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ABSTRACT. In this paper, we present some basic results concerning an extension of Jensen
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1. BASIC RESULTS

An n-tuple of real numberX = (x,z,,...,x,) is said to be increasingly orderediif <
g <o <y My > 29 >--- > x,, thenX is decreasingly ordered.

In addition, a setX = (z1,s,...,,) with BF22t2n — 5 s said to bek-arithmetic
ordered ifk of the numbers:y, zo, . . ., z,, are smaller than or equal tg and the othern — k
are greater than or equal to On the assumption that < z, < --- < z,, X is k-arithmetic
ordered if

T < S xp <SS Ty S Sy,
It is easily seen that
X1 = (5= 21 4 Tpg1,8 — T + Tpyo, ..., 5 — Tp + Tp)
is ak-arithmetic ordered set iX is increasingly ordered, and is &n — k)-arithmetic ordered
set if X is decreasingly ordered.

Similarly, ann-tuple of positive real numbetd = (ay, as, . .., a,) with {/ajas - a, =1is
said to bek-geometric ordered it of the numbers, as, . . ., a,, are smaller than or equal 19
and the othen — k are greater than or equaltoNotice that

Q41 Q42 Qg
AIZ ( ) I

a a2 Gp,

is ak-geometric ordered set # is increasingly ordered, and is & — k)-geometric ordered
set if A is decreasingly ordered.
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2 VASILE CIRTOAJE

Theorem 1.1.Letn > 2and1 < k£ < n — 1 be natural numbers, and lgt«) be a function on
a real intervall, which is convex foru > s, s € I, and satisfies

flx) +kf(y) > (1+k)f(s)
forany z,y € I suchthatr < yandz + ky = (1 + k)s. If x1,29,...,2, € I such that
ZL’1+J]2+"'+ZL’n

n
and at leasty — k£ of xq, 9, ..., 2, are smaller than or equal t§, then

f(x1) + fx2) + -+ fan) = nf(S).

Proof. We will consider two casess = s and.S > s.

A. CaseS = s. Without loss of generality, assume that< z, < --- < x,,. Sincer; + x5 +
.-+ +x, = ns, and at least. — k£ of the numberszy, z,, . . ., z,, are smaller than or equal to
there exists an integer — £ < i < n — 1 such that(z;, xo, . .., z,) is ani-arithmetic ordered
set, i.e.

=9S>s

1 < <2 <s< iy <o <,
By Jensen’s inequality for convex functions,

f@iv) + f(@ig2) + -+ fzn) = (n—14) f(2),

where
L xi+1+$i+2+“'+xn

n—1

Thus, it suffices to prove that
fla) -4 f(@) + (n = i) f(2) =2 nf(s).
Letyi,vys,...,y; € I be defined by
1+ kyy =1 +k)s, xvo+kye=(14+k)s, ..., x;+ ky; = (1 + k)s.
We will show thatz > y; >y, > --- > y; > s. Indeed, we have

Y1 > Y2 > > Y,
S — I;

Yi— S = >0,
and

kyy = (14 k)s — xy
(1+k—n)s+azo+ -+,
(k4+i—n)s+ x4+ -+,
=(k+i—n)s+(n—1i)z <kz.

IN

Sincez >y, >y > - > y; > simpliesyy, v, ..., y; € I, by hypothesis we have

f(@) +kf(y) = (14 k) f(s),
flz2) + kf(y2) = (L4 k) f(s),

fl@) + kf(yi) = (14 k) [f(s).

Adding all these inequalities, we get
flan) + fla2) + oo+ f@a) + k[ (y) + fly2) + -+ )] 2 (L + k) f(s).
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Consequently, it suffices to show that

pf(z)+ (@ —=p)f(s) = fly) + fy2) + -+ flwi),
wherep = % < 1. Let t = pz+ (1 —p)s, s <t < z. Since the decreasingly ordered
vector A; = (t,s,...,s) majorizes the decreasingly ordered veckyr= (y, 42, ..., %), by

Karamata’'s inequality for convex functions we have
fO +G=1f(s) = fly) + fly2) + -+ f(w)-
Adding this inequality to Jensen’s inequality for the convex function
pf(z)+ @ =p)f(s) = f(1),
the conclusion follows.

