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Abstract: This paper concerns the study of the numerical approximation for the following initial-
boundary value problem:

(P)


ut = uxx − a|u|p−1u, 0 < x < 1, t > 0,
ux(0, t) = 0 ux(1, t) + b|u(1, t)|q−1u(1, t) = 0, t > 0,
u(x, 0) = u0(x) > 0, 0 ≤ x ≤ 1,

wherea > 0, b > 0 andq > p > 1. We show that the solution of a semidiscrete form
of (P ) goes to zero ast goes to infinity and give its asymptotic behavior. Using some
nonstandard schemes, we also prove some estimates of solutions for discrete forms of
(P ). Finally, we give some numerical experiments to illustrate our analysis.
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1. Introduction

Consider the following initial-boundary value problem:

(1.1) ut = uxx − a|u|p−1u, 0 < x < 1, t > 0,

(1.2) ux(0, t) = 0 ux(1, t) + b|u(1, t)|q−1u(1, t) = 0, t > 0,

(1.3) u(x, 0) = u0(x) > 0, 0 ≤ x ≤ 1,

wherea > 0, b > 0, q > p > 1, u0 ∈ C1([0, 1]), u′0(0) = 0 and u′0(1) +
b|u0(1)|q−1u0(1) = 0.

The theoretical study of the asymptotic behavior of solutions for semilinear parabolic
equations has been the subject of investigation for many authors (see [2], [4] and the
references cited therein). In particular, in [4], whenb = 0, the authors have shown
that the solutionu of (1.1) – (1.3) goes to zero ast tends to infinity and satisfies the
following :

(1.4) 0 ≤ ‖u(x, t)‖∞ ≤ 1

(‖u0(x)‖∞ + a(p− 1)t)
1

p−1

for t ∈ [0, +∞),

(1.5) lim
t→∞

t
1

p−1‖u(x, t)‖∞ = C0,

whereC0 =
(

1
a(p−1)

) 1
p−1

. The same results have been obtained in [2] in the case

whereb > 0 andq > p > 1.
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In this paper we are interested in the numerical study of (1.1) – (1.3). At first, us-
ing a semidiscrete form of (1.1) – (1.3), we prove similar results for the semidiscrete
solution. We also construct two nonstandard schemes and show that these schemes
allow the discrete solutions to obey an estimation as in (1.4). Previously, authors
have used numerical methods to study the phenomenon of blow-up and the one of
extinction (see [1] and [3]). This paper is organized as follows. In the next section,
we prove some results about the discrete maximum principle. In the third section,
we take a semidiscrete form of (1.1) – (1.3), and show that the semidiscrete solution
goes to zero ast tends to infinity and give its asymptotic behavior. In the fourth
section, we show that the semidiscrete scheme of the third section converges. In
Section5, we construct two nonstandard schemes and obtain some estimates as in
(1.4). Finally, in the last section, we give some numerical results.
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2. Semidiscretizations Scheme

In this section, we give some lemmas which will be used later. LetI be a pos-
itive integer, and define the gridxi = ih, 0 ≤ i ≤ I, whereh = 1/I. We
approximate the solutionu of the problem (1.1) – (1.3) by the solutionUh(t) =
(U0(t), U1(t), . . . , UI(t))

T of the semidiscrete equations

(2.1)
d

dt
Ui(t) = δ2Ui(t)− a|Ui(t)|p−1Ui(t), 0 ≤ i ≤ I − 1, t > 0,

(2.2)
d

dt
UI(t) = δ2UI(t)− a|UI(t)|p−1UI(t)−

2b

h
|UI(t)|q−1UI(t), t > 0,

(2.3) Ui(0) = U0
i > 0, 0 ≤ i ≤ I,

where

δ2Ui(t) =
Ui+1(t)− 2Ui(t) + Ui−1(t)

h2
, 1 ≤ i ≤ I − 1,

δ2U0(t) =
2U1(t)− 2U0(t)

h2
, δ2UI(t) =

2UI−1(t)− 2UI(t)

h2
.

The following lemma is a semidiscrete form of the maximum principle.

Lemma 2.1. Let ah(t) ∈ C0([0, T ], RI+1) and letVh(t) ∈ C1([0, T ], RI+1) such
that

(2.4)
d

dt
Vi(t)− δ2Vi(t) + ai(t)Vi(t) ≥ 0, 0 ≤ i ≤ I, t ∈ (0, T ),

(2.5) Vi(0) ≥ 0, 0 ≤ i ≤ I.

