://jipam.vu.edu.au/
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ii. Ford > 0, let B; = {(r,z) € [0, +00[xR™; |(r,z)| < d}. We have

o W (), @) lr )
/0 L 170 ’/ / T+ + e e )dmn e )

~ Wt (1f]) (r, )l 1)

= //Bc ‘ﬁ‘(f) 2k (/ / (1 +| rox)| 4+ [(p, N)])? dmy (7, x)) dmin 1 (p, A)
Wn (1FD( \rw)\I(MA)I

—l—//Bd F(f (/ /n T, x)e dmy, 1 (r, x)) dmyp1(p, A).

1+\ )|+ (s A)])?
From the relation[(2.13), we deduce that

) Woct (|£1)(r, 2l
(3.9 //B ‘ﬁ(f) 1y A </ /n —i—] RS TFRTSVIIE dmy,.1(r, $)> A1 (g, \)

[ ol [ e

@ D] p J \
oot (T T ) 2 )

However, from the relatiorj (2.12) and ii) of Remafk 3, we deduce that fdpal) € Bj, we
have

HIESIN o)l (u )]

19 o () ¢ S T
Combining the relation$ (3.6], (3.9) and (3.10), we get

//Bg }j(f) A (/ /n WI Jlr ||J:”| xr|ii|(:)|l)(7;)dmn+l(r 95)) dmy 11, A)
Y

- |f T, x |€‘ TJ*’ H(U)\)| )
F(f —dvy (T, dmy, ;A
<[ [l#v (/ L G ) dm)
< +00.
We have

|7/n L (f)(r, z) ’el(m)ll(#k)\
, dmy,1(r, x)dm, S A
:u ’//Bd 1+|7’.T|+’,u,)> +1( ) +1(/L )

i) [,

Wnl

/I, 170
SRV

< e mn+1(Bd)||f( )Hoovn

By the relations[(2.70) an@d (2]15), we deduce that

[l J7v

W L(f)(r,x) dmnﬂ(r x))

H1mn+1

Wi ( ol
ﬂ: , ’// dmy,1(r, x)dm, S A
e, 1+|m|+|m e e D A

< ed2mn+1(Bd)Hinun < +oo.
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By the relation[(2.13), we get

Jh.120

el (mo)[[ (1)

pentr)ra) d o
// 1—i-|rgu|—|-|('u7 A Mpr1(ry ) | dmgq (p, N)

X W (11) (r, )l )
ﬁ ) ‘/ / 15 r,x dmn T, T dmn r,T
W] J J T T e 0 D i ()

//Bd
w[ ([ [ 10
el M)l

x%nl 1g<(-,-) | (r,x)dv,(r,z) | dmg, 1 (p, A).
(T et )) ) et
However, by ii) of Remark]3 and the relatidn (2.10), we deduce that fop.aN) € By:

el Gl edl(rz)|

Hnt <<1+|< N |<u,A>|>dlB§("')> 0 < G ey apa )

Thus,
(% . ))ew(mnw,w
// 1+|M|+I(u e e (@) | dnnga (2, A)

(3.11) / / F(f
By
edl(r:z)]

< 1% n B Y d n 9 *
S homnss (B0 [ 1500 g
On the other hand, from i) of Remaﬂ< 3, there exigts, \o) € [0, +oo[xR™, |(1o, Ao)| > d

such that S
ra)llluo 2ol £ (7, )|
Sdvy (1, ) < 400.
[ / T 1o+ (o, ) )

Again, by ii) of Remark B, we have

‘@1

i)
@12 ] 1ot

< |21 (120,20)] ]
< N T T e ) <+

The relations[(3.11) and (3.12) imply that

)% ‘ )| eltralioa
J 5 d n , d n ’>\ < ’
//Bd// ‘ ) (g, A ‘ _|_| rx H"(M, e M1 (r, ) | dmpi1(p, A) < 400

and the proof of Theorem 3.1 is complete. O

Theorem 3.7(Beurling Hormander foeZ). Let f be a measurable function di x R", even
with respect to the first variable and such thae L?(dv,,).
Letd be a real numbeg > 0. If

- () el ~
TR e e g ) < 0

then
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eFord<n+1, f=0.
e For d > n + 1, there exist a positive constaatand a polynomialP onR x R"™ even

with respect to the first variable, such that
f(r,0) = Pra)e 0
with degree(P) < w.