B. CaseS > s. The functionf(u) is convex foru > S, u € I. According to the result from
Case A, it suffices to show that

f(@) +kfly) = 1+ k) f(S),

foranyz,y € I suchthatt < S <y andx + ky = (1 + k)S.

Forz > s, this inequality follows by Jensen’s inequality for convex function.

Forz < s, let z be defined byr + kz = (1 + k)s. Sincek(z —s) = s —x > 0 and
k(y—z)=(1+k)(S —s) >0, we have

r<s<z<y, s<S<uy.
Sincezx + kz = (1 + k)s andz < z, we have by hypothesis
fl@) +kf(z) > (L+E)f(s).
Therefore, it suffices to show that
kf () = f(2)] = (L+ B)[f(S) = f(s)],
which is equivalent to

Fw) — 5 _ £(S) — £5)
y—z — S—-s

This inequality is true if
fW) = () o f) = f(s) _ f(S) = f(5)
y—2 y—-s S—-s

The left inequality and the right inequality can be reduced to Jensen’s inequalities for convex
functions,

(y—2)f(s)+(z—95)f(y) = (y—s)f(2)
and
(S =s)f(y)+(y—95)f(s) = (y —s)f(9),

respectively. O

Remark 1.2. In the particular cask = n — 1, if f(z) + (n —1)f(y) > nf(s) foranyz,y € I
such thatr < y andz + (n — 1)y = ns, then the inequality in Theorem 1.1,

f(@r) + f(x2) -+ f2n) 2 0 f(S),

holds for anyz;,z,,...,z, € I which satisfyzitf2t=%in — § > 5 This result has been
established in 1, p. 143] and/[2].
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Remark 1.3. In the particular casé = 1 (whenn — 1 of xy, z», ..., z, are smaller than or
equal toS), the hypothesig (z) + kf(y) > (1 + k) f(s) in Theorenj 1.1 has a symmetric form:

F(@) + f(y) > 2£(s)
foranyz,y € I such thatr + y = 2s.
Remark 1.4. Let g(u) = % In some applications it is useful to replace the hypothesis
f(x) +kf(y) > (14 k)f(s) in Theoren 1.1 by the equivalent condition:
g(xr) <g(y) forany z,yel suchthat xr <s<y and x4+ ky=(1+k)s.
Their equivalence follows from the following observation:
f@)+kf(y) =L+ k) f(s) = f(x) = f(s) + k(f(y) — f(s))
= (z—s)g(x) + k(y — s)g(y)
= (z = 5)(9(z) — 9(y))-

Remark 1.5. If f is differentiable orY, then Theorerh 1]1 holds true by replacing the hypothesis
f(z)+kf(y) > (1 + k)f(s)with the more restrictive condition:

f'(x) < f'(y) forany z,yel suchthat + <s<y and x-+ky=(1+k)s.

To prove this assertion, we have to show that this condition imglies+ & f (v) > (1+k) f(s)
forany x,y € I such thatr < s <y andz + ky = (1 + k)s. Let us denote
s+ks—x
Flo) = ) + K ) = (0 00) = )+ 8 (=) = 0 (o)

SinceF'(x) = f'(x) — f'(y) < 0, F(x) is decreasing for € I, x < s, and hence’(x) >
F(s)=0.

Remark 1.6. The inequality in Theoretin 1.1 becomes equalitydor= =y = --- = z,, = S.
In the particular cas§ = s, if there arer,y € [ suchthatt < s <y, z+ ky = (k+ 1)s and
f(x)+kf(y) = (1 + k)f(s), then equality holds again far, = =, 2o = -+ =z, = s and
Tpn—k+1 = "+ = Tp =Y.

Remark 1.7. Leti be an integer such that— £ < i < n — 1. We may rewrite the inequality
in Theoren_LIl as either

f(S—ar+an i)+ f(S—as+an_iio)+-+ f(S—a,+ an_i) >nf(S)
witha; > ay > --- > a,, Or
f(S —ar+ai) + f(S—ax+ag2) +---+ f(S—an+a;) >nf(S)
witha; <a, < --- < a,.