Then we haveVi(t) ≥ 0 for 0 ≤ i ≤ I, t ∈ (0, T ).
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Proof. Let T0 < T and letm = min0≤i≤I,0≤t≤T0 Vi(t). Since fori ∈ {0, . . . , I},
Vi(t) is a continuous function, there existst0 ∈ [0, T0] such thatm = Vi0(t0) for a
certaini0 ∈ {0, . . . , I}. It is not hard to see that

(2.6)
dVi0(t0)

dt
= lim

k→0

Vi0(t0)− Vi0(t0 − k)

k
≤ 0,

(2.7) δ2Vi0(t0) =
V1(t0)− V0(t0)

h2
≥ 0 if i0 = 0,

(2.8) δ2Vi0(t0) =
Vi0+1(t0)− 2Vi0(t0) + Vi0−1(t0)

h2
≥ 0 if 1 ≤ i0 ≤ I − 1,

(2.9) δ2Vi0(t0) =
VI−1(t0)− VI(t0)

h2
≥ 0 if i0 = I.

Define the vectorZh(t) = eλtVh(t) whereλ is large enough such thatai0(t0)−λ > 0.
A straightforward computation reveals:

(2.10)
dZi0(t0)

dt
− δ2Zi0(t0) + (ai0(t0)− λ)Zi0(t0) ≥ 0.

We observe from (2.6) – (2.9) that
dZi0

(t0)

dt
≤ 0 andδ2Zi0(t0) ≥ 0. Using (2.10),

we arrive at(ai0(t) − λ)Zi0(t0) ≥ 0, which implies thatZi0(t0) ≥ 0. Therefore,
Vi0(t0) = m ≥ 0 and we have the desired result.

Another form of the maximum principle is the following comparison lemma.
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Lemma 2.2. LetVh(t), Uh(t) ∈ C1([0,∞), RI+1) andf ∈ C0(R× R, R) such that
for t ∈ (0,∞),

(2.11)
dVi(t)

dt
−δ2Vi(t)+f(Vi(t), t) <

dUi(t)

dt
−δ2Ui(t)+f(Ui(t), t), 0 ≤ i ≤ I,

(2.12) Vi(0) < Ui(0), 0 ≤ i ≤ I.

Then we haveVi(t) < Ui(t), 0 ≤ i ≤ I, t ∈ (0,∞).

Proof. Define the vectorZh(t) = Uh(t) − Vh(t). Let t0 be the firstt > 0 such that
Zi(t) > 0 for t ∈ [0, t0), i = 0, . . . , I, butZi0(t0) = 0 for a certaini0 ∈ {0, . . . , I}.
We observe that

dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≤ 0.

δ2Zi0(t0) =


Zi0+1(t0)−2Zi0

(t0)+Zi0−1(t0)

h2 ≥ 0 if 1 ≤ i0 ≤ I − 1,

2Z1(t0)−2Z0(t0)
h2 ≥ 0 if i0 = 0,

2ZI−1(t0)−2ZI(t0)

h2 ≥ 0 if i0 = I,

which implies:

dZi0(t0)

dt
− δ2Zi0(t0) + f(Ui0(t0), t0)− f(Vi0(t0), t0) ≤ 0.

But this inequality contradicts (2.11).
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3. Asymptotic Behavior

In this section, we show that the solutionUh of (2.1) – (2.3) goes to zero ast → +∞
and give its asymptotic behavior. Firstly, we prove that the solution tends to zero as
t → +∞ by the following:

Theorem 3.1. The solutionUh(t) of (2.1) – (2.3) goes to zero ast → ∞ and we
have the following estimate

0 ≤ ‖Uh(t)‖∞ ≤ 1

(‖Uh(0)‖1−p
∞ + a(p− 1)t)

1
p−1

for t ∈ [0, +∞).

