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ABSTRACT. This paper concerns the study of the numerical approximation for the following
initial-boundary value problem:

Up = Uge — alulP"lu, 0<z<1,t>0,
(P) uz(0,8) =0 ug(1,t) +blu(l, )9 u(l,t) =0, t>0,
u(z,0) =up(z) >0, 0<z<1,

wherea > 0,b > 0 andg > p > 1. We show that the solution of a semidiscrete form of
goes to zero asgoes to infinity and give its asymptotic behavior. Using some nonstandard
schemes, we also prove some estimates of solutions for discrete fo@.dﬁnally, we give
some numerical experiments to illustrate our analysis.
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1. INTRODUCTION

Consider the following initial-boundary value problem:

(1.2) Up = Ugy — alulPlu, 0<ax<1,t>0,
(1.2) Uy (0,t) =0 wy(1,t) + blu(l,4)]" tu(1,t) =0, t>0,
(1.3) u(z,0) =ug(x) >0, 0<x<1,

wherea > 0,0 > 0,q > p > 1, uo € C*([0,1]), uf(0) = 0 andufy(1) + blug(1)|7  ue(1) = 0.
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2 NABONGO DIABATE AND THEODOREK. BONI

The theoretical study of the asymptotic behavior of solutions for semilinear parabolic equa-
tions has been the subject of investigation for many authorsl|(seg![2], [4] and the references cited
therein). In particular, in[4], wheh = 0, the authors have shown that the solutioof (1.1)) —

(1.3) goes to zero astends to infinity and satisfies the following :

1
(1.4) 0 < [Ju(z,t)]o < for te0,400),

(luo(2) oo + alp — 1)t)71

(1.5) Tim ¢7°7 [u(@, 1) |0 = Co,

1
whereCj = (ﬁ) """, The same results have been obtained’in [2] in the case Wwhere
andqg > p > 1.

In this paper we are interested in the numerical study of (1.1) 4 (1.3). At first, using a
semidiscrete form of (1}1) £ (1.3), we prove similar results for the semidiscrete solution. We also
construct two nonstandard schemes and show that these schemes allow the discrete solutions to
obey an estimation as ifi (1.4). Previously, authors have used numerical methods to study the
phenomenon of blow-up and the one of extinction (5ée [1] ahd [3]). This paper is organized as
follows. In the next section, we prove some results about the discrete maximum principle. In
the third section, we take a semidiscrete form[of](1.1) 4 (1.3), and show that the semidiscrete
solution goes to zero @gends to infinity and give its asymptotic behavior. In the fourth section,
we show that the semidiscrete scheme of the third section converges. In $gction 5, we construct
two nonstandard schemes and obtain some estimates[agin (1.4). Finally, in the last section, we
give some numerical results.

2. SEMIDISCRETIZATIONS SCHEME

In this section, we give some lemmas which will be used later. /Lla¢ a positive integer,
and define the grid; = ih, 0 < i < I, whereh = 1/1. We approximate the solutiom of

the problem|(1]1) - (1] 3) by the solutiéi, (t) = (Uy(t), Ui (), ..., Us(t))" of the semidiscrete
equations

d
(2.2) EUi(t) = 0°U;(t) — a|U; (1) [P71U(t), 0<i<I—1,t>0,
d 2 -1 2b -1
(2.2) ZU1(t) = 8Us(t) = alUs(O)P~'Us(t) = T U0 Ur(t), - >0,
(2.3) Ui(0) =0 >0, 0<i<I,
where U - U
52U (t) = i1 (t) — }Z2<t) + zel(t)’ 1<i<I-—1,
2U4(t) — 2Uy(t 2U_1(t) — 2U(t
52U0(t) _ 1( )h2 0( )’ (52U](t) _ I 1( >h2 I( )

The following lemma is a semidiscrete form of the maximum principle.
Lemma 2.1. Letay(t) € C°([0, 7], R) and letV},(t) € C*([0, T], R*™) such that

d
—Vi(t) — Vi(t) + a;(H)Vi(t) >0, 0<i<I,te(0,T),

(2.4) p

(2.5) Vi(0) >0, 0<i<I.
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Then we havé&(t) > 0for0 <i < I,t € (0,7).