Corollary 1.8. Letn > 2 and1 < k < n — 1 be natural numbers, and lgtbe a function on
(0, 00) such thatf(u) = g(e*) is convex for. > 0, and

g(z) + kg(y) > (1+k)g(1)

for any positive real numbers andy with 2 < y andxy* = 1. If a;, as, . . ., a, are positive
real numbers such thay/a,a; - a, = r > 1 and at leastr — k of a,, as, ..., a, are smaller
than or equal ta-, then

g(ar) + glas) + - -+ + g(an) > ng(r).

Proof. We apply Theorern 1]1 to the functigitu) = g(e*). In addition, we set = 0, S = Inr,
and replace: with In x, y with In y, and each; with In a;. O
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Remark 1.9. If f is differentiable on(0, cc0), then Corollaryf 1.8 holds true by replacing the
hypothesis)(z) + kg(y) > (1 + k)g(1) with the more restrictive condition:

zg (z) <yg'(y) foral z,y>0 suchthat <1<y and ay" =1.

To prove this claim, it suffices to show that this condition implés) + kg(y) > (1 + k)g(1)
for all z,y > 0 with 2 < 1 < y andxzy* = 1. Let us define the functio& by

G(z) = g(z) + kg(y) — (L + k)g(1) = g(x) + kg <\k/1> — (1 +k)g(1).

T

Since

zg'(x) —yg'(y)
T

G(z) is decreasing for < 1. Therefore,G(z) > G(1) = 0 for z < 1, and hencey(x) +

kg(y) = (L+k)g(1).

Remark 1.10. Leti be an integer such that— £ < i < n — 1. We may rewrite the inequality

for » = 1in Corollary[1.8 as either

Zli'n,i :En—i xnfz'
T i) Tn

fore; > a9 >--->a, >0,0r

(5) o2 n(2) o
I T2 Iy,

for0 <o <ay < - <.

<0

’

G'(x) =g'(x) — %9’(1/) =

Theorem 1.11.Letn > 2and1 < k£ < n — 1 be natural numbers, and lgt(«) be a function
on areal intervall, which is concave fon < s, s € I, and satisfies

kf(@) + f(y) < (k+1)f(s)

foranyz,y € I such thatr < yandkx +y = (k + 1)s. If x1,29,...,2, € I such that
w = S < sandatleast» — k of x1,x,,...,x, are greater than or equal t§, then

f(@y) + f(w2) + -+ fan) < nf(S).

Proof. This theorem follows from Theorefn 1.1 by replacifig:) by — f(—u), s by —s, S by
—S, x by —y, y by —z, and eachx; by —z,,_,,, for all i. O

Remark 1.12. In the particular case = n— 1, if (n—1)f(z)+ f(y) < nf(s)foranyz,y € I
such thatr < y and(n — 1)z + y = ns, then the inequality in Theorejm 1]11,

f(@r) + f(x2) - - + f2n) < nf(S),

holds for anyzy, z,,...,xz, € I which satisfyfite2totin — & < 5 This result has been
established in |1, p. 147] and/[2].

Remark 1.13. In the particular casé = 1 (whenn — 1 of x1, xo, ..., x, are greater than or
equal toS), the hypothesié f(z) + f(y) < (k+1)f(s) in Theoreni 1.11 has a symmetric form:
f(z)+ f(y) <2f(s) foranyz,y € I such thate + y = 2s.

Remark 1.14. Let g(u) = £/} The hypothesié f(x) + f(y) < (k + 1)f(s) in Theorem
[1.17 is equivalent to

g(x) > g(y) forany z,yel suchthat r<s<y and kzr+y=(k+1)s.
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Remark 1.15. If f is differentiable on/, then Theorem 1.11 holds true if we replace the hy-
pothesisk f(z) + f(y) < (k+ 1) f(s) with the more restrictive condition

f'(z) > f'(y) forany z,yel suchthat x <s<y and kr+y=(k+1)s.

Remark 1.16. The inequality in Theorein 1.11 becomes equalitydfpe= z5 = - - - =z, = S.
In the particular cas§ = s, if there arer,y € [ suchthatt < s <y, kx +y = (k+ 1)sand
kf(x)+ f(y) = (1 + k) f(s), then equality holds again far, = -+ = x), = &, 141 = -+ =

r,_1 = sandz, = y.