Proof. We introduce the functionα(t) which is defined as

α(t) =
1

(‖Uh(0)‖1−p
∞ + a(p− 1)t)

1
p−1

and letWh be the vector such thatWi(t) = α(t). It is not hard to see that

dWi(t)

dt
− δ2Wi(t) + a|Wi(t)|p−1Wi(t) = 0, 0 ≤ i ≤ I − 1, t ∈ (0, T ),

dWI(t)

dt
− δ2WI(t) + a|WI(t)|p−1WI(t) +

2b

h
|WI(t)|q−1WI(t) ≥ 0, t ∈ (0, T ),

Wi(0) ≥ Ui(0), 0 ≤ i ≤ I,

where(0, T ) is the maximal time interval on which‖Uh(t)‖∞ < ∞. SettingZh(t) =
Wh(t)− Uh(t) and using the mean value theorem, we see that

dZi(t)

dt
− δ2Zi(t) + ap|θi(t)|p−1Zi(t) = 0, 0 ≤ i ≤ I − 1, t ∈ (0, T )
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dZI(t)

dt
− δ2ZI(t) +

(
ap|θI(t)|p−1 +

2b

h
|θI(t)|q−1

)
ZI(t) ≥ 0, t ∈ (0, T ),

Zi(0) ≥ 0, 0 ≤ i ≤ I,

whereθi is an intermediate value betweenUi(t) andWi(t). From Lemma2.1, we
have0 ≤ Ui(t) ≤ Wi(t) for t ∈ (0, T ). If T < ∞, we have

‖Uh(T )‖∞ ≤ 1

(‖Uh(0)‖1−p
∞ + a(p− 1)T )

1
p−1

< ∞,

which leads to a contradiction. HenceT = ∞ and we have the desired result.

Remark1. The estimate of Theorem3.1is a semidiscrete version of the result estab-
lished in (1.4) for the continuous problem.

Let us give the statement of the main theorem of this section.

Theorem 3.2.LetUh be the solution of (2.1) – (2.2). Then we have

lim
t→∞

t
1

p−1‖Uh(t)‖∞ = C0,

whereC0 =
(

1
a(p−1)

) 1
p−1

.

The proof of Theorem3.2 is based on the following lemmas. We introduce the
function

µ(x) = −λ(C0 + x) + (C0 + x)p,

whereC0 =
(

1
a(p−1)

) 1
p−1

.

Firstly, we establish an upper bound of the solution for the semidiscrete problem.
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Lemma 3.3. Let Uh be the solution of (2.1) – (2.3). For any ε > 0, there exist
positive timesT andτ such that

Ui(t + τ) ≤ (C0 + ε)(t + T )−λ + (t + T )−λ−1, 0 ≤ i ≤ I.

Proof. Define the vectorWh such that

Wi(t) = (C0 + ε)t−λ + t−λ−1.

A straightforward computation reveals that

dWi

dt
− δ2Wi + a|Wi|p−1Wi

= −λ(C0 + ε)t−λ−1 − (λ + 1)t−λ−2 + a((C0 + ε)t−λ + t−λ−1)p

= t−λ−1(−λ(C0 + ε)− (λ + 1)t−1 + a(C0 + ε + t−1)p),

becauseλp = λ + 1. Using the mean value theorem, we get

(C0 + ε + t−1)p = (C0 + ε)p + ξit
−1,

whereξi(t) is a bounded function. We deduce that

dWi

dt
− δ2Wi + a|Wi|p−1Wi = t−λ−1(µ(ε)− (λ + 1)t−1 + ξit

−1),

dWI

dt
− δ2WI + a|WI |p−1WI +

2b

h
|WI |q−1WI

= t−λ−1

(
µ(ε)− (λ + 1)t−1 + ξit

−1 +
2b

h
t−qλ+λ+1(C0 + ε + t−1)q

)
.
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Obviously−qλ + λ + 1 = p−q
p−1

< 0. We also observe thatµ(0) = 0 andµ′(0) = 1,
which implies thatµ(ε) > 0. Therefore there exists a positive timeT such that

dWi

dt
− δ2Wi + a|Wi|p−1Wi > 0, 0 ≤ i ≤ I − 1, t ∈ [T, +∞),

dWI

dt
− δ2WI + a|WI |p−1WI +

2b

h
|WI(t)|q−1WI(t) > 0, t ∈ [T, +∞),

Wi(T ) >
T−λC0

2
.

