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Abstract: Let p(z) be a polynomial of degree. Zygmund [L1] has shown that for

s>1
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In this paper, we have obtained inequalities in the reverse direction for the

polynomials having a zero of order at the origin. We also consider a Integral Mean Estimates

. n K.K. Dewan, N. Singh,

problem for the class of polynomialgz) = a,z™ + > an,—,2" " not B. Chanam and A. Mir
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vanishing outside the disk| < k, ¥ < 1 and obtain a result which,

besides yielding some interesting results as corollaries, includes a result

due to Aziz and Shahrdian J. Pure Appl. Math.28 (1997), 1413-1419] Title Page
as a special case.
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1. Introduction and Statement of Results

Let p(z) be a polynomial of degree andy’(z) its derivative. It was shown by Turén
[10] that if p(z) has all its zeros ifz| < 1, then

(1.1) mas [p'(2)] > %rn'ax ()]
z|= z|=1

More generally, if the polynomiagl(z) has all its zeros inz| < k, k < 1, it was
proved by Malik p] that the inequality {.1) can be replaced by

n
/
. m > ——m .
(1.2) |z|i}1< P(2)l 2 1+k \43}1( Ip(2)]

Malik [6] obtained alL? analogue of {.1) by proving that ifp(z) has all its zeros in
|z| <1, then for eachr > 0

2m ; 27 %
(1.3) n {/ ]p(ew)\rdﬁ} < {/ 11+ e”]’“de} max 1P/ (2)].
0 0 2=

As an extension ofl(.3) and a generalization of.(2), Aziz [1] proved that ifp(z)
has all its zeros ifz| < k, k < 1, then for each > 0

27 % 2T %
(1.4) n{/ \p(eiwde} g{/ |1+kew|rd9} e [/ 2)|.
0 0 z|=

If we letr — oo in (1.3) and (L.4) and make use of the well known fact from

analysis (see for exampl8,[p. 73] or P, p. 91]) that

27 %
(1.5) {/ |p(ei0)|Td9} — max |p(e”)] asr — oo,
0

0<o<2nr
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we get inequalitiesl( 1) and (L.2) respectively.

In this paper, we will first obtain a Zygmund]] type integral inequality, but in
the reverse direction, for polynomials having a zero of ordeat the origin. More
precisely, we prove

Theorem 1.1.Letp(z) = 2™ 377" a;2’ be a polynomial of degree, having all its
zerosin|z| < k, k < 1, with a zero of ordefn at z = 0. Then forg with | 5] < k"™

Integral Mean Estimates
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By takingk = 1 andg = 0 in Theoreml..1, we obtain:
Close
Corollary 1.2. If p(z) is a polynomial of degree, having all its zeros inz| < 1,
with a zero of orderm at z = 0, then fors > 1 journal of inequalities
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where
1

-
1 o , s
<—27T o 11+ ele\sdﬁ)

By letting s — oo in Theoreml.1, we obtain

W =

Corollary 1.3. Letp(z) = 2™ Z ~o a2’ be apolynomial of degree, having all its Integral Mean Estimates

zeros in|z| < k, k < 1, with a zero of ordern at z = 0. Then forg with | 3] < k»—™ i owan, B St
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By choosing the argument gfsuitably and lettings| — ™~ in Corollary 1.3, <« D
we obtain the following result.
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Corollary 1.4. Letp(z) = zmz o a;z’ be a polynomial of degree, having all
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The polynomialD,p(z) is of degree at most. — 1) and it generalizes the ordinary
derivative in the sense that

(1.10) lim DeP?)

a—o0 6]

=p'(2).

Our next result generalizes as well as improving upon the inequalify;, (vhich
in turns, gives a generalization as well as improvements of inequalitigs (1.2)
and (L.1) in terms of the polar derivatives @f inequalities.

Theorem 1.5.1f p(2) = a,2" + Z?:M an—;2"9,1 < p < n, is a polynomial of
degreen, having all its zeros inz| < k, k < 1, then for every real or complex
numbersy and 3 with |a| > k* and|3| < 1 and for eachr > 0

(L11) max|Dap(2)

L nlla]= k) )1(/0%19

(fi” |1+ kret®|7dg

1

d9) + 0 m’,

/
(ei9>+ pm piln—1)6

o e

wherem’ = |IZI|1£ Ip(2)].

Dividing both sides of {.11) by |«|, letting |a| — oo and noting that{.10), we
obtain

Corollary 1.6. If p(z) = a,2" + >_7_ a,j2"7, 1 < p < n, is a polynomial of
degreen, having all its zeros inz| < k, k¥ < 1, then for every real or complex
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numberg with | 5| < 1, for eachr > 0

(L12)  max|(2)

n 2T
> T D
o A y 0

(Ou+wwm9

(e +

wherem' = |H|11I]i Ip(2)].

Remarkl. Lettingr — oo in (1.12) and choosing the argument gfsuitably with
8] = 1, itfollows that, ifp(2) = a,z"+3_)_ a, 2"/, 1 < p < n,isapolynomial

of degreen, having all its zeros inz| < k, k < 1, then

1
(1.13) Tmmmﬂ_“+w)ﬁgwﬁ+muuk

Inequality (L.13 was already proved by Aziz and Sh&h.[

/gm/ 2(n—
kn—r

n[p(z)[] -
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2. Lemmas

For the proofs of these theorems we need the following lemmas.