Remark 1.17. Let ¢ be an integer such that < ¢ < k. We may rewrite the inequality in
Theorenm 111 as either

f(S—ar+ai1)+ f(S—as+ap)+-+ f(S—a,+a) <nf(S)
witha; <ay, <---<a,, Or
f(S—a1+an_iz1)+ f(S—as+ an_iz2) ++ f(S—ay,+an_) <nf(9)
witha; > ay > - > a,,.

Corollary 1.18. Letn > 2 and1 < k < n — 1 be natural numbers, and lgtbe a function on
(0, 00) such thatf(u) = g(e*) is concave for < 0, and

kg(z) +g(y) < (k+1)g(1)

for any positive real numbers andy with z < y andz*y = 1. If ay, as, . . ., a, are positive
real numbers such thay/a,a; ---a, = r < 1 and at least — k of a;,a,,...,a, are greater
than or equal ta-, then

glar) + glaz) + - -~ + g(an) < ng(r).

Proof. We apply Theorem 1.11 to the functiof{u) = g(e*). In addition, we set = 0,
S = Inr, and replace: with In z, y with In y, and each; with In ;. OJ

Remark 1.19. If f is differentiable on0, 0o), then Corollary 1.18 holds true by replacing the
hypothesistg(z) + g(y) < (k + 1)g(1) with the more restrictive condition:

xg (z) > yg'(y) foral z,y>0 suchthat z <1<y and z"y=1.

Remark 1.20. Let: be an integer such that< i < k. We may rewrite the inequality for= 1
in Corollary[1.18 as either

g( +1>+g( +2)+~--+g<—)§n9(1)
T i) Tn

for0 <oz, <azy <--- <z, o0r

Ly Tp—i Tp—i
il ) Iy,

forzy > a9 >---> 2, >0.

2. APPLICATIONS

Proposition 2.1. Letn > 2and1 < k < n — 1 be natural numbers, and let;, zo, ..., =, be
nonnegative real numbers such that+ x5 + - - - + x,, = n.

(a) If at leastn — k of x1,x,,...,x, are smaller than or equal td, then
k(x?+ s+ -+ 23+ (1 +k)n > (14 2k) (2 + 25+ -+ +22);
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(b) If at leastn — k of =y, xo,...,x, are greater than or equal td, then
By+as+4al+ (k+D)n < (k+2)(a]+ a5+ +22).

Proof. (a) The inequality is equivalent tb(x,) + f(z2) + -+ + f(zn) > nf(S), whereS =
ntrebedtn — 1 andf(u) = ku® — (1 + 2k)u?. Foru > 1,

F(w) = 2(3ku — 1 — 2k) > 2(k — 1) > 0.

Therefore,f is convex foru > s = 1. According to Theorer 1|1 and Remark]1.4, we have to
show thaty(z) < g(y) for any nonnegative real numbers< y such thatc + ky = 1+ k, where

—f(1
g(u)—L{()—kuz—(l—i—k)u—l—k.
U —
Indeed,
9(y) —g(@) = (k- Dz(y —z) = 0.
Equality occurs forr; = 29 = --- = z, = 1. On the assumption tha < z, < --- < z,,,
equality holds again far; = 0,25 = --- = 2,y = landa, 41 = -+ =, = 1+ 1.

(b) Write the inequality ag(x1) + f(z2) + - + f(z) < nf(S), whereS = fitatotin — ]
andf(u) = u* — (k + 2)u®. From the second derivative,

f"(u) =2Bu—k —2),

it follows that f is concave for < s = 1. According to Theorerp 1.11 and Remark 1.14, we
have to show thaj(z) > ¢(y) for any nonnegative real numbers< y such thakx+y = k+1,

where
flu) = f(1)

— 22 _ I S
T U (k+1Du—Fk—1.

g(u) =
It is easy to see that
g9(x) —g(y) = (k — Da(y —x) = 0.
Equality occurs fotrr; = z9 = -+ = z, = 1. On the assumption tha < z; < --- < x,,
equality holds againfat, = --- =2, =0, 24,1 =--- =, = landz, = k + 1. 0

Remark 2.2. Fork = n — 1, the inequalities above become as follows
(n=D(@+ay+--tay) +n' 2 20— 1(@+ o+ +3y)
and
it ay e +al 0t < (n+1)(af +ag 4 +al),
respectively. By Remark 1.2 and Remprk 1.12, these inequalities hold for any nonnegative real

numbersey, o, . . ., z, Which satisfyz; + x5 + - - - + z,, = n (Problems 3.4.1 and 3.4.2 from
[1, p. 154]).

