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ABSTRACT. Assuming that a “derivative” ratioρ := f ′/g′ of the ratior := f/g of differentiable
functionsf andg is strictly monotonic (that is,ρ is increasing or decreasing), it was shown in
previous papers that thenr can switch at most once, from decrease to increase or vice versa.
In the present paper, it is shown that, ifρ is non-strictly monotonic (that is, non-increasing or
non-decreasing), thenr can have at most one maximal interval of constancy (m.i.c.); on the other
hand, any one m.i.c. of a given derivative ratioρ is the m.i.c. of an appropriately constructed
original ratior.
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1. I NTRODUCTION

Let f andg be differentiable functions defined on the interval(a, b), where−∞ ≤ a < b ≤
∞, and let

r :=
f

g
and ρ :=

f ′

g′ .

It is assumed throughout thatg andg′ do not take on the value zero anywhere on(a, b). The
functionρ may be referred to asa derivative ratiofor the “original” ratio r. In [16], general
“rules" for monotonicity patterns, resembling the usual l’Hospital rules for limits, were given.
In particular, according to [16, Proposition 1.9 and Remark 1.14], one has the dependence of
the monotonicity pattern ofr

(
on (a, b)

)
on that ofρ (and also on the sign ofgg′) as given by

Table 1.1. The vertical double line in the table separates the conditions (on the left) from the
corresponding conclusions (on the right).

Here, for instance,r means that there is somec ∈ [a, b] such thatr (that is,r is non-
increasing) on(a, c) andr (r is non-decreasing) on(c, b); in particular, ifc = a thenr
simply means thatr on the entire interval(a, b); and if c = b thenr means thatr on
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ρ gg′ r

> 0

> 0

< 0

< 0

Table 1.1: "Non-strict" general rules for monotonicity.

(a, b). Thus, if one also knows whetherr or r in a right neighborhood ofa and in a left
neighborhood ofb, then Table 1.1 uniquely determines the “non-strict” monotonicity pattern
of r. (The “strict” counterparts of these rules, with terms “increasing” and “decreasing” in
place of “non-decreasing” and “non-increasing” respectively, also hold, according to the same
Proposition 1.9 of [16].)

Clearly, the stated l’Hospital-type rules for monotonicity patterns are helpful wherever the
l’Hospital rules for limits are so, and even beyond that, because these monotonicity rules do
not require that bothf andg (or either of them) tend to 0 or∞ at any point. (Special rules for
monotonicity, which do require that bothf andg vanish at an endpoint of(a, b), were given, in
different forms and with different proofs, in [9, 14, 3, 15, 25].)

Thus, it should not be surprising that a wide variety of applications of the l’Hospital-type
rules for monotonicity patterns were given: in areas of analytic inequalities [10, 6, 15, 16,
22, 1, 13, 31, 32, 33, 34, 35]; approximation theory [17]; differential geometry [8, 9, 11, 24],
information theory [15, 16]; (quasi)conformal mappings [2, 3, 4, 5]; probability and statistics
[14, 16, 17, 20, 26, 27, 28, 29], including the very recent papers [26, 27, 28, 29], where these
mononicity rules have become a standard tool. (For the references to [13, 31, 32, 33, 34, 35] I
thank a referee.)

The mentioned rules for monotonicity, both general and special, are potentially helpful when
f ′ or g′ can be expressed simpler than or similarly tof or g, respectively. Such functionsf
andg are essentially the same as the functions that could be taken to play the role ofu in the
integration-by-parts formula

∫
u dv = uv −

∫
v du; this class of functions includes algebraic,

exponential, trigonometric, logarithmic, inverse trigonometric and inverse hyperbolic functions,
and as well as non-elementary “anti-derivative" functions of the formx 7→ c +

∫ x

a
h(u) du or

x 7→ c +
∫ b

x
h(u) du.

“Discrete” analogues, forf andg defined onZ, of the l’Hospital-type rules for monotonicity
are available as well [23].