Proof. Let f be a function satisfying the hypothesis. Then, from Thedrein 3.1, we have
(r) |1 (kM)

@ [ ] L
T T

On the other hand, from Propositipn 2.1, Lenjma 3.2 and Lemma 3.3, we deduce that the func-
tion #._.(f) belongs to the spade' (dmy1.1) N L?(dmi,.1) and by ), we have

nl ’I“l'HJ IU/, )

Sdmy 1 (1, 2)dmy, o (p, A) < oo,

F(f) = Mt (Fapa ().
Substituting into[(3.13), we get
(r) |1 (s M)

LLL L
(1+|('f’,x)|+|(u, M

Applying Theorel wherf is replaced by/%._. (f), we deduce that

o Ifd<n+1, #uu(f)=0andby RemarHZ, we have= 0.
e If d > n+ 1, there existt > 0 and a polynomiat) onR x R", even with respect to the
first variable such that

W (f)(r,2) = Q(r, w)e "1+l

2 2
= E ak7ar2kl’ae a(ré+|z| )’ x% = gj‘lll . x%"

2k+|al<m

In particular, the functior%%l (f) liesinS.(R x R™) and by RemarBZ, the functigh
belongs taS,(R x R") and we have

f = WL—ll (Q(T, J,;)efa(r%\acIQ))‘
Now, using the relatiorj (2.17), we obtain
(314)  f(r,2) =# 5 (Q(t y)e ) (r, )

n 1 8 [g]+1 t2 2
=(-1)iz* Fa-a4 (@) Q(t,y)e I (1, 2)

(3141 O\ okt )
=B Y acaFlyoga | o3 (t7y%e )| ().

2k+|a|<m

Yo (1)) [ A (W 2(N) ()|

S A1 (7, 2)dmy g1 (1, A) < +oo.
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However, for alll € N,

l
(3.15) (%) (£ e )
min(l,k) :
_ Z Clj 27kl (_2a)k_jt2(k—j) yae—a(t2+|y\2)
— Nl
= k=)

and for allb > 0,

k .
o —a(t? 2 1 -F(b—i-k—j) : o —a(r24|e|?
(316)  Fy(*ty e ) (ra) = gy (Z%W) cem

where the transfornk;, is defined by the relatior (2.L8).
Combining the relations (3.114), (3115) and (3.16), we deduce that
flrz) = P(r,x)e "),

where P is a polynomial, even with respect to the first variable dngree(P) = degree(Q).
O

4. APPLICATIONS OF THE BEURLING -HORMANDER THEOREM

This section is devoted to giving some applications of the Beurling-Hoérmander theorem for
the spherical mean operator. More precisely, we prove a Gelfand-Shilov theorem for the Fourier
transform.# and establish a Cowling Price type theorem for this transform.

Lemma 4.1. Let P be a polynomial ofR x R"™; P # 0 with degree(P) = m. Then there exist
two positive constantd andC' such that

Vi> A, ot) = |P(tw)|do,(w) > Ct™,
Sn
wheredo,, is the surface measure on the unit sph&feof R x R".

Proof. Let P be a polynomial oiR x R", P # 0 anddegree (P) = m. Then we have

m

30(15)2/”2

k=0

wherea;,, 0 < k < m are continuous functions o$* anda,,, # 0.
Then the functionp is continuous on0, +oo[ and by the dominated convergence theorem,
we have

(4.1) o(t) ~ Cpt™  (t — +00),

ap(w)t*| do, (w),

where
Chn, :/ ‘am(w)’dan(w) > 0.
Now, by (4.1), there existd > 0 such that

Vit>A; p(t) > %tm.
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Theorem 4.2(Gelfand-Shilov) Letp, ¢ be two conjugate exponenis, ¢ €]1, +oo[. Letn, &
be two positive real numbers such tiggt> 1.
Let f be a measurable function dd x R", even with respect to the first variable such that

f e L¥(dw).
If
spwxnp

/ /n P dvy(r,z) < 400
and

7 Ve et

(1, \) < +00, d >0,
S St

then

i. Ford <™ f=0.
ii. Ford > !, we have:
o f=0foré&n > 1;
e f=0for&n=1andp # 2;
o f(r,x) = P(r,z)e*+l:") for ¢n = 1 andp = ¢ = 2, wherea > 0 and P
is a polynomial onR x R™ even with respect to the first variable, witlegree
(P) < d— n+1

Proof. Let f be a function satisfying the hypothesis. Sigge> 1, by a convexity argument we
have

rNZ A ewliow v (7,
42 //ﬁ/ /n 1+|Tx|+|9 M7/\))2d dvy, (1, x)dn (p, )
(
|

[fr )| F ()M im0 -
(¥ s dn , dn 7)\
//F+/ /n1+|7’x TS U (1, ) dn (12, A)
F( o 10 (u0)|? f”'(”)'p
, dvy,(r,
//er +’9/L> )‘d :“ / /n )d V(TZL“)

< +00.