Remark 2.3. For k = 1, we get the following statement:
Letxy, xs,...,x, be nonnegative real numbers such that- x5 + - - - + z,, = n.

(a) Ifxlggxn—lglgxnathen
w3l b2t 20 > 3(a 2+ 2R
) <1<2,<---<z,,then

ol 2P 20 < 3(xf 42k -+ 2R).
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Proposition 2.4. Letn > 2 and1 < k < n — 1 be natural numbers, and let;, zo, ..., =, be
positive real numbers such that + z5 + - - - + z,, = n. If at leastn — k of x1,z,,...,x, are
greater than or equal ta, then

1 1 1 4k

4y (g2 24 ... 2 _ ).
x1+x2+ +xn n_(k+1)2(acl—|—x2—|— +z; —n)

Proof. Rewrite the inequality ag(z1 )+ f(x2)+- - -+ f () < nf(S), whereS = fitatodin —
landf(u) = %5 — L. For0 < u < s = 1, we have
) 8k 2 8k —o(k — 1)?
- _ 2 < _og__s\— ) )
P =G5 " w S e ip k+12 —

therefore,f is concave or(0,1]. By Theoren] 1.11 and Remalk 1}14, we have to show that
g(x) > g(y) for any positive real numbers < y such thatcx + y = k + 1, where

ROy (OIS IUES VI

u—1 (k+1)2  u
Indeed,
1 4k (y — z)(2kx — k — 1)?
_ — (y — - _ = > 0.
9(x) —g(y) = (y — ) [wy 0T 1)2} (T 1)y >
Equality occurs fotr; = 25 = --- = x,, = 1. Under the assumption that < z, < --- < z,,,
equality holds again fat; = - - =z, = &2 24y = -+~ = 2,y = 1 andz,, = EL. U

Remark 2.5. Fork = n — 1, the inequality in Propositign 3.4 becomes as follows:

11 1 4(n —1)
—+—+~~~+——n2T(m§+x§+-~+xi—n).

By RemarK 1.1P, this inequality holds for any positive real numberss,, . . ., z,, which satisfy
x1+ 29+ -+ z, = n (Problems 3.4.5 from [1, p. 158]).

Remark 2.6. For k = 1, the following nice statement follows:
If 1,25, ...,x, are positive real numbers such that< 1 < z, < --- < x,, andz; + x5 +
<o+ x, =n, then

1 1 1 9 9 9
—+—+-+— 2]+ + -+
I ) I
Proposition 2.7. Letn > 2 and1 < k < n — 1 be natural numbers, and let,, z,, ..., z, be
nonnegative real numbers such that+ x5 + - - - + z,, = n.
(a) If at leastn — k of x1,x,,...,x, are smaller than or equal td, then
1 + L +- 4 ! >
k+1+kx?  k+1+ kil k+1+kx2 = 2k+1’
(b) If at leastn — k of =y, xs,...,x, are greater than or equal td, then
1 1 1 n

< .
* +k2+k:+1+lmg ~ (k+1)2

Proof. (a) We may write the inequality ag(x,) + f(z2) + -+ + f(zn) > nf(S), where
S = mtmette — 1 and f(u) Since the second derivative,

k2+k+1+kx%+k2+k+1+kx§

= k+1}rku2'
) = 2k(3ku — k — 1)
(k14 ku2)3
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is positive foru > 1, f is convex foru > s = 1. According to Theorern 1l 1 and Remark|1.4, we
have to show thaj(z) < ¢(y) for any nonnegative real numbers< y such thatr+ ky = 1+k,

where
gy = S0 =IO k)
u—1 (2k+1)(k+1+ku?)
Indeed, we have
k*(y — ) 1
— = —1—=]>0
9(y) = 9(x) 2k + 1)(k + 1+ ka?)(k + 1 + ky?) (xy+x+y k) -
since
1 2k — 1
xy—irx—l—y—l—EZWEO.
Equality occurs forr; = 29 = --- = z, = 1. On the assumption tha < z, < --- < z,,
equality holds again fat; = 0,20 = -+ =2, =landz, 41 = =z, = 1 + 1.