Since from Theorem3.1 limt→∞ Ui(t) = 0, there existsτ > T such thatUi(τ) <
T−λC0

2
< Wi(T ). We introduce the vectorZh(t) such thatZi(t) = Ui(t + τ − T ),

0 ≤ i ≤ I. We obtain

dZi

dt
− δ2Zi + a|Zi|p−1Zi > 0, 0 ≤ i ≤ I − 1, t ≥ T,

dZI

dt
− δ2ZI + a|ZI |p−1ZI +

2b

h
|ZI(t)|q−1ZI(t) > 0, t ≥ T,

Zi(T ) = Ui(τ) < Wi(T ).

We deduce from Lemma2.2thatZi(t) ≤ Wi(t), that is to say

(3.1) Ui(t + τ − T ) ≤ Wi(t) for t ≥ T,

which leads us to the result.

The lemma below gives a lower bound of the solution for the semidiscrete prob-
lem.
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Lemma 3.4. Let Uh be the solution of (2.1) – (2.3). For anyε > 0, there exists a
positive timeτ such that

Ui(t + 1) ≥ (C0 − ε)(t + τ)−λ + (t + τ)−λ−1, 0 ≤ i ≤ I.

Proof. Introduce the vectorVh such that

Vi(t) = (C0 − ε)t−λ + t−λ−1.

A direct calculation yields

dVi

dt
− δ2Vi + a|Vi|p−1Vi = −λ(C0 − ε)t−λ−1 − (λ + 1)t−λ−2 + a((C0 − ε)t−λ + t−λ−1)p

= t−λ−1(−λ(C0 − ε)− (λ + 1)t−1 + a(C0 − ε + t−1)p)

becauseλp = λ + 1. From the mean value theorem, we have

(C0 − ε + t−1)p = (C0 − ε)p + χi(t)t
−1,

whereχi(t) is a bounded function. We deduce that

dVi

dt
− δ2Vi + a|Vi|p−1Vi = t−λ−1(µ(−ε)− (λ + 1)t−1 + χit

−1),

dVI

dt
− δ2VI + a|VI |p−1VI +

2b

h
|VI |q−1VI

= t−λ−1

(
µ(ε)− (λ + 1)t−1 + χit

−1 +
2b

h
t−qλ+λ+1(C0 − ε + t−1)q

)
.

Obviously−qλ + λ + 1 < 0. Also, sinceµ(0) = 0 andµ′(0) = 1, it is easy to see
thatµ(−ε) < 0. Hence there existsT > 0 such that

dVi

dt
− δ2Vi + a|Vi|p−1Vi < 0, 0 ≤ i ≤ I − 1, t ∈ [T, +∞),
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dVI

dt
− δ2VI + a|VI |p−1VI +

2b

h
|VI |q−1VI < 0, t ∈ [T, +∞).

SinceVi(t) goes to zero ast → +∞, there existsτ > max(T, 1) such thatVi(τ) <
Ui(1). SettingXi(t) = Vi(t + τ − 1), we observe that

dXi

dt
− δ2Xi + a|Xi|p−1Xi < 0, 0 ≤ i ≤ I − 1, t ≥ 1,

dXI

dt
− δ2XI + a|XI |p−1XI +

2b

h
|XI |q−1XI < 0, t ≥ 1,

Xi(1) = Vi(τ) < Ui(1).

We deduce from Lemma2.2that

(3.2) Ui(t) ≥ Vi(t + τ − 1) for t ≥ 1,

which leads us to the result.

Now, we are in a position to give the proof of the main result of this section.

Proof of Theorem3.2. From Lemma3.3and Lemma3.4, we deduce

(C0 − ε) ≤ lim
t→∞

inf

(
Ui(t)

tλ

)
≤ lim

t→∞
sup

(
Ui(t)

tλ

)
≤ (C0 + ε),

and we have the desired result.
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4. Convergence

In this section, we will show that for each fixed time interval[0, T ], whereu is
defined, the solutionUh(t) of (2.1) – (2.3) approximatesu, when the mesh parameter
h goes to zero.

Theorem 4.1.Assume that (1.1) – (1.3) has a solutionu ∈ C4,1([0, 1]× [0, T ]) and
the initial condition at (2.3) satisfies

(4.1) ‖U0
h − uh(0)‖∞ = o(1) as h → 0,

whereuh(t) = (u(x0, t), . . . , u(xI , t))
T . Then, forh sufficiently small, the problem

(2.1) – (2.3) has a unique solutionUh ∈ C1([0, T ], RI+1) such that

(4.2) max
0≤t≤T

‖Uh(t)− uh(t)‖∞ = O(‖U0
h − uh(0)‖∞ + h2) as h → 0.

