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ABSTRACT. Assuming that a “derivative” ratip := f'/¢’ of the ratior := f/g of differentiable
functions f andg is strictly monotonic (that isp is increasing or decreasing), it was shown in
previous papers that thencan switch at most once, from decrease to increase or vice versa.
In the present paper, it is shown thatpifs non-strictly monotonic (that is, non-increasing or
non-decreasing), thencan have at most one maximal interval of constancy (m.i.c.); on the other
hand, any one m.i.c. of a given derivative rapigs the m.i.c. of an appropriately constructed
original ratior.
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1. INTRODUCTION

Let f andg be differentiable functions defined on the inter@alb), where—oco < a < b <
oo, and let
f !/

r:== and p:="—.
g g

It is assumed throughout thatand ¢’ do not take on the value zero anywhere(anb). The
function p may be referred to as derivative ratiofor the “original” ratior. In [16], general
“rules” for monotonicity patterns, resembling the usual I'Hospital rules for limits, were given.
In particular, according to [16, Proposition 1.9 and Remark 1.14], one has the dependence of
the monotonicity pattern aof (on (a, b)) on that ofp (and also on the sign afy’) as given by
Table[1.1. The vertical double line in the table separates the conditions (on the left) from the
corresponding conclusions (on the right).

Here, for instance; -\~ means that there is somec [a, b] such that- (that is,r is non-
increasing) on(a, c¢) andr ~ (r is non-decreasing) ofr, b); in particular, ifc = a thenr-~/
simply means that ~ on the entire intervala, b); and if ¢ = b thenr\~ means that -\ on
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Table 1.1: "Non-strict" general rules for monotonicity.

(a,b). Thus, if one also knows whether or - in a right neighborhood of and in a left
neighborhood ob, then Tablg 1]1 uniquely determines the “non-strict” monotonicity pattern
of r. (The “strict” counterparts of these rules, with terms “increasing” and “decreasing” in
place of “non-decreasing” and “non-increasing” respectively, also hold, according to the same
Proposition 1.9 of [16].)

Clearly, the stated I'Hospital-type rules for monotonicity patterns are helpful wherever the
I'Hospital rules for limits are so, and even beyond that, because these monotonicity rules do
not require that botlf andg (or either of them) tend to 0 ax at any point. (Special rules for
monotonicity, which do require that boghandg vanish at an endpoint @f., b), were given, in
different forms and with different proofs, inl[9, 14, 3, 15] 25].)

Thus, it should not be surprising that a wide variety of applications of the I'Hospital-type
rules for monotonicity patterns were given: in areas of analytic inequalities [10,/ 6, 15, 16,
22,111,013/ 31, 32, 33, 34, B5]; approximation theory [17]; differential geometry [8,/9, 11, 24],
information theory([15, 16]; (quasi)conformal mappings![2,3,]4, 5]; probability and statistics
[14,116,17] 20, 26, 27, 28, 29], including the very recent papers [26, 27, 28, 29], where these
mononicity rules have become a standard tool. (For the references to [13) 31} 132,/33, 34, 35] |
thank a referee.)

The mentioned rules for monotonicity, both general and special, are potentially helpful when
f' or ¢’ can be expressed simpler than or similarlyfter g, respectively. Such functiong
andg are essentially the same as the functions that could be taken to play the roie tife
integration-by-parts formuld udv = uwv — [ v du; this class of functions includes algebraic,
exponential, trigonometric, logarithmic, inverse trigonometric and inverse hyperbolic functions,
and as well as non-elementary “anti-derivative" functions of the ferm ¢ + [ h(u) du or
T c+ f; h(u) du.

“Discrete” analogues, fof andg defined or#, of the I'Hospital-type rules for monotonicity
are available as well [23].

In this paper, we describe different facets of the relation of the (maximal) interval(s) of con-
stancy of the original ratio with those of the derivative ratie. In particular, it may seem quite
surprising that, as it turns out, the assumption of only non-strict monotonicpyegults nec-
essarily in a significant degree of strictness on the monotonicity pattetrmamely, can then
have at most one maximal interval of constancy. Thus, new insight into the nature of the general
rules for monotonicity is provided, which complements the previously made observation (see
e.g. [25, paragraph around (5.1)]) that “the relation between the monotonicity patteragaf
p is not reversible in any reasonable sense”.

The question of strictness of inequalities plays a prominent role in the fundamental mono-
graph by Hardy, Littlewood and Pdélya [12]. This question has been of significant interest in
various problems; e.g. sele [30,[7,) 19] 18]; in particular, the investigation of the problem of
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strictness in[[19] led to an extensian [18] of the well-known theorem by P. Hall in combinato-
rial theory; other extensions of P. Hall's theorem were subsequently givenlin [21].

2. RESULTS

In what follows, let us always assume thds (not necessarily strictly) monotonic (that ig,
or -\ on(a,b).