(b) We will apply Theorel to the functiof(u) = -7 fors = S = 1. Since the
second derivative,
2k(3ku® — k* —k—1
f//(u) — ( u )’
(k2 +k+ 1+ ku?)?
is negative fol0 < u < 1, f is concave fo < u < 1. According to Remark 1.14, we have
to show thaty(x) > ¢(y) for any nonnegative real numbets< y such thattx +y = k + 1,

where
o) = S0 =S —k(u+ 1)
u—1 (B4 12K+ k+ 14 ku?)
We have
(@) - 9ly) = Py~ 2
T I = 10202 + k+ 1+ ka?) (B2 + k + 1+ ky?)
1
X (k—#z—i—l—my—x—y) >0,
since
1 1\?
k—l—E—l—l—xy—x—y:k’(:c—E) > 0.
Equality occurs forr; = 29 = -+ = z,, = 1. On the assumption tha < z, < --- < x,,
equality holds again far| = - - = ), = ¢, 341 = -+ = 2,1 = 1 andz,, = k. O

Remark 2.8. Fork = n — 1, the inequalities in Propositign 2.7 become as follows:

1 1 1 n
>
n+(n—1)x%+n+(n—1)x§+ +n+(n—1)x%_2n—1

and
1 1 1 1

— I

n2—n+1+(n—1)x§+n2—n+1+(n—1)x§+”.+n2—n+1+(n—1)x% n

respectively. By Remark 1.2 and Remark 1.12, these inequalities hold for any nonnegative
numbersey, o, . .., x, Which satisfyz; + x5 + - -- + z,, = n (Problems 3.4.3 and 3.4.4 from
[1, p. 156]).

Remark 2.9. For k = 1, we get the following statement:
Letxzq, zq, ..., x, be nonnegative real numbers such that+ x5 + - - - + 2, = n.
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@Qlfe; <--- <z, ,<1<x,,then

1 1 1 n
2+m%+2+x§+'”+2+x%_§;

O <1<2,<---<z,,then
1 1 1 <ﬁ

+ o —— <o
3+x? 3+ 3+a2 ~ 4

Remark 2.10. By Theorenj 1.1l and Theorgm 1}11, the following more general statement holds:
Letn > 2andl < k < n — 1 be natural numbers, and let, z-, . . ., z,, be honnegative real
numbers such that; + x5 + - - - + z,, = nS.

(@ If S>1andatleast — k of x1,z,,...,x, are smaller than or equal & then
1 N 1 - 1 - n ‘
k+1+kz?  k+1+ kad k+1+ka2 = k+1+kS?
(b) If S <1andatleast — k of =, x,,...,x, are greater than or equal £ then
1 1 1 n
2 5t 13 7t 7 S 12 2°
K2+k+14+kxy  k24+k+ 1+ kol K+Ek+1+4+ka?2 ~ K24+k+1+kS

Proposition 2.11.Letn > 2and1 < k < n — 1 be natural numbers, and let, as, ..., a, be
positive real numbers such thata, - - - a,, = 1.

(a) If at leastn — k of x1,x,,...,z, are smaller than or equal td, then

LS S SRR
1+ ka; 1+ kay 14+ka, ~ 1+EK
(b) If at leastn — k of =, xo,...,x, are greater than or equal td, then
1 . 1 n n 1 < n
ap+k  ay+k a,+k ~ 1+k
Proof. (a) We will apply CoroIIar to the functiop(z) = /-, for » = 1. The function
f(u) = g(e*) = 73z has the second derivative
ke (ke* — 1)
" _
f (U) - (1 + k’@u)?’ )

which is positive foru > 0. Therefore,f is convex foru > 0. Thus, it suffices to show that
g(z) +kg(y) > (1+k)g(1) for anyz,y > 0 such thatry® = 1. The inequalityy(z) + kg(y) >
(14 k)g(1) is equivalent to
k
A
yP+k 1+ ky

or, equivalently,

v+ k—1> ky.
The last inequality immediately follows from the AM-GM inequality applied to the positive
numbersy®, 1, ..., 1. Equality occurs for, = ay = --- = a, = 1.