Proof. Let K > 0 andL be such that

2‖uxxx‖∞
3

≤ K

2
,

‖uxxxx‖∞
12

≤ K

2
, ‖u‖∞ ≤ K, ap(K + 1)p−1 ≤ L,

(4.3) 2q(K + 1)q−1 ≤ L.

The problem (2.1) – (2.3) has for eachh, a unique solutionUh ∈ C1([0, T h
q ), RI+1).

Let t(h) the greatest value oft > 0 such that

(4.4) ‖Uh(t)− uh(t)‖∞ < 1fort ∈ (0, t(h)).

The relation (4.1) implies thatt(h) > 0 for h sufficiently small. Lett∗(h) =
min{t(h), T}. By the triangular inequality, we obtain

‖Uh(t)‖∞ ≤ ‖u(x, t)‖∞ + ‖Uh(t)− uh(t)‖∞ for t ∈ (0, t∗(h)),
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which implies that

(4.5) ‖Uh(t)‖∞ ≤ 1 + K, for t ∈ (0, t∗(h)).

Let eh(t) = Uh(t)−uh(x, t) be the error of discretization. Using Taylor’s expansion,
we have fort ∈ (0, t∗(h)),

d

dt
ei(t)− δ2ei(t) =

h2

12
uxxxx(x̃i, t)− apξp−1

i ei(t),

d

dt
eI(t)− δ2eI(t) =

2

h
qθq−1

I eI +
2h2

3
uxxx(x̃I , t) +

h2

12
uxxxx(x̃I , t)− apξp−1

I eI(t),

whereθI ∈ (UI(t), u(xI , t) andξi ∈ (Ui(t), u(xi, t). Using (4.3) and (4.5), we arrive
at

(4.6)
d

dt
ei(t)− δ2ei(t) ≤ L|ei(t)|+ Kh2, 0 ≤ i ≤ I − 1,

(4.7)
deI(t)

dt
− (2eI−1(t)− 2eI(t))

h2
≤ L|eI(t)|

h
+ L|eI(t)|+ Kh2.

Consider the function

z(x, t) = e((M+1)t+Cx2)(‖U0
h − uh(0)‖∞ + Qh2)

whereM , C, Q are constants which will be determined later. We get

zt(x, t)− zxx(x, t) = (M + 1− 2C − 4C2x2)z(x, t),

zx(0, t) = 0, zx(1, t) = 2Cz(1, t),

z(x, 0) = eCx2

(
∥∥U0

h − uh(0)
∥∥
∞ + Qh).
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By a semidiscretization of the above problem, we may chooseM, C, Q large enough
that

(4.8)
d

dt
z(xi, t) > δ2z(xi, t) + L|z(xi, t)|+ Kh2, 0 ≤ i ≤ I − 1,

(4.9)
d

dt
z(xI , t) > δ2z(xI , t) +

L

h
|z(xI , t)|+ L|z(xI , t)|+ Kh2,

(4.10) z(xi, 0) > ei(0), 0 ≤ i ≤ I.

It follows from Lemma3.4that

z(xi, t) > ei(t) for t ∈ (0, t∗(h)), 0 ≤ i ≤ I.

By the same way, we also prove that

z(xi, t) > −ei(t) for t ∈ (0, t∗(h)), 0 ≤ i ≤ I,

which implies that

‖Uh(t)− uh(t)‖∞ ≤ e(Mt+C)(
∥∥U0

h − uh(0)
∥∥
∞ + Qh2), t ∈ (0, t∗(h)).

Let us show thatt∗(h) = T . Suppose thatT > t(h). From (4.4), we obtain

(4.11) 1 = ‖Uh(t(h))− uh(t(h))‖∞ ≤ e(MT+C)(
∥∥U0

h − uh(0)
∥∥
∞ + Qh2).