Let us say that an intervalC (a, b) is aninterval of constancy (i.c.9f a functionk: (a,b) —
R if I is of nonzero length and is constant orl. If ani.c. [ is not contained in any other i.c.,
let us say thaf is amaximal i.c. (m.i.c.)lt is easy to see that any i.c. is contained in a unique
m.i.c. (which is simply the union of all i.c.’s containing the giveni.c.).

Itis easy to see that every i.c. ofs an i.c. ofp. One might think that, ip has more than one
m.i.c., then this can also be the case for the original ratibmay therefore be unexpected that
the opposite is true, and even in the following strong sense.

Proposition 2.1. The rules given by TabJe 1.1 can be strengthened as shown in[Taple 2.1.

99 |
>0 \/
>0 /\
/M
\/

<0
<0

I e

Table 2.1: Improved “non-strict” general rules for monotonicity.

Here, for instancer\ / means that there is a subintervial d| C [a, b] (possibly of lengttt)
such that’ < 0 on(a, c), r is constant or{c, d), andr’ > 0 on(d, b).

Why is this proposition true? The key notion here is that of the function

p=1 9—2

9|’
introduced in[[16] and further studied in [25]. The key lemma concerpifth, Lemma 1 and
Remark 4] states, as presented in Tabl¢ 2.2 here, that the monotonicity paiidstioé same

as that ofp if g¢’ > 0, and opposite to the pattern pif g¢’ < 0.

:

LS| ™

99

>0
>0
<0
<0

S IRU RS I

Table 2.2: The monotonicity patterns@and p mirror each other

From this relation betweemandp, the rules given by Table 1.1 can be easily deduced, since

sign(r') = sign p.
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A simple but important observation is that the derivative ratiand its counterparf are
continuous functions [25, Remark 4]. Since the ratis differentiable, it is continuous as well.
Therefore, any m.i.cl of r or p or p is closed (as a set) ifw, b); that is, I has the formc, d|
or (a,c] or[d,b) or (a,b), for somec andd such thats < ¢ < d < b. Moreover, it is seen from
Tablg 2.2 that the m.i.c.’s gfare the same as thosegtbecause any real functidnis constant
on an intervall if and only if & is both non-decreasing and non-increasing on

Propositiorj 2.1 now follows easily.

Proof of Proposition 211t suffices to consider only the first line of Ta2(.§jnce the other
three lines can then be obtained by “vertical” reflectfor- — f and/or “horizontal” reflection
z < —zx). So, assume that~ on (a,b) andgg’ > 0. Thenj~ on (a,b). If 5 > 0 and
hencer’ > 0 on the entire intervala, b), let ¢ := d := a, to obtain the conclusion that\ /
on (a,b). If p < 0 and hence’ < 0 on (a,b), letc := d := b. It remains to consider the
case when the sign gftakes on at least two different values (of the §etl, 0,1} of all sign
values). Then, since the functignis non-decreasing and continuous (@nb), the leveld set
lo(p) == {u € (a,b): p(u) = 0} of p must be a non-empty intervévhich in fact must be an
m.i.c. of 5 and hence a set closed (i, b)); in this case, take andd to be the left and right
endpoints, respectively, of the intervglp) (at that, it is possible that = « and/ord = b).
Thenp < 0 and hence’ < 0 on (a,c); p = 0 and hence’ = 0 andr = const on(c, d); and
p > 0and hence’ > 0on(d,b). O

By Propositior} 2.[ly can have no more than one m.i.c. On the other hand, one has
Proposition 2.2. If » has an m.i.cI, then/ must be an m.i.c. gf and p as well.

Proof. Suppose thai is the (necessarily unique) m.i.c. ofso that§ =r = K on/[ for some
constantk’. Then obviouslyyp = K andp = 0 on I, so that/ is an i.c. ofp andp. Let thenJ
be the unique m.i.c. of such that/ D I, Whenceg—f = p = K; onJ for some constank,
and so,f = Kyg+ C andr = K; + % on J, and hence od, for some constant’. Butr is
constant on the nonzero-length intervalwhile g is not constant o (becausey’(x) # 0 for
anyz € (a,b)). It follows thatC = 0 and thus- = K; on J. Finally, sincel is an m.i.c. ofr
andJ D I, one concludes that = 7, and so,/ is an m.i.c. ofp and hence op. O

We complete the description of the relation between the m.i.crsaoid p by observing that
any one m.i.c/ of a given derivative ratip is the m.i.c. of an appropriately constructed original
ratior (which must, in view of Propositign 3.1, depend on the choicg)of

Proposition 2.3. For

e any differentiable functiop: (a,b) — R such thatyg’(x) # 0 for eachz € (a,b),

e any (not necessarily strictly) monotonic continuous functiotia, b) — R, and

e any m.i.c.l of p

there exists a differentiable functioft (a,b) — R such that’g”—f = p and the only m.i.c. of
ri= 5 is 1.