Lemma 2.1. Letp(z) = Z?:o a;z! be a polynomial of degree having no zeros in
|z| <k, k> 1. Thenfors > 1

2.1) { /0 W|p’<e”>|5d9}s gnss{ /0 W|p<e”>|8d0}s7

where

1

| AL b
Ss = {—/ S, + e’9|5d9} and S =
0

2 1+ 1

n

ai
ao

+ 1}
k2

ai
ao

The above lemma is due to Dewan, Bhat and PukBjta |
The following lemma is due to Rather][

Lemma 2.2. Letp(z) = a,2" + 377, an—;2"7,1 < pu < n, be a polynomial of
degreen having all its zero inz| < k, k < 1. Then

(2.2) K (2)] = |d' ()] +

).

i for |z] =1
o i [p(2)] |2 =1,

whereq(z) = 2"p (

Y=
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3. Proofs of The Theorems

Proof of Theorem..1. Let
z)=2" Z a;z0 = 2"¢(z), (say)

whereg(z) is a polynomial of degree — m, with the property that

¢(0) #0.

alz) = @ _ m@

Then

is also a polynomial of degree— m and has no zeros in| < % % > 1. Now if
’ ()] = 1 1 p(2)] m’
mo = InlIl = 10 1n z = — min Z)| = —
0= |2|= |2|= P z k”| |=k b k'’

then, by Rouche’s theorem, the polynomial
q(Z> + mOﬁzn_mJ |B| < kn_m?

of degreen — m, will also have no zeros ife| < 1, 1+ > 1. Hence, by Lemma.1,
we have fors > 1 and|g| < k"™

s 1

)

(L
< (n—m)Cc® (/02

10 i0 m’ i(n—m—1)0
q(e)—i-ﬁﬁe (n—m)

1

dQ)S,

/
q(eie) + %5ei(n—m)9
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which implies

(3.1) (/:W

1
/! s

) . ) -m .
np(ew) . ezep/(ezé’) + 6%(” . m>ezm9

1
2 S s
< (n—m)CH® (/ d9> :
0 Integral Mean Estimates

. y s . n—m K.K. Dewan, N. Singh,
Now by Minkowski’s inequality, we have for > 1 and|3| < k B Chanam and A. Mir

d6’>

. m — .
p(ezO) + ﬁﬁezme

9 s 1 vol. 10, iss. 1, art. 23, 2009
4 . m/_ imé s
n (/ p(e?) + —pe™ d9>
0 km
1 Title Page
o i m/ 2 im6 0 1
< ([ |rwteny + b mpene — ety an) e
0
o / H <« »»
. : mm
4 610 / 619 4 zm@ de ’
< /0 p(e”) + = Be p R

which implies, by using inequality3(1) Page 11 of 15
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Proof of Theoreni.5. Sinceq(z) = z"p (1) so thatp(z) = 2"¢ (1), therefore, we
have

(3.2) p'(z) =n2""lq (%) — 2" G)
which implies
(3.3) P'(2)| = Ing(2) — 2¢'(2)| for |z[=1.

Using 3.2 in (2.2), we getforl < u<n

/ m/n /
4 () + 5oy < Kfna(2) — 2q'(2)] for |2 =1.
Now, from the above inequality, for every complgxwith |3| < 1, we get, for
|2l =1
, _m/n , m'n
¢+ 0| S @+ o
(3.4) < kMng(z) — 2¢'(2)] .

For every real or complex numberwith |a| > k*, we have
[Dap(2)] = Inp(2) + (a = 2)p'(2)]
> la] [p'(2)] = Inp(z) — zp(2)],
which gives by interchanging the rolesgf:) andg(z) in (3.3) for |z| = 1
Dap(2)] = lal[p'(2)] = 1¢'(2)]

(3.5) > |a|[p'(2)| = K*[p'(2)| +

m'n
-

k

(using €.2)).

J
|l\;|m

P
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Sincep(z) has all its zeros ife| < k < 1, by the Gauss-Lucas theorem, all the zeros

of p/(z) also lie in|z| < 1. This implies that the polynomial

z

1
2 (1) = mate) - 24
has all its zeros ifiz| > + > 1. Therefore, it follows from§.4) that the function

() + B;?ZI—Z
 kr(ng(z) — 2¢'(2))

is analytic for|z| < 1 and|w(z)| < 1 for |z| < 1. Furthermorev(0) = 0. Thus the
function1 + k*w(z) is a subordinate to the functidn+ k#z in |z| < 1. Hence by a
well-known property of subordinatiod], we have forr > 0 and for0 < 6 < 2,

z

(3.6) w(z)

21 27
(3.7) / |1+kﬂw(ei9)|rd9§/ 11+ kHe®|mdh .
0 0
Also from (3.6), we have
_m/n
L (s = )
+ krw(z) = )
ng(z) — z¢'(2)
or ,
ng(z) + Brz| = [L+ Hw(=)|lp ()] for |o| = 1,

which implies

!
Zn—l

(38)  n|p(x)+ B

= |1+ krw(2)||p'(2)] for |z| =1.
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Now combining 8.7) and @3.9), we get

2T T 2
nr/ df < / |1+ k*e)"|p/ (e)|"db .
0 0

Using (3.5) in the above inequality, we obtain

2T
W (o] — K" /
0

/
i0 M in—-1)0
p(e )+ﬁ—kn,ue

/
i M itn—-1)0
p(e )+ﬁ—kn,ue

r

de

2
< / |1+ ke |"dh {1|m|ax |Dap(2)| —
0 z|l=1

from which we obtain the required result.

nm' )"
e }

]
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