Since the term in the right hand side of the inequality goes to zero ash goes to zero,
we deduce from (4.11) that1 ≤ 0, which is impossible. Consequentlyt∗(h) = T ,
and we obtain the desired result.
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5. Full Discretizations

In this section, we study the asymptotic behavior, using full discrete schemes (ex-
plicit and implicit) of (1.1) – (1.3). Firstly, we approximate the solutionu(x, t) of
(1.1) – (1.3) by the solutionU (n)

h = (Un
0 , Un

1 , . . . , Un
I )T of the following explicit

scheme

(5.1)
U

(n+1)
i − U

(n)
i

∆t
= δ2U

(n)
i − a

∣∣∣U (n)
i

∣∣∣p−1

U
(n+1)
i , 0 ≤ i ≤ I − 1,

(5.2)
U

(n+1)
I − U

(n)
I

∆t
= δ2U

(n)
I − a

∣∣∣U (n)
I

∣∣∣p−1

U
(n+1)
I − 2b

h

∣∣∣U (n)
I

∣∣∣q−1

U
(n+1)
I ,

(5.3) U
(0)
i = φi > 0, 0 ≤ i ≤ I,

wheren ≥ 0, ∆t ≤ h2

2
. We need the following lemma which is a discrete form of

the maximum principle for ordinary differential equations.

Lemma 5.1. Letf ∈ C1(R) and letan andbn be two bounded sequences such that

(5.4)
an+1 − an

∆t
+ f(an) ≥ bn+1 − bn

∆t
+ f(bn), n ≥ 0,

(5.5) a0 ≥ b0.

Then we havean ≥ bn, n ≥ 0 for h small enough.
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Proof. Let Zn = an − bn. We get

(5.6)
Zn+1 − Zn

∆t
+ f ′(ξn)Zn ≥ 0,

whereξn is an intermediate value betweenan andbn. Obviously

(5.7) Zn+1 ≥ Zn(1−∆tf ′(ξn)).

Sincean andbn are bounded andf ∈ C1(R), there exists a positiveM such that
|f ′(ξn)| ≤ M . Let j be the first integer such thatZj < 0. From (5.5), j ≥ 0. We
haveZj ≥ Zj−1(1 − ∆tM). Since∆tM goes to zero ash → 0 andZj−1 ≥ 0, we
deduce thatZj ≥ 0 ash → 0 which is a contradiction. Therefore,Zn ≥ 0 for anyn
and we have proved the lemma.

Now, we may state the following.

Theorem 5.2.LetUh be the solution of (5.1) – (5.3). We haveU (n)
h ≥ 0 and∥∥∥U

(n)
h

∥∥∥
∞
≤ 1(∥∥∥U

(0)
h

∥∥∥1−p

∞
+ A(p− 1)n∆t

) 1
p−1

,

whereA = a

1+a∆t
∥∥∥U

(0)
h

∥∥∥p−1

∞

.

Proof. A straightforward calculation yields

(5.8) U
(n+1)
i =

∆t
h2 U

(n)
i+1 +

(
1− 2∆t

h2

)
U

(n)
i + U

(n)
i−1

1 + a∆t
∣∣∣U (n)

i

∣∣∣p−1 , 1 ≤ i ≤ I − 1,
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(5.9) U
(n+1)
0 =

2∆t
h2 U

(n)
1 +

(
1− 2∆t

h2

)
U

(n)
0

1 + a∆t
∣∣∣U (n)

0

∣∣∣p−1 ,

(5.10) U
(n+1)
I =

2∆t
h2 U

(n)
I−1 +

(
1− 2∆t

h2

)
U

(n)
I

1 + a∆t
∣∣∣U (n)

I

∣∣∣p−1

+ 2 b
h
∆t

∣∣∣U (n)
I

∣∣∣q−1 .

Since1 − 2∆t
h2 is nonnegative, using a recursive argument, it is easy to see that

U
(n)
h ≥ 0. Let i0 be such thatU (n)

i0
=

∥∥∥U
(n)
h

∥∥∥
∞

. From (5.8), we get

∥∥∥U
(n+1)
h

∥∥∥
∞
≤

∆t
h2 U

(n)
i0+1 +

(
1− 2∆t

h2

) ∥∥∥U
(n)
h

∥∥∥
∞

+ U
(n)
i0−1

1 + a∆t
∥∥∥U

(n)
h

∥∥∥p−1

∞

if 1 ≤ i0 ≤ I − 1.