Proof. Let g, p, and[ satisfy the conditions listed in Propositipn 2.3, so that K on I for
some constank’. Note that the condition og implies that either/’ > 0 on the entire interval
(a,b) or g’ < 0on(a,b) (see e.g.l[25, Remark 3]), so thats monotonic and hence of locally

bounded variation ofja,b). Take any pointz in the interval/ (which is an i.c. and hence
non-empty) and defing by the formula

f(x) = Ko=) + / " p(w) dg(u)
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for all z in (a,b), where the integral may be understood in the Riemann-Stieltjes sense, with the
convention tha” := — [~ if = < 2. Becausg is continuous and is differentiable, it follows
that for the so defined functiofione has’gi: = p; moreover,f = Kgonl, sothat/ is ani.c. of

r. Butany i.c. ofr is also an i.c. op, and/ was assumed to be an m.i.c.®flt follows that/
isanm.i.c. (and hencénhe onlym.i.c.) ofr. 0J

Let us summarize our findings as

Theorem 2.4.

e The set of all m.i.c’s of is the same as that ¢f

e The “original” ratio r can have at most one m.i.c., and its m.i.c. must also be an m.i.c.
of p and thus ofp; moreover, then the m.i.c. ofis the leveld set ofp.

e Any one m.i.c. of a given derivative ratids the m.i.c. of an appropriately constructed
original ratio r.

This result can be illustrated by

Example 2.1. Let the derivative ratig: (0,00) — R for a ratior = f/g be given by the
formula
r—k If2k<x<2k+1,

E+1 if2k+1<uz<2k+2,

wherek := | 7]. Letg(x) := x4 1forall z € (0, 00). Then, for the formula = f’/4’ to hold,
the corresponding functiofi: (0, c0) — R must be given by

f(2) = fue) = e + / " o) o (w) du

e+ i(—-mP?+m(m+1)) if2m<az<2m+1,
et m+)(@—m—3) if 2m+1 <z <2m+ 2,

p(x) :=min(x — k,k+ 1) = {

wherem := | 3] andc is any real number (which obviously equ#lg0)). Letting nowr, :=
fe/g, one sees that the derivative rafity ¢’ of r. equals the given functiop, for every value
of c. This derivative ratiop, is nondecreasing (and continuous)(0nco), with infinitely many
m.i.c.’s: [1,2],[3,4],.... In contrasty. may have at most one m.i.c. More specificalyhas
exactly one m.i.c.[2m + 1,2m + 2] (which is also one of the infinitely many m.i.c.’s pf, if
¢ = Comp1 = 3(m + 1)(2m + 3) — the root of the equation.(2m + 1) = p(2m + 1), for each
m =0,1,...;andr. has no m.i.c. for any real value etifferent from all thec,,’s. Figurg 2.1
shows the graphs gf and the “original” ratios-., for the values: = —1, 0, j g 3, and5. For
these selected valuesgfthe ratior. has exactly one m.i.c. i, 2] or [3,4] —onlyifc = 3 = ¢;
or ¢ = 5 = c3, respectively; and. has no m.i.c. it = —1, 0, % or3.

To visualize this example in particular and the monotonicity rules in general, one can imagine
a tank with the solution of a liquid in water. Initially, at time= 0, the amounts in the tank of
the liquid and water (not necessarily measured in the same unitg)(@je= c andg(0) = 1,
respectively, so that the relative concentratipn- f./g of the liquid (with respect to water) is
initially r.(0) = ¢. The liquid and water are added to the tank continuously through a pipe so
that water is added at a constant rateThe relative concentratiom of the liquid in the pipe
is initially 0 (that is,p(0) = 0); moreover, increases at a constant raten each of the “odd”
unit time intervalgo, 1], [2, 3], . . . and remains constant in each of the “even” unit time intervals
1,2],[3,4],....

Then for any strictly positive value = r.(0), the relative concentratiop of the liquid in
the pipe is initially less than the relative concentratigrof the liquid in the tank, so that,
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Figure 2.1: Graphs op andr.: p, thick, solid; r., dashed, with dash length decreasing:in

will initially be decreasing. However, singeis non-decreasing teo in time, p will eventually
overtaker., and the latter will then be forever strictly increas(mgter possibly staying constant,
together withp, over the unit time intervgbm + 1, 2m + 2] for somem = 0,1, ..., provided
thatc = 1(m + 1)(2m + 3)). However, if the initial relative concentratianin the tank is0
(or, somehow, negative), then the relative concentration the tank will be always strictly
increasing, yet never reaching the relative concentratiarthe pipe (cf.[[16, Proposition 1.18]
or identity [25, (1.1)]).
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