(b) We can obtain the required inequality either by replacing each numbeth its reverse
L in the inequality in part (a), or by means of CoroII.18. Equality occurafee a, =
= a, = 1. O
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Remark 2.12. Fork = n — 1, we get the known inequalities

1 1
e — = >
1+(n—1)a1+1—|—(n—1)0z2+ +1+(n—1)an_
and )
+ o ————— <1,
ar+n—1 ay+n—1 a, +n—1

which hold for any positive numbers, as, .

Remark 2.13. Using the substitution; =
statement:

Letn > 2andl < k£ < n — 1 be natural numbers, and let, z», .

T+
Z1

..,a, such thatyay - - - a,, = 1.

1 Tp+2

Zo P

y U2 — -y p =

numbers.
@ Ifxy>a9>--->ux,, then
T i) Tn > n .
T+ kTp1  To+ kT Tn+kry 14+ K
L) Ifzy <z <--- <z, then
T To 4 Tn S n ‘
lf:lfl + Th+1 kiL’Q + Tk+2 k‘fl?n + T k + 1
In the particular cask = 1, we get
T T2 Tn > n
T+ To To + X3 T, +1x1 2
forey > a9y >--->2x, >0,and
T T2 Iy < E
T1+ 2Ty  To+ X3 T, +x1 ~ 2

forO0< o, <z <--- <,

Remark 2.14. By Corollary{1.8 and Corollary 1.18, we can see that the following more general

statement holds:

Letn > 2andl < k < n — 1 be natural numbers, and lef, as, .

numbers such thay/a,as - - a, = r.

(@) If r > 1, and at least. — k of aq, as,
1 1
1+ kay + 1+ kas
(b) If » < 1,and atleast — k of aq,as,
1 1
a1+kz+a2+k5

Proposition 2.15. Letay, as, .
@lfa <---<a,1 <1<a,,then
1 1

+..

.., a, be positive numbers such thata, - -

..., a, are smaller than or equal tg then
+ >
14+ ka, — 1+kr’
..., a, are greater than or equaltpthen
1 n
< .
a,+k " r+k

-a, = 1.

1 n
+ Fo b e—— >
\/1+36L1 \/1+3a2 \/1+3an_2
) Ifa; <1<ay <---<a,,then
1 1 1 n
+ e <
\/1—1—2a1 \/1+26L2 \/1—1—2@” \/§
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Proof. (a) We will apply Corollar 8 (cask = 1 andr = 1) to the functiong(z) =
The functionf (u) has the second derivative

V143 ®
= g(e") = W
1
f"(u) = ge"(3e" = 2)(1+3¢") 5.

Sincef” > 0 foru > 0, f is convex foru > 0. Therefore, to finish the proof, we have to show
thatg(z) + g(y) > 2¢(1) for anyz,y > 0 with zy = 1. This inequality is equivalent to

1 T
+ > 1.
V1+ 3z Vao+3~

=t, 0 <t < 1, transforms the inequality into

\/ L=
8t2+1 '
By squaring, we get(1 — ¢)(2t — 1)? > 0, which is clearly true. Equality occurs fag = a, =
-=aq, = 1.
(b) We will apply Corollar (cask = 1 andr = 1) to the functiong(z) = 5. The
function f(u) = g(e*) = 5= Is concave fou < 0, since

[V

Using the substitutior—= m

"= (e — 1)(142¢)73 < 0.

Thus, it suffices to show thgtx) + g(y) < 2¢(1) for anyz, y > 0 with zy = 1. This inequality
follows from the Cauchy-Schwarz inequality, as follows

/ 3
1+ =2
1+2w 1—1-290 142y

Equality occurs for; = ay = O
Remark 2.16. Using the substltutiom = i—f, g = ;—Z,..., a, = ;C—:L we get the following
statement:

Letx,z,,...,x, be positive real numbers.