Proof. Let 7, < T and letm = ming<;<r0<i<n, Vi(t). Since fori € {0,...,1}, Vi(t) is a
continuous function, there exisis< [0, 7Ty] such thatn = V;, (¢,) for a certainiy € {0,...,}.
It is not hard to see that

d‘/io (tO) ‘/io (tO) - ‘/io (tO - k)

=1 <
(26) @ e k =0,
— t .
2.7) 5V, (1) = 200 = Volbo) o

h2

Vig+1(to) — 2Viy (o) + Vig—1(to)

= >0 if 1<ig<I-—1,

(2.8) 3%V (to) =

Vi—i(to) — Vi(t e
(2.9) 52V, (o) = — i °>h2 i(to) >0 if ig=1.
Define the vectoZ, (t) = ¢V, (t) where ) is large enough such that, (to) — A > 0. A
straightforward computation reveals:
(210) dZZ—t(tO) — 5221‘0 (to) + (Gio(to) — )\)Zlo(tg) Z 0.
We observe fro6) .9) thgf% < 0 andé?Z;,(ty) > 0. Using (2.10), we arrive at
(a;,(t) — N\) Zi,(to) > 0, which implies that7;,(¢y) > 0. ThereforeV;,(¢y) = m > 0 and we
have the desired result. O

Another form of the maximum principle is the following comparison lemma.
Lemma 2.2. Let V,,(t), Uy(t) € C*([0,00),RI™) and f € C°(R x R, R) such that fort €
(0, 00),
dvi(t)
dt

— v+ i) < O pue s s, o<i<r

(2.11) o

(2.12) Vi(0) < Uy(0), 0<i<I.
Then we havé&(t) < U;(t),0 <i < I,t € (0,00).

Proof. Define the vectotZ,,(t) = U,(t) — Vi (t). Lett, be the firstt > 0 such thatZ;(¢) > 0
fort € [0,ty),i=0,...,I,butZ,(ty) = 0 for a certain, € {0,...,1}. We observe that

Zig(to) _ ;) Ziolto) = Zigtbo — k) _
dt k—0 k
Zi0+1(t0)_2z7}32(t0)+zi0—1(to) Z O If 1 S /LO g [ _ 1’
0 Zig(to) =  2all2l0) > if i =0,

2Z171(t0f32—2Z1(t0) >0 if iy =1,

which implies:
dz;,(t
o) 522, 10) + F(Un(t0), t0) = F(Villo) 1) < 0.

But this inequality contradict$ (2.[L1). O
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3. ASYMPTOTIC BEHAVIOR

In this section, we show that the solutiéf of (2.1) — [2.8) goes to zero @as— +oo and
give its asymptotic behavior. Firstly, we prove that the solution tends to zére-as-oco by the
following:

Theorem 3.1. The solutionU,(t) of (2.) — [2.8) goes to zero @as— oo and we have the
following estimate

1
0 < || Uh(t)|loo < for te0,400).

(U O)%7 + alp ~ )7
Proof. We introduce the function(t) which is defined as
Oé(t) = ! 1
(10 (O) s + alp — 1)t) 7=
and letlV,, be the vector such th&t’;(t) = «(t). Itis not hard to see that
dW;(t)
dt

Vi) sy ) + al W (0 Wi (1) + %b|wz(t)|qlwf(t) >0, te(0,7T),

dt
W;(0) > U;(0), 0<i<I,
where(0, T') is the maximal time interval on whichlj(t)||. < co. SettingZ,(t) = W(t) —
Un(t) and using the mean value theorem, we see that
dZ;(t)
dt
dZ(t)

2b
0 _ g270) + (apr(t)rp—l T Ewmrq*) Zi) >0, te(0T).

— Wi () + alWi() [P Wi(t) =0, 0<i<I-1,t€(0,T),

— 82 Zi(t) + aplOi() P Zi(t) =0, 0<i<I—1,t€(0,T)

Z(0) 20, 0<i<I,
whered; is an intermediate value betweéh(t) andW;(¢). From Lemmd 2]1, we have <
Ui(t) < Wi(t)fort € (0,7). If T < oo, we have

1
1UW(T) ][0 < < o0,

~ (IUL0)]|” + a(p — 1)T) 7T
which leads to a contradiction. Hen€e= oo and we have the desired result. O

Remark 1. The estimate of Theorem 3.1 is a semidiscrete version of the result established in
(1.4) for the continuous problem.