Then from the Beurling-Hérmander theorem, we deduce that

i. Ford <™ f=o0.

ii. Ford > ”T“ there exist a positive constamtand a polynomialP onR x R", even with
respect to the first variable such that

(4.3) flr,x) = P(r,z)e 0"
with degree(P) < 2=+ "and using standard calculus, we obtain
(4.4) F () N) = Qu, e~ w9,

whereQ is a polynomial orR x R", even with respect to the first variable, withgree (Q)) =
degree(P).
On the other hand, from the relatiofs (2.7), (2.8).](4[2)] (4.3) (4.4), we get

/ /n/ /n |P1:ZI|; (i 2%’;(; H;T)An
~(#2+171%)

X e da e_a(r2+|x|2)dyn(7’, z)dmy1 (g, \) < +00.
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So,
> ©(t) Y(p) Entp —at?—2> 2
4.5 NP4 g t=" p" dtd
( ) /0 /n (1_'_t)d<1_|_p>d€ e 4 p p<+OO,
where
o(t) = s | P(tw)||w|"do, (w)
and

v(p) = | Q(pw)|don(w).

Sn
e Suppose thain > 1. If f £ 0, then each of the polynomial? and( is not identically
zero. Letm = degree(P) = degree(Q).
From Lemma 4.1, there exist two positive constatisndC' such that

V> A, p(t) > Ct"

and
Vo> A, Y(p) = Cp™
Then the inequality (4]5) leads to

(4.6) A e S dtdp < +o0
' D P '
Lete > 0 such that = n¢ — ¢ > 1. The relation|[(4]6) implies that
4.7) /OO /OO c ecﬂte’“ﬁe’%dtdp < 400.
a Ja A+ +p)

However, for allt > A > ¢ andp > A, we have
ecrt esA2
A+ 01107 = (11 A
and by [4.7), it follows that

00 o] 2
(4.8) / / et~ o~ dtdp < +o00.
A A
Let F(t) = [ et dp, then the functiornf” can be written as
ac’t? > _e2 _az ‘ cAs—ac?s?
F(t)=e e dadp+2aye 1 [ e ds | .
A 0
In particular,
© 2
F(t) > e“cth/ e~ dp.
A
Thus,

oo 2
/ / T dtdp >/ e 1>t2dt/ e fadp = +oo
A

because > 1. This contradicts the relatiop (4.8) and shows that 0.
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e Suppose thagn = 1 andp # 2.
In this case, we have > 2 or g > 2.
Suppose thaj > 2. Then from the second hypothesis and the relations (2.7), (2.8) and

(4.4), we get

¢ e 4ae q
4.9 pld )
(4.9) / BT p < 400

If f # 0, then the polynomialy is not identically zero, and by Lemnja #.1 and the
relation [4.9), it follows that there exists > 0 such that

2 nipd

/ e dae a J L
———dp < +o0,
a (1+p)e

which is impossible becauge> 2.
The proof of Theorer 4]2 is thus complete. O

Theorem 4.3(Cowling-Price for spherical mean operatdcetn, £, w; andws, be non negative

real numbers such thaj¢ > }L Let p, ¢ be two exponentss, ¢ € [1,4+o00] and let f be a

measurable function oR x R", even with respect to the first variable such thiat L2(dv,,).
If

e§|(7)|2f
(4.10) —_— < +00
1G]
and
‘11 00| _
R CEaTen /i)
then

i. Forén >, f=0.
ii. Forén = 21; there exist a positive constamtand a polynomialP onR x R", even with
respect to the first variable such that

f(r,0) = P(r,z)e ),

Proof. Let p’ andq’ be the conjugate exponentsgofespectively.
Let us pickd,, d, € R such thatl; > 2n+ 1 andd; > n+ 1. Then from Hdélder’s inequality
and the relations (4.10) anld (4}11), we deduce that

00 | f(r, x)|eflCm2)?
I A O e
eSlCP f H 1
< ffl—d
— G D SOOI

’t}\‘,d

Sl f dvy(r,x
 CEACPDR (/ /n1+|TI ) =
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an

|€n\6(u,x)|2 )
//I‘”r 1 —+ ‘6 |>“’2+d2/q d’Yn(M’ )\)
en0CAI? ‘

o~ 1
e =’ Y

‘M H(1+ 10(-, )] )4/

s In

;

q"5Yn

By the relation [(Z]?), we obtain
) (o, N) e
4.13 A (po, A
@13) [ R e
o2 </ / A1 (1, ) )J/
< +00.
(1+|6(a)|) n 1+| :ua )d2
Letd > max <w1 + 5 w2+ ‘é—? ”“) then from the relations (4.12) and (4.13), we have

|e§| (ra)l?
/ / L dvy,(r, z) < +00

) (1, X) |emOks NE
[ T e ) < 4o

Then the desired result follows from Theorem| 4.2. 0

and

Remark 4. The Hardy theorem is a special case of Thedrerm 4.2, whery = +oc.
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