In this paper, we describe different facets of the relation of the (maximal) interval(s) of con-
stancy of the original ratior with those of the derivative ratioρ. In particular, it may seem quite
surprising that, as it turns out, the assumption of only non-strict monotonicity ofρ results nec-
essarily in a significant degree of strictness on the monotonicity pattern ofr; namely,r can then
have at most one maximal interval of constancy. Thus, new insight into the nature of the general
rules for monotonicity is provided, which complements the previously made observation (see
e.g. [25, paragraph around (5.1)]) that “the relation between the monotonicity patterns ofr and
ρ is not reversible in any reasonable sense”.

The question of strictness of inequalities plays a prominent role in the fundamental mono-
graph by Hardy, Littlewood and Pólya [12]. This question has been of significant interest in
various problems; e.g. see [30, 7, 19, 18]; in particular, the investigation of the problem of
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strictness in [19] led to an extension [18] of the well-known theorem by P. Hall in combinato-
rial theory; other extensions of P. Hall’s theorem were subsequently given in [21].

2. RESULTS

In what follows, let us always assume thatρ is (not necessarily strictly) monotonic (that is,
or ) on (a, b).

Let us say that an intervalI ⊆ (a, b) is aninterval of constancy (i.c.)of a functionh : (a, b) →
R if I is of nonzero length andh is constant onI. If an i.c.I is not contained in any other i.c.,
let us say thatI is amaximal i.c. (m.i.c.)It is easy to see that any i.c. is contained in a unique
m.i.c. (which is simply the union of all i.c.’s containing the given i.c.).

It is easy to see that every i.c. ofr is an i.c. ofρ. One might think that, ifρ has more than one
m.i.c., then this can also be the case for the original ratior. It may therefore be unexpected that
the opposite is true, and even in the following strong sense.

Proposition 2.1. The rules given by Table 1.1 can be strengthened as shown in Table 2.1.

ρ gg′ r

> 0

> 0

< 0

< 0

Table 2.1: Improved “non-strict” general rules for monotonicity.

Here, for instance,r means that there is a subinterval[c, d] ⊆ [a, b] (possibly of length0)
such thatr′ < 0 on (a, c), r is constant on(c, d), andr′ > 0 on (d, b).

Why is this proposition true? The key notion here is that of the function

ρ̃ := r′ g2

|g′|
,

introduced in [16] and further studied in [25]. The key lemma concerningρ̃ [25, Lemma 1 and
Remark 4] states, as presented in Table 2.2 here, that the monotonicity pattern ofρ̃ is the same
as that ofρ if gg′ > 0, and opposite to the pattern ofρ if gg′ < 0.

ρ gg′ ρ̃

> 0

> 0

< 0

< 0

Table 2.2: The monotonicity patterns ofρ and ρ̃ mirror each other

From this relation betweenρ andρ̃, the rules given by Table 1.1 can be easily deduced, since

sign(r′) = sign ρ̃.
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A simple but important observation is that the derivative ratioρ and its counterpart̃ρ are
continuous functions [25, Remark 4]. Since the ratior is differentiable, it is continuous as well.
Therefore, any m.i.c.I of r or ρ or ρ̃ is closed (as a set) in(a, b); that is,I has the form[c, d]
or (a, c] or [d, b) or (a, b), for somec andd such thata < c < d < b. Moreover, it is seen from
Table 2.2 that the m.i.c.’s of̃ρ are the same as those ofρ, because any real functionh is constant
on an intervalI if and only if h is both non-decreasing and non-increasing onI.

Proposition 2.1 now follows easily.