Applying the triangle inequality and the fact that1 − 2∆t
h2 is nonnegative, we arrive

at

(5.11)
∥∥∥U

(n+1)
h

∥∥∥
∞
≤

∥∥∥U
(n)
h

∥∥∥
∞

1 + a∆t
∥∥∥U

(n)
h

∥∥∥p−1

∞

.

We obtain the same estimation ifi0 = 0 or i0 = I. The inequality (5.11) implies that∥∥∥U
(n+1)
h

∥∥∥
∞
≤

∥∥∥U
(n)
h

∥∥∥
∞

and by iterating, we obtain
∥∥∥U

(n)
h

∥∥∥
∞
≤

∥∥∥U
(0)
h

∥∥∥
∞

. From
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(5.11), we also observe that∥∥∥U
(n+1)
h

∥∥∥
∞
− ‖U (n)‖∞

∆t
≤ −

a
∥∥∥U

(n)
h

∥∥∥p

∞

1 + a∆t
∥∥∥U

(n)
h

∥∥∥p−1

∞

.

Using the fact that
∥∥∥U

(n)
h

∥∥∥
∞
≤

∥∥∥U
(0)
h

∥∥∥
∞

, we have∥∥∥U
(n+1)
h

∥∥∥
∞
−

∥∥∥U
(n)
h

∥∥∥
∞

∆t
≤ −A

∥∥∥U
(n)
h

∥∥∥p

∞
.

We introduce the functionα(t) which is defined as follows

α(t) =
1(∥∥∥U

(0)
h

∥∥∥1−p

∞
+ A(p− 1)t

) 1
p−1

.

We remark thatα(t) obeys the following differential equation

α′(t) = −Aαp(t), α(0) =
∥∥∥U

(0)
h

∥∥∥
∞

.

Using a Taylor’s expansion, we have

α(tn+1) = α(tn) + ∆tα′(tn) +
(∆t)2

2
α′′(t̃n),

wheret̃n is an intermediate value betweentn andtn+1. It is not hard to see thatα(t)
is a convex function. Therefore, we obtain

α(tn+1)− α(tn)

∆t
≥ −Aαp(tn).
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From Lemma5.1, we get
∥∥∥U

(n)
h

∥∥∥
∞
≤ α(tn), which ensures that∥∥∥U

(n)
h

∥∥∥
∞
≤ 1(∥∥∥U

(0)
h

∥∥∥1−p

∞
+ A(p− 1)n∆t

) 1
p−1

,

and we have the desired result.

Remark2. The estimate of Theorem5.2is the discrete form of the one given in (1.4)
for the continuous problem.

Now, we approximate the solutionu(x, t) of problem (1.1) – (1.3) by the solution
U

(n)
h of the following implicit scheme

(5.12)
U

(n+1)
i − U

(n)
i

∆t
= δ2U

(n+1)
i −

∣∣∣U (n)
i

∣∣∣p−1

U
(n+1)
i , 0 ≤ i ≤ I − 1,

(5.13)
U

(n+1)
I − U

(n)
I

∆t
= δ2U

(n+1)
I − a

∣∣∣U (n)
I

∣∣∣p−1

U
(n+1)
I − 2b

h

∣∣∣U (n)
I

∣∣∣p−1

U
(n+1)
I ,

(5.14) U
(0)
i = φi > 0, 0 ≤ i ≤ I,

wheren ≥ 0. Let us note that in the above construction, we do not need a restriction
on the step time.

The above equations may be rewritten in the following form:

U
(n)
0 = −2∆t

h2
U

(n+1)
1 +

(
1 + 2

∆t

h2
+ a∆t

∣∣∣U (n)
0

∣∣∣p−1
)

U
(n+1)
0 ,
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U
(n)
i = −∆t

h2
U

(n+1)
i−1 +

(
1 + 2

∆t

h2
+ a∆t

∣∣∣U (n)
i

∣∣∣p−1
)

U
(n+1)
i −∆t

h2
U

(n+1)
i+1 , 1 ≤ i ≤ I−1,

U
(n)
I = −2∆t

h2
U

(n+1)
I−1 +

(
1 + 2

∆t

h2
+ a∆t

∣∣∣U (n)
I

∣∣∣p−1

+
2b

h
∆t

∣∣∣U (n)
I

∣∣∣q−1
)

U
(n+1)
I ,

which gives the following linear system

A(n)U
(n+1)
h = U

(n)
h

whereA(n) is the tridiagonal matrix defined as follows

A(n) =



d0
−2∆t

h2 0 0 · · · 0 0
−∆t
h2 d1

−∆t
h2 0 · · · 0 0

0 −∆t
h2 d2

−∆t
h2 0 · · · 0

...
...