Let us give the statement of the main theorem of this section.

Theorem 3.2. LetU,, be the solution of (2]1) + (2.2). Then we have
lim 657 | U (8)l|oe = Co,
whereC, = <m> e
The proof of Theorer 3|2 is based on the following lemmas. We introduce the function
p(r) = =ANCo + z) + (Co + )7,

1

1 p—1

whereC, = D
Firstly, we establish an upper bound of the solution for the semidiscrete problem.
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Lemma 3.3. Let U}, be the solution of (2]1) + (2.3). For amy> 0, there exist positive times
andr such that

Ut+7) < (Co+e)t+T)++T)™ !, 0<i<I
Proof. Define the vectolV};, such that
Wi(t) = (Co+e)t >+t
A straightforward computation reveals that

d;t/" — 8*W; + a| Wi [P~ W
= - MNCo+ et — A+ Dt 24 a((Cy+e)t ™ AP
=t (=ACo+¢e) — A+t +a(Co+e+thP),

because\p = X\ + 1. Using the mean value theorem, we get

(Cot+e+t)P=(Co+e)f + &t
whereg;(t) is a bounded function. We deduce that
aw;

E— W, + al WP W = 7 () — (A D 4+ e,

awy

dt 52W]+G|W1‘p 1W[+—‘W[|q 1W[

2b

= ¢! (u(a) — A+ Dt g+ %t*qk“ﬂ(co +e+ tl)Q> .

Obviously —gA + A + 1 = = < 0. We also observe that(0) = 0 andx’(0) = 1, which

implies thatu(e) > 0. Therefore there exists a positive tiffiesuch that

dW; B »
I Wi +alWiP7'W; >0, 0<i<I-—1,tec][T,+o0),
dW, 2%
dtI Wi + a|Wr|P~ W+ = ]WI(t)|q71W1(t) >0, te][T, +o0),
T-C
Wi(T) > — 0.

Since from Theore@.ﬂimt_,oo Ui(t) = 0, there exists > T such thatl/;(1) < T5% <
W;(T). We introduce the vecta?,,(¢) such thatZ;(t) = U;(t + 7 — T),0 < i < I. We obtain
dz;
dt

az;

dt

Zi+a|lZJP'Z; >0, 0<i<I—1,t>T,

— 8 Zr +alZ P 2 + —|ZI( N9 Z(t) >0, t>T,

Zi(T) = Ui(1) < Wi(T).
We deduce from Lemmja 2.2 th&f(t) < W;(t), that is to say
(3.1) U(t+7—-T)<W;t) for t>T,
which leads us to the result. O

The lemma below gives a lower bound of the solution for the semidiscrete problem.
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Lemma 3.4. LetU,, be the solution of (2]1) + (2.3). For amy> 0, there exists a positive time
7 such that

U(t+1) > (Co—e)t+1) +(t+7)M 0<i<I.
Proof. Introduce the vectoy;, such that
Vi(t) = (Cy — )t ™ 4t
A direct calculation yields

av;
dt

Vi+alVi[P7Vi = —XNCo — )t — A+ Dt 2 4 a((Cop — )t ™ + 1721
=t (A (Co — &) = (A+ Dt +a(Co —e+171)P)
because\p = X\ + 1. From the mean value theorem, we have
(Co—e+t1P = (Cy—e)? +xi(t)t,
wherey;(t) is a bounded function. We deduce that

dV;

L= PV VP = £ () — (o D ),
dv 2b
ViV Y

b

2
=t (u(a) — A D T+ Et—qk“ﬂ(co —e+ t‘l)Q> :

Obviously —¢gA + A +1 < 0. Also, sinceu(0) = 0 andy/(0) = 1, it is easy to see that
u(—e) < 0. Hence there existg > 0 such that

av; |
o~ Vit alViPTVi <0, 0<i < T =1t €T, +00),
dVI 5 . .

— ~ O VitaVif” V1+—|V1|q Vi <0, telT,+oo).