Proof of Proposition 2.1.It suffices to consider only the first line of Table 2.1
(
since the other

three lines can then be obtained by “vertical” reflectionf ↔ −f and/or “horizontal” reflection
x ↔ −x

)
. So, assume thatρ on (a, b) and gg′ > 0. Then ρ̃ on (a, b). If ρ̃ > 0 and

hencer′ > 0 on the entire interval(a, b), let c := d := a, to obtain the conclusion thatr
on (a, b). If ρ̃ < 0 and hencer′ < 0 on (a, b), let c := d := b. It remains to consider the
case when the sign of̃ρ takes on at least two different values (of the set{−1, 0, 1} of all sign
values). Then, since the functioñρ is non-decreasing and continuous on(a, b), the level-0 set
`0(ρ̃) := {u ∈ (a, b) : ρ̃(u) = 0} of ρ̃ must be a non-empty interval

(
which in fact must be an

m.i.c. of ρ̃ and hence a set closed in(a, b)
)
; in this case, takec andd to be the left and right

endpoints, respectively, of the interval`0(ρ̃) (at that, it is possible thatc = a and/ord = b).
Thenρ̃ < 0 and hencer′ < 0 on (a, c); ρ̃ = 0 and hencer′ = 0 andr = const on(c, d); and
ρ̃ > 0 and hencer′ > 0 on (d, b). �

By Proposition 2.1,r can have no more than one m.i.c. On the other hand, one has

Proposition 2.2. If r has an m.i.c.I, thenI must be an m.i.c. ofρ and ρ̃ as well.

Proof. Suppose thatI is the (necessarily unique) m.i.c. ofr, so thatf
g

= r = K on I for some
constantK. Then obviouslyρ = K andρ̃ = 0 on I, so thatI is an i.c. ofρ andρ̃. Let thenJ

be the unique m.i.c. ofρ such thatJ ⊇ I, whencef ′

g′ = ρ = K1 on J for some constantK1,

and so,f = K1g + C andr = K1 + C
g

on J , and hence onI, for some constantC. But r is
constant on the nonzero-length intervalI, while g is not constant onI (becauseg′(x) 6= 0 for
anyx ∈ (a, b)). It follows thatC = 0 and thusr = K1 on J . Finally, sinceI is an m.i.c. ofr
andJ ⊇ I, one concludes thatJ = I, and so,I is an m.i.c. ofρ and hence of̃ρ. �

We complete the description of the relation between the m.i.c.’s ofr andρ by observing that
any one m.i.c.I of a given derivative ratioρ is the m.i.c. of an appropriately constructed original
ratio r (which must, in view of Proposition 2.1, depend on the choice ofI):

Proposition 2.3. For

• any differentiable functiong : (a, b) → R such thatgg′(x) 6= 0 for eachx ∈ (a, b),
• any (not necessarily strictly) monotonic continuous functionρ : (a, b) → R, and
• any m.i.c.I of ρ

there exists a differentiable functionf : (a, b) → R such thatf
′

g′ = ρ and the only m.i.c. of

r := f
g

is I.

Proof. Let g, ρ, andI satisfy the conditions listed in Proposition 2.3, so thatρ = K on I for
some constantK. Note that the condition ong implies that eitherg′ > 0 on the entire interval
(a, b) or g′ < 0 on (a, b) (see e.g. [25, Remark 3]), so thatg is monotonic and hence of locally
bounded variation on(a, b). Take any pointz in the intervalI (which is an i.c. and hence
non-empty) and definef by the formula

f(x) := Kg(z) +

∫ x

z

ρ(u) d g(u)
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for all x in (a, b), where the integral may be understood in the Riemann-Stieltjes sense, with the
convention that

∫ x

z
:= −

∫ z

x
if x < z. Becauseρ is continuous andg is differentiable, it follows

that for the so defined functionf one hasf
′

g′ = ρ; moreover,f = Kg on I, so thatI is an i.c. of
r. But any i.c. ofr is also an i.c. ofρ, andI was assumed to be an m.i.c. ofρ. It follows thatI
is anm.i.c. (and hencethe onlym.i.c.) ofr. �

Let us summarize our findings as

Theorem 2.4.
• The set of all m.i.c.’s of̃ρ is the same as that ofρ.
• The “original” ratio r can have at most one m.i.c., and its m.i.c. must also be an m.i.c.

of ρ and thus of̃ρ; moreover, then the m.i.c. ofr is the level-0 set ofρ̃.
• Any one m.i.c. of a given derivative ratioρ is the m.i.c. of an appropriately constructed

original ratio r.