... .. . ...
...

...
0 0 · · · −∆t

h2 dI−2
−∆t
h2 0

0 0 0 · · · −∆t
h2 dI−1

−∆t
h2

0 0 0 · · · 0 −2∆t
h2 dI


,

with

di = 1 + 2
∆t

h2
+ a∆t|U (n)

i |p−1 for 0 ≤ i ≤ I − 1

and

dI = 1 + 2
∆t

h2
+ a∆t

∣∣∣U (n)
I

∣∣∣p−1

+
2b

h
∆t

∣∣∣U (n)
I

∣∣∣q−1

.

Let us remark that the tridiagonal matrixA(n) satisfies the following properties

A
(n)
ii > 0 and A

(n)
ij < 0 i 6= j,
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∣∣∣A(n)
ii

∣∣∣ >
∑
i6=j

∣∣∣A(n)
ij

∣∣∣ .

These properties imply thatUn
h exists for anyn andU

(n)
h ≥ 0 (see for instance [2]).

As we know that the solution of the discrete implicit scheme exists, we may state the
following.

Theorem 5.3.LetU (n)
h be the solution of (5.12) – (5.14). We haveU (n)

h ≥ 0 and∥∥∥U
(n)
h

∥∥∥
∞
≤ 1(∥∥∥U

(0)
h

∥∥∥1−p

∞
+ A(p− 1)n∆t

) 1
p−1

,

whereA = a

1+a∆t
∥∥∥U

(0)
h

∥∥∥p−1

∞

.

Proof. We know thatU (n)
h ≥ 0 as we have seen above. Now, let us obtain the above

estimate to complete the proof. Leti0 be such thatU (n)
i0

=
∥∥∥U

(n)
h

∥∥∥
∞

. Using the

equality (5.12), we have(
1 + 2

∆t

h2
+ a∆t

∥∥∥U
(n)
h

∥∥∥
∞

) ∥∥∥U
(n+1)
h

∥∥∥
∞
≤

∥∥∥U
(n)
h

∥∥∥
∞

+
∆t

h2
U

(n)
i0−1 +

∆t

h2
U

(n)
i0+1

if 1 ≤ i0 ≤ I − 1.

Applying the triangle inequality, we derive the following estimate∥∥∥U
(n+1)
h

∥∥∥
∞
≤

∥∥∥U
(n)
h

∥∥∥
∞

1 + a∆t
∥∥∥U

(n)
h

∥∥∥p−1

∞

.

We obtain the same estimation if we takei0 = 0 or i0 = I. Reasoning as in the proof
of Theorem5.3, we obtain the desired result.
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6. Numerical Results

In this section, we consider the explicit scheme in (5.1) – (5.3) and the implicit
scheme in (5.12) – (5.14). We suppose thatp = 2, q = 3, a = 1, b = 1, U0

i =

0.8 + 0.8 ∗ cos(πhi) and∆t = h2

2
. In the following tables, in the rows, we give the

first n when ∥∥∥n∆tU
(n)
h − 1

∥∥∥
∞

< ε,

the corresponding timeT n = n∆t, the CPU time and the order(s) of method com-
puted from

s =
log((T4h − T2h)/(T2h − Th))

log(2)
.

Table 1: (ε = 10−2) Numerical times, numbers of iterations, CPU times (seconds),
and orders of the approximations obtained with the implicit Euler method

I T n n CPU time s
16 674.0820 345129 103 -
32 674.2632 1.380890. 660 -
64 674.3085 5.523.934 6020 2.01
128 674.3278 22095735 58290 1.24
256 674.4807 87383041 574823 2.99
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Table 2: (ε = 10−2) Numerical times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the explicit Euler method

I T n n CPU time s
16 674.3281 345.255 90 -
32 674.3452 1.381.058 720 -
64 674.3290 5.524.102 10820 0.08
128 674.3187 22845950 323528 0.65
256 674.3098 88237375 19457811 0.21
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