SinceV;(t) goes to zero as — +oo, there existsr > max(7, 1) such thatV;(r) < U;(1).
SettingX;(t) = Vi(t + 7 — 1), we observe that

dX; .
%—62Xi+&|Xi‘p_lXi<O, OSZSI—l,tEl,
dX 2b

dtf 82X+ al X P X + = |XI|‘1‘1X[ <0, t>1,

Xi(1) = W) < U(1),

We deduce from Lemnia 2.2 that

(3.2) U(t) > Vi(t+7—1) for ¢t>1,

which leads us to the result. OJ

Now, we are in a position to give the proof of the main result of this section.
Proof of Theorer 3]2From Lemma 33 and Lemma 8.4, we deduce

(Co—e) < lim inf (U;Et)) < lim sup (Uz(t)) < (Co+e),

t—o0

and we have the desired result. O
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4. CONVERGENCE

In this section, we will show that for each fixed time inter{@l7’|, whereu is defined, the
solutionUy,(¢) of (2.1) — [2.8) approximates, when the mesh parametegoes to zero.

Theorem 4.1. Assume thaf (1]1)  (1.3) has a solutiere C**([0,1] x [0, T]) and the initial
condition at[(2.B) satisfies

(4.1) 10 — un(0)]loo = 0(1) as h—0,

whereu,(t) = (u(wo,t),...,u(zr,t))". Then, forh sufficiently small, the problerp (2.1)[- (R.3)
has a unique solutioty, € C''([0, T, R’™!) such that

(4.2) max |Un(t) — un(t)]oo = OU|UL — up(0)]| oo + h2) as h — 0.

0<t<T
Proof. Let K > 0 andL be such that

2 ua:xz o0 K umzx:p oo K —
Al < Bl < 0l <0 antrc 1y <1,
(4.3) 2g(K +1)7' < L.

The problem|(2]1) - (2|3) has for easha unique solutioi, € C'([0,7}"),R"*"). Lett(h)
the greatest value o> 0 such that

(4.4) |UR(t) — up(t)]|oo < Lfort € (0,t(h)).

The relation|(4.l1) implies thath) > 0 for h sufficiently small. Let*(h) = min{¢(h), T'}. By
the triangular inequality, we obtain

1Un(O)lloo < Nlulz; D)oo + Un(t) = un(t)llec  for t € (0,27°(h)),
which implies that
(4.5) NUn(t)]|o <1+ K, forte (0,t"(h)).

Lete,(t) = Un(t) — un(z,t) be the error of discretization. Using Taylor’s expansion, we have
fort € (0,t*(h)),

d h?

Zolt) — 520 (4) = ) — p—1,
dt 6Z(t) ) €; (t) 12umcxx (xu t) apgz 6l(t)7
d 2 2h? ~ h? . _
EGI@) - 626[@) = qutjl 16] + ?uajx:p(xla t) + Euzmxaﬁ(‘rb t) - apf? lel(t)u
whered; € (U;(t), u(zs,t) and¢; € (Uy(t), u(x;, t). Using [4.8) and (4]5), we arrive at
d
(4.6) Eei(t) —8%ei(t) < Lle;()| + Kh?,0<i <11,

dey(t 2er_1(t) — 2eg(t Lle;(t
7 0) _ Qerma(®)—2er(9)  Lier9)
Consider the function
2w, t) = lIECD (U — 0y (0)]| oo + QR)

whereM, C, () are constants which will be determined later. We get

2(2,) — 2ga(2,1) = (M + 1 — 20 — 4C?2?)2(w, 1),

2:(0,1) =0, 2z, (1,t) = 2C2(1, 1),
2(2,0) = e“ (|| U2 — un(0)|| . + Qh).

+ Lles(t)| + Kh2.
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By a semidiscretization of the above problem, we may chdds€', () large enough that

d
—2(xi,t) > 6%2(w,t) + L|z(ws,t)| + Kh*0<i < T —1,

4.8
(4.8) o

d 2 L 2
(4.9) Ez(x;,t) > 0°z(xr,t) + E|z(x1,t)| + L|z(z,t)| + Kh*,
(4.10) 2(x;,0) > ¢€;(0),0 <i < 1.

It follows from Lemmd 3.4 that
2(zi,t) > ei(t)  forte (0,t°(h)), 0<i<I
By the same way, we also prove that
2(zi,t) > —ei(t) forte (0,t"(h)), 0<i<I,

which implies that

1U(8) = un(®)]loo < MR = un(0)]]  + Q%) t € (0,¢7(h)).
Let us show that*(h) = T'. Suppose thaf’ > ¢(h). From [4.4), we obtain
411) 1= (|UER) — un(t(R) o < MU ~ wn(0)]], + @R).