@ Ifxy >a9>--->1x,, then

Y e
1+ 32 o + 313 Tp+ 30, — 27

L) Ifzy <z <--- <, then

3Ty 3Ta 3%,
+ +-o ) —F <n.
1 + 229 To + 273 Tp + 271

Remark 2.17. By Corollary[1.8 and Corollary 1.18, the following more general statement
holds:
Letai, as,. .., a, be positive real numbers such thgta, - - a, =
@Ilfr>1anda; <---<a,_1 <r <a,,then
LS SRR S
VI+3a; 1+ 3as V1+3a, — V/1+3r
(b)Ifr<landa; <r<ay <---<a,,then
1 1 1 n

+ +oee < .
VI+2a, 1+ 2a, V1+2a, ~ V/1+2r
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Proposition 2.18.Letaq, as, . . ., a,, be positive numbers such thata, - - - a,, = 1.

@lfa <---<a,1 <1 < a,, then the following inequality holds far < p < py,
wherep, = 1.5214 is the positive root of the equatigd — p — 2 = 0:

1 1 1 n
pra? Gra? e Gt
(b) Ifa; <1< ay < --- < a,, then the following inequality holds fer> 1 + v/2:
1 1 1 n
pra? Gra? pre)r s Gt
Proof. (a) We will apply Corollar (cask = 1 andr = 1) to the functiong(z) = —2

(p+=)?”
Notice that the functiorf (u) = g(e*) = m is convex foru > 0, because
2e%(2e¥ —
f//(u) — € ( € 4p) > 0
(p+e)
Consequently, we have to show tlyét) + g(y) > 2¢(1) for anyz,y > 0 with zy = 1; that is
1 1 2

T AR P
Using the substitution + y = 2t, t > 1, the inequality transforms into
2t2 4+ 2pt +p? — 1 o1
2pt+p2+1)2 — (p+1)¥

or, equivalently,
(t =D +2p = p*)t + (1= p)(p* + 1)] > 0.
It is true, because + 2p — p? > p(2 — p) > 0 and

I+2p—pt+A=-p)P*+1) =1 +2p—p°) + (1 —p)(p* +1)

=2+p—p° 20
for 0 < p < po. Equality holds fora; = as =--- =a, = 1.
(b) We will apply Corollar;{ 1.1B (cask = 1 andr = 1) to the functiong(x) = m The
function f(u) = g(e*) = ez Is concave for < 0, since
2e"(2e" — p)
"(u) = ————= < 0.
f (u) (p+€u)4

By Corollary[1.18, it suffices to show thatz) + g(y) < 2¢(1) for anyz,y > 0 with 2y = 1;

that is
1 1 2

+ < .
(p+)2 (p+y? ~ (p+1)?
Using the notation: + y = 2t, ¢t > 1, the inequality becomes

(t—D[P* —2p—1)t+ (p—1)(p* +1)] > 0.

Itis true, sincey* —2p—1 > 0 forp > 1++/2. Equality holds fok;, = as = -~ =a, = 1. O
Remark 2.19. Using the substitution; = 2 =3, a4 = 75, wWe get the following
statement:

Letxy,zo,...,x, be positive real numbers.
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@If0<p<py=15214andz, > x5 > --- > x,, then

I 2 ) 2 Tn 2 n
— ) ) ) 25
pTL+ T2 pr2 + I3 PTn + 1 (p+1)

(b) If p>1++v2andz; <y < --- < x,, then

T 2 ) 2 e 2 n
— )+ | — ) + | ——) < —5
pr1 + X9 PTo + T3 PTy, + 11 (p+1)

Remark 2.20. By Corollary[1.8 and Corollary 1.18, the following more general statement
holds:

Letai,as,. .., a, be positive real numbers such thgt a, -~ a, = r.

@Ifr>1anda; < --- < a,_1 < r < a,, then the following inequality holds for
0 < p < po, Wherep, = 1, 5214 is the positive root of the equatioi — p — 2 = 0:
LS SIS SR
(p+a1)*  (p+a2)? (p+an)? ~ (p+1)*
)Ifr <landa, <r < ay < --- < a,, then the following inequality holds for
p>14 V2
LS S SR |
(p+a)?  (p+az)? (p+a)? ~ (p+r)*
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