This result can be illustrated by

Example 2.1. Let the derivative ratioρ : (0,∞) → R for a ratio r = f/g be given by the
formula

ρ(x) := min(x− k, k + 1) =

{
x− k if 2k ≤ x < 2k + 1,

k + 1 if 2k + 1 ≤ x < 2k + 2,

wherek := bx
2
c. Let g(x) := x + 1 for all x ∈ (0,∞). Then, for the formulaρ = f ′/g′ to hold,

the corresponding functionf : (0,∞) → R must be given by

f(x) = fc(x) := c +

∫ x

0

ρ(u) g′(u) du

=

{
c + 1

2

(
(x−m)2 + m(m + 1)

)
if 2m ≤ x < 2m + 1,

c + (m + 1)(x−m− 1
2
) if 2m + 1 ≤ x < 2m + 2,

wherem := bx
2
c andc is any real number (which obviously equalsfc(0)). Letting nowrc :=

fc/g, one sees that the derivative ratiof ′
c/g

′ of rc equals the given functionρ, for every value
of c. This derivative ratio,ρ, is nondecreasing (and continuous) on(0,∞), with infinitely many
m.i.c.’s: [1, 2], [3, 4], . . . . In contrast,rc may have at most one m.i.c. More specifically,rc has
exactly one m.i.c.,[2m + 1, 2m + 2] (which is also one of the infinitely many m.i.c.’s ofρ), if
c = c2m+1 := 1

2
(m + 1)(2m + 3) – the root of the equationrc(2m + 1) = ρ(2m + 1), for each

m = 0, 1, . . . ; andrc has no m.i.c. for any real value ofc different from all thecm’s. Figure 2.1
shows the graphs ofρ and the “original” ratiosrc, for the valuesc = −1, 0, 3

4
, 3

2
, 3, and5. For

these selected values ofc, the ratiorc has exactly one m.i.c. –[1, 2] or [3, 4] – only if c = 3
2

= c1

or c = 5 = c3, respectively; andrc has no m.i.c. ifc = −1, 0, 3
4
, or 3.

To visualize this example in particular and the monotonicity rules in general, one can imagine
a tank with the solution of a liquid in water. Initially, at timex = 0, the amounts in the tank of
the liquid and water (not necessarily measured in the same units) arefc(0) = c andg(0) = 1,
respectively, so that the relative concentrationrc = fc/g of the liquid (with respect to water) is
initially rc(0) = c. The liquid and water are added to the tank continuously through a pipe so
that water is added at a constant rate1. The relative concentrationρ of the liquid in the pipe
is initially 0 (that is,ρ(0) = 0); moreover,ρ increases at a constant rate1 in each of the “odd”
unit time intervals[0, 1], [2, 3], . . . and remains constant in each of the “even” unit time intervals
[1, 2], [3, 4], . . . .

Then for any strictly positive valuec = rc(0), the relative concentrationρ of the liquid in
the pipe is initially less than the relative concentrationrc of the liquid in the tank, so thatrc
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Figure 2.1: Graphs ofρ andrc: ρ, thick, solid; rc, dashed, with dash length decreasing inc.

will initially be decreasing. However, sinceρ is non-decreasing to∞ in time,ρ will eventually
overtakerc, and the latter will then be forever strictly increasing

(
after possibly staying constant,

together withρ, over the unit time interval[2m + 1, 2m + 2] for somem = 0, 1, . . . , provided
that c = 1

2
(m + 1)(2m + 3)

)
. However, if the initial relative concentrationc in the tank is0

(or, somehow, negative), then the relative concentrationrc in the tank will be always strictly
increasing, yet never reaching the relative concentrationρ in the pipe (cf. [16, Proposition 1.18]
or identity [25, (1.1)]).
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