Since the term in the right hand side of the inequality goes to zetayags to zero, we deduce
from (4.11) thatl < 0, which isimpossible. Consequentlyh) = T', and we obtain the desired
result. OJ

5. FuLL DISCRETIZATIONS

In this section, we study the asymptotic behavior, using full discrete schemes (explicit and
implicit) of (1.1) — {1.3). Firstly, we approximate the solutief, ¢) of (1.1) — [1.8) by the

squtionU,E") = (U3, Upr,...,UMT of the following explicit scheme
(n+1) . (n) _1
(5.1) Y U U™ —a|lu™|" Ut 0<i<r -1,
At
Uyt — o -1 2b -1
(5.2) e —a|uf [ o - 2o o,
(5.3) U9 =¢; >0, 0<i<I,

wheren > 0, At < %2 We need the following lemma which is a discrete form of the maximum
principle for ordinary differential equations.

Lemma5.1. Let f € C*(R) and leta,, andb,, be two bounded sequences such that

An+1 — Qp bn+1
. _ >
(5.4) O o) 2 Y (B, 00,
(55) Qo Z bo.

Then we have,, > b,,, n > 0 for h small enough.
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Proof. Let Z,, = a,, — b,,. We get

ZnJrl - Zn /
. _— Ly, >
(5.6) np &) 220,
where¢,, is an intermediate value betweenandb,,. Obviously

Sincea,, andb,, are bounded andl € C*(R), there exists a positivd/ such that f'(¢,)] < M.
Let j be the first integer such that < 0. From [5.5),j > 0. We haveZ; > Z; (1 — AtM).
SinceAtM goes to zero a8 — 0 andZ;_, > 0, we deduce tha¥; > 0 ash — 0 which is a
contradiction. ThereforeZ,, > 0 for anyn and we have proved the lemma. O

Now, we may state the following.

Theorem 5.2. Let U}, be the solution of (5/1) .3). We halvéb) > 0and

1
<

" (e

Proof. A straightforward calculation yields

1

o
1—p p—1
+ A(p — 1)nAt)

WhereA - W.

At 2AtY r7(n) (n)
n UZ 1-— U+ U ,
(5.8) ey - B0 h2) ; Lo1<i<I-1,

14 aAt

thl (1 . 2}&;) U( n)

(5.9) Uit =
1+ aAt ‘Uo

il Ul Lo

(5.10) Uit =

(n) -
1—|—aAt‘UI

abag ’U, "

Sincel — 2“ iS nonnegative, using a recursive argument, it is easy to se@,fﬁa;? 0. Letz
be such than0 = HUh") . From (5 ), we get

AtUO+1 + ( 2At HU n) + Uz'(:—)l

HUlgn—i-l)
> 1+ aAt HUh”)

if 1<ig<I-1.

Applying the triangle inequality and the fact thHat- 2“ IS nonnegative, we arrive at

o

(5.11) HU}L"“)

14 aAt HU}(L”)
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We obtain the same estimationdf = 0 or iy = I. The inequality [(5.11) implies that

HU,E”“) < HU}(L") and by iterating, we obtaiﬁUfL") < HU,(LO) . From (5.11), we
also observe that )
‘U;EnJrl) - HU(n)HOO < a HU}Sn) N
At it
Using the fact thaH v < )U,EO) , we have
HUﬂ+D _HUy) m)||P
00 0 —A H n
At - Ul
We introduce the function(t) which is defined as follows
1
Oé(t) == 1
O [ rt
|o] "+ A -1
We remark thaty(¢) obeys the following differential equation
o/(t) = —Aar(t), a(0) = U] .
Using a Taylor’s expansion, we have
At)?
a(tng1) = alty) + Atd/(t,) + %a”(tn),

wheret,, is an intermediate value betwegnandt,, ;. Itis not hard to see that(t) is a convex
function. Therefore, we obtain

aftnir) = a(tn)
At

< af(t,), which ensures that

> —Ad(t,,).

From Lemml, we g#’lﬁ}(]‘)

o

1
<

(e

and we have the desired result. O

Remark 2. The estimate of Theorem %.2 is the discrete form of the one givén i (1.4) for the
continuous problem.

Now, we approximate the solutiarix, t) of problem ) 3) by the solutidvi,ﬁ”) of the
following implicit scheme

U(n+1) B U(n)

+ A(p— 1)nAt) .

1-p
o0

—1
(5.12) N — o2yt |y utt o<i<r -1,
U(n+1) - U(n) n n -1 n 20 n -1 n
(5.13) I - I _ 52U1( +1) —a‘UI( )P UI( +1) = ‘UI( )|P UI( +1)7
(5.14) UY =¢,>0, 0<i<I,
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wheren > 0. Let us note that in the above construction, we do not need a restriction on the step
time.
The above equations may be rewritten in the following form:

n 2At n+1 At n p=1 n+1
Ul = — = U{+)+-(1+2}ﬁ-+aAtﬁ%) )Lﬁ‘*%
n At At n At ,
U = _ﬁU}j” + (1 + 255 +alt ) Uit — ﬁUlﬂ“ L 1<i<I-—1,
n 2At n At n p=1 n n
v = -2 (1+2ﬁ+aAt‘U}) + At)U( )U} )
which gives the following linear system
AWy = g
whereA™ is the tridiagonal matrix defined as follows
dy =2t 0 0 -+ 0 0
Bd 2 0 00
N
A — | ]
0 0 - B d, B0
0 0 0 - ZAog, A
o 0 0 - 0 =3 4
with
At (n) p-1 .
d; —1+2ﬁ+aAt]Ui = for 0<i<I-1
and

At
dy —1+2ﬁ+aAt

Let us remark that the tridiagonal matri%™ satisfies the following properties

p—1 2h TS
U +EAﬂ@)q

(n) (n) .
Ay’ >0 and A7 <0 i#j,

Syl

i#]

‘ A

These properties imply thdf;’ exists for anyn and U,(L”) > 0 (see for instance [2]). As we
know that the solution of the discrete implicit scheme exists, we may state the following.

Theorem 5.3.Let U™ be the solution 02) 4). We havg’ > 0 and

1
<

— 1

(HU,gm ”;” +A(p — l)nAt)

i

Whel‘eA - MNHGT(J)‘)Z;I
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Proof. We know thatU,E”) > 0 as we have seen above. Now, let us obtain the above estimate to

complete the proof. Let, be such than(g” = ”U,(L”)

)l

if

At
1+2ﬁ

+aAtWhm

< [loi”

At
T2

1<ig<I-—1.

U

. Using the equality

10—1

Applying the triangle inequality, we derive the following estimate

o] <

o

>

1+aAtW¢m

p—1°
x

(5.1

h2

At

2), we have

(n)
Ui0+1

We obtain the same estimation if we take= 0 or i, = I. Reasoning as in the proof of
Theoren 5.3, we obtain the desired result.

6. NUMERICAL RESULTS

O

In this section, we consider the explicit scheme[in](5.1) - (5.3) and the implicit scheme in
(5.12) — [(5.14). We suppose that= 2, ¢ =3,a = 1,b = 1, U? = 0.8 + 0.8 x cos(rhi) and
At = %2 In the following tables, in the rows, we give the firstvhen

[nawi” -1 <,

the corresponding timé” = nAt, the CPU time and the order(s) of method computed from

. log((Tun — Ton)/(Ton — Th)).

log(2)

Table 1: (= = 1072): Numerical times, numbers of iterations, CPU times (seconds), and

orders of the approximations obtained with the implicit Euler method

I A n CPU time| s
16 |674.0820 345129 | 103 -
32 | 674.2632 1.380890, 660 -
64 | 674.3085 5.523.934 6020 2.01
128 674.3278 22095735 58290 1.24
256| 674.4807 87383041 574823 | 2.99

Table 2: (e = 1072): Numerical times, numbers of iterations, CPU times (seconds) and

orders of the approximations obtained with the explicit Euler method

1 AL n CPU time| s
16 | 674.3281 345.255 | 90 -
32 | 674.3452 1.381.058 720 -
64 | 674.3290 5.524.102 10820 0.08
128| 674.3187 22845950 323528 | 0.65
256| 674.3098 88237375 19457811 0.21
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